首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In freshly isolated rabbit pulmonary artery smooth muscle cells, endothelin (ET)-1 induced a transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) followed by a return to the initial [Ca(2+)](i). This response was not abolished by the voltage-dependent Ca(2+) channel blocker nicardipine or removal of Ca(2+) from the bath solution but was inhibited by ryanodine and thapsigargin. This finding suggested that the increase in [Ca(2+)](i) induced by ET-1 was attributable to release of Ca(2+) from ryanodine- and inositol 1,4,5-trisphosphate-sensitive intracellular Ca(2+) stores. The transient increase in [Ca(2+)](i) induced by ET-1 was also inhibited by pretreatment with antagonists of ET type A and B (ET(A) and ET(B)) receptors (BQ-123 and BQ-788, respectively). Furthermore, the ET(B) receptor agonist IRL-1620 induced an increase in [Ca(2+)](i) that was followed by a sustained increase in [Ca(2+)](i); the sustained increase in [Ca(2+)](i) was blocked by nicardipine. Using the nystatin-perforated patch-clamp technique, we found that IRL-1620 caused an increase in Ca(2+) current that was inhibited by addition of ET-1. ET-1 did not inhibit Ca(2+) current when cells were pretreated with BQ-123. These results suggested that when both receptor types are activated, the opposing responses lead to abolition of the sustained [Ca(2+)](i) increases induced by ET(B) receptor activation. Western blot analysis confirmed expression of ET(A) and ET(B) receptors. Finally, U-73122 inhibited the ET-1-induced [Ca(2+)](i) increase, indicating that phospholipase C was involved in modulation of the ET-1-induced [Ca(2+)](i) increase in rabbit pulmonary artery smooth muscle cells.  相似文献   

2.
The endothelins (ET) have been implicated in vasopressin (AVP) release in vivo and in vitro. The effects of ET in this system are complex, and the net AVP secretory response likely depends on a unique combination of ET isoform, ET receptor subtype, and neural locus. The purpose of these studies was to examine the role of ET receptor subtypes at hypothalamic vs. neurohypophysial sites on somatodendritic and neurohypophysial AVP secretion. Experiments were done in cultured explants of the hypothalamo-neurohypophysial system of Long Evans rats. Either the whole explant (standard) or only the hypothalamus or posterior pituitary (compartmentalized) was exposed to log dose increases (0.01-10 nM) of the agonists ET-1 (ET(A) selective), ET-3 (nonselective), or IRL-1620 (ET(B) selective) with or without selective ET(A) (BQ-123, 2-200 nM) or ET(B) (IRL-1038, 6-600 nM) receptor antagonism. In standard explants, ET-1 and ET-3 dose-dependently increased, whereas IRL-1620 decreased net AVP release. Hypothalamic ET(B) receptor activation increased both somatodendritic and neurohypophysial AVP release. At least one intervening synapse was involved, as tetrodotoxin blocked the response. Activation of ET(A) receptors at the hypothalamic level inhibited, whereas ET(A) receptor activation at the posterior pituitary stimulated, neurohypophysial AVP secretion. Antagonism of hypothalamic ET(A) receptors potentiated the stimulatory effect of ET-1 and ET-3 on neurohypophysial secretion, an effect not observed with ET(B) receptor-induced somatodendritic release of AVP. Thus the response of whole explants reflects the net result of both stimulatory and inhibitory inputs. The integration of these excitatory and inhibitory inputs endows the vasopressinergic system with greater plasticity in its response to physiological and pathophysiological states.  相似文献   

3.
Blockade of central endothelin ET(B) receptors inhibits fever induced by LPS in conscious rats. The contribution of ET(B) receptor-mediated mechanisms to fever triggered by intracerebroventricular IL-6, PGE2, PGF(2alpha), corticotropin-releasing factor (CRF), and preformed pyrogenic factor derived from LPS-stimulated macrophages (PFPF) was examined. The influence of natural IL-1 receptor antagonist or soluble TNF receptor I on endothelin (ET)-1-induced fever was also assessed. The selective ET(B) receptor antagonist BQ-788 (3 pmol icv) abolished fever induced by intracerebroventricular ET-1 (1 pmol) or PFPF (200 ng) and reduced that caused by ICV CRF (1 nmol) but not by IL-6 (14.6 pmol), PGE2 (1.4 nmol), or PGF(2alpha) (2 nmol). CRF-induced fever was also attenuated by bosentan (dual ET(A)/ET(B) receptor antagonist; 10 mg/kg iv) but unaffected by BQ-123 (selective ET(A) receptor antagonist; 3 pmol icv). alpha-Helical CRF(9-41) (dual CRF1/CRF2 receptor antagonist; 6.5 nmol icv) attenuated fever induced by CRF but not by ET-1. Human IL-1 receptor antagonist (9.1 pmol) markedly reduced fever to IL-1beta (180 fmol) or ET-1 and attenuated that caused by PFPF or CRF. Murine soluble TNF receptor I (23.8 pmol) reduced fever to TNF-alpha (14.7 pmol) but not to ET-1. The results of the present study suggest that PFPF and CRF recruit the brain ET system to cause ET(B) receptor-mediated IL-1-dependent fever.  相似文献   

4.
The role of endothelin, PAF and thromboxane A2 in airway hyperreactivity (AHR) to carbachol induced by ovalbumin sensitization and challenge in Balb/c mice was investigated. Ovalbumin sensitization and challenge induced significant AHR to carbachol in actively sensitized and challenged mice. Treatment of these mice with the PAF antagonist CV-3988 (10 microg kg(-1), i.v.) completely abolished OVA-induced AHR to carbachol. Treatment of sensitized mice with the TxA2 antagonist L-654,664 (1 mg kg(-1), i.v.) partially blocked the induction of AHR in OVA-challenged mice. The intranasal administration of 50 pmol of the ET(A) receptor antagonist BQ-123 had no effect on the PIP but produced a significant reduction at the dose of 100 pmol. The intravenous administration of BQ-123 (100 pmol) reduced the PIP only at the highest doses of carbachol. The ET(B) receptor antagonist BQ-788 administered either via the intranasal or intravenous route had no effect on the PIP at the dose of 100 pmol. Na?ve mice treated with either U-44069 (25 or 100 microg kg(-1), i.v.), endothelin-1 (100 pmol, intranasally) or the ET(B) receptor agonist IRL-1620 (100 pmol, intranasally) showed a marked increase in airway reactivity to carbachol. These results suggest an important role for endothelin, PAF and thromboxane A2 in AHR in mice actively sensitized and challenged with ovalbumin.  相似文献   

5.
The hemodynamic and proinflammatory effects of endothelin-1 (ET-1) in proximal (1st/2nd order) and terminal (3rd/4th order) arterioles and venules were examined in small intestine submucosa of anesthetized guinea pigs. Vessel diameter (D), red blood cell velocity, and blood flow (Q) were determined in eight proximal and eight terminal microvessels before and at 20 min of ET-1 suffusion (10(-10), 10(-9), and 10(-8) M) and then with endothelin-A (ET(A))-receptor blockade with BQ-123 (10(-5) M). This protocol was repeated with platelet-activating factor (PAF) inhibition (WEB-2086, 1.0 mg/kg iv; n = 16). The ET-1-mediated microvascular responses were also examined with endothelin-B (ET(B))-receptor blockade using BQ-788 (10(-5) M; n = 11) alone or with ET(A+B)-receptor blockade with BQ-123 + BQ-788 (n = 10). Microvascular permeability was assessed by FITC-albumin (25 mg/kg iv) extravasation in seven series: 1) buffered modified Krebs solution suffusion (n = 6), 2) histamine suffusion (HIS; 10(-3) M, n = 5), 3) ET-1 suffusion (10(-8) M, n = 5), 4) BQ-123 (10(-5) M) plus ET-1 suffusion (n = 5), 5) PAF inhibition before ET-1 suffusion (n = 5), 6) histamine-1 (H1)-receptor blockade (diphenhydramine, 20 mg/kg iv) before ET-1 suffusion (n = 5), and 7) ET(B)-receptor blockade before (BQ-788 10(-5) M; n = 3) or with ET-1 suffusion (n = 3). D and Q decreased at 10(-8) M ET-1 and returned to control values with BQ-123 and BQ-123+BQ788 but not with BQ-788 in proximal microvessels. D did not change in terminal microvessels with ET-1 (10(-8) M) but decreased with BQ-788 and increased with BQ-123. PAF inhibition did not affect the D and Q responses of proximal microvessels to ET-1 but prevented the fall in Q in terminal microvessels with ET-1. ET-1 increased vascular permeability to approximately 1/3 of that with HIS; this response was prevented with BQ-123 and WEB-2086 but not with H1-receptor blockade. This is the first evidence that submucosal terminal microvessel flow is reduced with ET-1 independent of vessel diameter changes and that this response is associated with increased microvascular permeability mediated via ET(A)-receptor stimulation and PAF activation.  相似文献   

6.
Endothelin-A (ET(A)) and endothelin-B (ET(B)) receptors have been demonstrated in intact heart and cardiac membranes. ET(A) receptors have been demonstrated on adult ventricular myocytes. The aim of the present study was to determine the presence of ET(B) and the relative contribution of this receptor subtype to total endothelin-1 (ET-1) binding on adult ventricular myocytes. Saturation binding experiments indicated that ET-1 bound to a single population of receptors (Kd = 0.52 +/- 0.13 nM, n = 4) with an apparent maximum binding (Bmax) of 2.10 +/- 0.25 sites (x 10(5))/cell (n = 4). Competition experiments using 40 pM [125I]ET-1 and nonradioactive ET-1 revealed a Ki of 660 +/- 71 pM (n = 10) and a Hill coefficient (nH) of 0.99 +/- 0.10 (n = 10). A selective ET(A) antagonist, BQ610, displaced 80% of the bound [125I]ET-1. No displacement was observed by concentrations of an ET(B)-selective antagonist, BQ788, up to 1.0 microM. However, in the presence of 1.0 microM BQ610, BQ788 inhibited the remaining [125I]ET-1 binding. Similarly, in the presence of 1.0 microM BQ788, BQ610 inhibited the remaining specific [125I]ET-1 binding. Binding of an ET(B1)-selective agonist, [125I]IRL-1620, confirmed the presence of ET(B). ET(B) bound to ET-1 irreversibly, whereas binding to ET(A) demonstrated both reversible and irreversible components, and BQ610 and BQ788 bound reversibly. Reducing the incubation temperature to 0 degrees C did not alter the irreversible component of ET-1 binding. Hence, both ET(A) and ET(B) receptors are present on intact adult rat ventricular myocytes, and the ratio of ET(A):ET(B) binding sites is 4:1. Both receptor subtypes bind to ET-1 by a two-step association involving the formation of a tight receptor-ligand complex; however, the kinetics of ET-1 binding to ET(A) versus ET(B) differ.  相似文献   

7.
The ability of endothelins 1 and 3 (ET-1 and ET-3) to reduce neuronal norepinephrine release through ETB receptor activation involving nitric oxide (NO) pathways in the rat anterior hypothalamus region (AHR) was previously reported. In the present work, we studied the effects of ET-1 and -3 on tyrosine hydroxylase (TH) activity and the possible involvement of NO pathways. Results showed that ET-1 and -3 (10 nM) diminished TH activity in AHR and this effect was blocked by a selective ETB receptor antagonist (100 nM BQ-788), but not by a ET(A) receptor antagonist (BQ-610). To confirm these results, 1 microM IRL-1620 (ET(B) agonist) reduced TH activity whereas 300 nM sarafotoxin S6b falled to modify it. N(omega)-Nitro-L-arginine methyl ester (10 microM), 7-nitroindazole (10 microM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-ona (10 microM), KT5823 (2 microM), inhibitors of nitric oxide synthase, neuronal nitric oxide synthase, NO-sensitive-guanylyl cyclase, and protein kinase G, respectively, did not modify the reduction of TH activity produced by ETs. In addition, both 100 microM sodium nitroprusside and 50 microM 8-bromoguanosine-3',5'-cyclic monophosphate (NO donor and guanosine-3',5'-cyclic monophosphate analog, respectively) diminished TH activity. Present results showed that ET-1 and ET-3 diminished TH activity through the activation of ET(B) receptors involving the NO/guanosine-3',5'-cyclic monophosphate/protein kinase G pathway. Taken jointly present and previous results it can be concluded that both ETs play an important role as modulators of norepinephrine neurotransmission in the rat AHR.  相似文献   

8.
In the vascular system, endothelin (ET) type B (ET(B)) receptors for ET-1 are located on endothelial and on venous and arterial smooth muscle cells. In the present study, we investigated the hemodynamic effects of chronic ET(B) receptor blockade at low and high doses in the Syrian Golden hamster. After 16 days of gavage with A-192621 (0.5 or 30 mg.kg(-1).day(-1)), a selective ET(B) receptor antagonist, hamsters were anesthetized with a mixture of ketamine and xylazine (87 and 13 mg/kg im, respectively), and basal mean arterial blood pressure (MAP) and pressor responses to exogenous ET-1 were evaluated. The lower dose of A-192621 (0.5 mg.kg(-1).day(-1)) did not modify basal MAP, whereas the higher dose (30 mg.kg(-1).day(-1)) increased MAP and plasma ET levels. Radio-telemetry recordings confirmed the increase in MAP induced by the higher dose of A-192621 in conscious hamsters. On the other hand, although the lower dose of A-192621 was devoid of intrinsic pressor effects, it markedly reduced the transient hypotensive phase induced by intravenously injected IRL-1620, a selective ET(B) receptor agonist. Finally, A-192621 (0.5 mg.kg(-1).day(-1)) alone or A-192621 (30 mg.kg(-1).day(-1)) + atrasentan (6 mg.kg(-1).day(-1)), a selective ET(A) receptor antagonist, potentiated the pressor response to exogenous ET-1. Our results suggest that, in the hamster, ET(B) receptors on vascular smooth muscle cells are importantly involved in the clearance of endogenous ET-1, whereas the same receptor type on the endothelium is solely involved in the vasodilatory responses to the pressor peptide. Blockade of endothelial and vascular smooth muscle cell ET(B) receptors triggers a marked potentiation of ET(A)-dependent increases in systemic resistance.  相似文献   

9.
Kassuya CA  Rogerio AP  Calixto JB 《Peptides》2008,29(8):1329-1337
In this study, we investigated the effects of the selective ET(A) (BQ-123) and ET(B) (BQ-788) receptor antagonists for endothelin-1 (ET-1) against several flogistic agent-induced paw edema formation and ovalbumin-induced allergic lung inflammation in mice. The intraplantar injection of BQ-123, but not BQ-788, significantly inhibited carrageenan-, PAF-, ET-1- and bradykinin-induced paw edema formation. The obtained inhibitions (1h after the inflammatory stimulus) were 79+/-5%, 55+/-4%, 55+/-6% and 74+/-4%, respectively. In carrageenan-induced paw edema, the mean ID(50) value for BQ-123 was 0.77 (0.27-2.23)nmol/paw. The neutrophil influx induced by carrageenan or PAF was reduced by BQ-123, with inhibitions of 55+/-2% and 72+/-4%, respectively. BQ-123 also inhibited the indirect macrophage influx induced by carrageenan (55+/-6%). However, BQ-788 failed to block the cell influx caused by either of these flogistic agents. When assessed in the bronchoalveolar lavage fluid in a murine model of asthma, both BQ-123 and BQ-788 significantly inhibited ovalbumin-induced eosinophil recruitment (78+/-6% and 71+/-8%), respectively. Neither neutrophil nor mononuclear cell counts were significantly affected by these drugs. Our findings indicate that ET(A), but not ET(B), selective ET-1 antagonists are capable of preventing the acute inflammatory responses induced by carrageenan, PAF, BK and ET-1. However, both ET(A) and ET(B) receptor antagonists were found to be effective in inhibiting the allergic response in a murine model of asthma.  相似文献   

10.
Cardiovascular diseases are characterized by insulin resistance and elevated endothelin (ET)-1 levels. Furthermore, ET-1 induces insulin resistance. To elucidate this mechanism, six healthy subjects were studied during a hyperinsulinemic euglycemic clamp during infusion of (the ET-1 precursor) big ET-1 alone or after ET(A)- or ET(B)-receptor blockade. Insulin levels rose after big ET-1 with or without the ET(B) antagonist BQ-788 (P < 0.05) but were unchanged after the ET(A) antagonist BQ-123 + big ET-1. Infused glucose divided by insulin fell after big ET-1 with or without BQ-788 (P < 0.05). Insulin and infused glucose divided by insulin values were normalized by ET(A) blockade. Mean arterial blood pressure rose during big ET-1 with or without BQ-788 (P < 0.001) but was unchanged after BQ-123. Skeletal muscle, splanchnic, and renal blood flow responses to big ET-1 were abolished by BQ-123. ET-1 levels rose after big ET-1 (P < 0.01) in a similar way after BQ-123 or BQ-788, despite higher elimination capacity after ET(A) blockade. In conclusion, ET-1-induced reduction in insulin sensitivity and clearance as well as splanchnic and renal vasoconstriction are ET(A) mediated. ET(A)-receptor stimulation seems to inhibit the conversion of big ET-1 to ET-1.  相似文献   

11.
We have reported that eucapnic intermittent hypoxia (E-IH) causes systemic hypertension, elevates plasma endothelin 1 (ET-1) levels, and augments vascular reactivity to ET-1 and that a nonspecific ET-1 receptor antagonist acutely lowers blood pressure in E-IH-exposed rats. However, the effect of chronic ET-1 receptor inhibition has not been evaluated, and the ET receptor subtype mediating the vascular effects has not been established. We hypothesized that E-IH causes systemic hypertension through the increased ET-1 activation of vascular ET type A (ET(A)) receptors. We found that mean arterial pressure (MAP) increased after 14 days of 7 h/day E-IH exposure (109 +/- 2 to 137 +/- 4 mmHg; P < 0.005) but did not change in sham-exposed rats. The ET(A) receptor antagonist BQ-123 (10 to 1,000 nmol/kg iv) acutely decreased MAP dose dependently in conscious E-IH but not sham rats, and continuous infusion of BQ-123 (100 nmol.kg(-1).day(-1) sc for 14 days) prevented E-IH-induced increases in MAP. ET-1-induced constriction was augmented in small mesenteric arteries from rats exposed 14 days to E-IH compared with those from sham rats. Constriction was blocked by the ET(A) receptor antagonist BQ-123 (10 microM) but not by the ET type B (ET(B)) receptor antagonist BQ-788 (100 microM). ET(A) receptor mRNA content was greater in renal medulla and coronary arteries from E-IH rats. ET(B) receptor mRNA was not different in any tissues examined, whereas ET-1 mRNA was increased in the heart and in the renal medulla. Thus augmented ET-1-dependent vasoconstriction via vascular ET(A) receptors appears to elevate blood pressure in E-IH-exposed rats.  相似文献   

12.
Endothelin (ET)-1 acts on ETA and ETB receptors. The latter include ETB1 (endothelial) and ETB2 (muscular) subtypes, which mediate opposite effects on vascular tone. This study investigated, in rabbit papillary muscles (n = 84), the myocardial effects of ETB stimulation. ET-1 (10(-9) M) was given in the absence or presence of BQ-123 (ETA antagonist). The effects of IRL-1620 (ETB1 agonist, 10(-10)-10(-6) M) or sarafotoxin S6c (ETB agonist, 10(-10)-10(-6) M) were evaluated in muscles with intact or damaged endocardial endothelium (EE); intact EE, in the presence of NG-nitro-L-arginine (L-NNA); and intact EE, in the presence of indomethacin (Indo). Sarafotoxin S6c effects were also studied in the presence of BQ-788 (ETB2 antagonist). ET-1 alone increased 64 +/- 18% active tension (AT) but decreased it by 4 +/- 2% in the presence of BQ-123. In muscles with intact EE, sarafotoxin S6c alone did not significantly alter myocardial performance. Sarafotoxin S6c (10(-6) M) increased, however, AT by 120 +/- 27% when EE was damaged and by 39 +/- 8% or 23 +/- 6% in the presence of l-NNA or Indo, respectively. In the presence of BQ-788, sarafotoxin S6c decreased AT (21 +/- 3% at 10(-6) M) in muscles with intact EE, an effect that was abolished when EE was damaged. IRL-1620 also decreased AT (22 +/- 3% at 10(-6) M) in muscles with intact EE, an effect that was abolished when EE was damaged or in the presence of L-NNA or Indo. In conclusion, the ETB-mediated negative inotropic effect is presumably due to ETB1 stimulation, requires an intact EE, and is mediated by NO and prostaglandins, whereas the ETB-mediated positive inotropic effect, observed when EE was damaged or NO and prostaglandins synthesis inhibited, is presumably due to ETB2 stimulation.  相似文献   

13.
Endothelin-1 (ET-1) has been reported to induce pulmonary vasoconstriction via either ET(A) or ET(B) receptors, and vasorelaxation after ET-1 injection has been observed. Our study investigated the effects of ET-1 in isolated rabbit lungs, which were studied at basal tone (part I) and after preconstriction (U-46619; part II). Pulmonary arterial pressure (PAP) and lung weight gain were monitored continuously. In part I, ET-1 (10(-8) M; n = 6; control) was injected after pretreatment with the ET(A)-receptor antagonist BQ-123 (10(-6) M; n = 6) or the ET(B)-receptor antagonist BQ-788 (10(-6) M; n = 6). The same protocol was carried out in part II after elevation of pulmonary vascular tone. ET-1 induced an immediate PAP increase (DeltaPAP 4.3 +/- 0.4 mmHg at 10 min) that was attenuated by pretreatment with BQ-123 (P < 0.05 at 10 min and P < 0.01 thereafter) and that was more pronounced after BQ-788 (P < 0.01 at 10 min and P < 0.001 thereafter). In part II, ET-1 induced an immediate rise in PAP with a maximum after 5 min (DeltaPAP 6.3 +/- 1.4 mmHg), leveling off at DeltaPAP 3.2 +/- 0.2 mmHg after 15 min. Pretreatment with BQ-123 failed to attenuate the increase. BQ-788 significantly reduced the peak pressure at 5 min (0.75 +/- 0.4 mmHg; P < 0.001) as well as the plateau pressure thereafter (P < 0.01). We conclude that ET-1 administration causes pulmonary vasoconstriction independent of basal vascular tone, and, at normal vascular tone, the vasoconstriction seems to be mediated via ET(A) receptors. BQ-788 treatment resulted in even more pronounced vasoconstriction. After pulmonary preconstriction, ET(A) antagonism exerted no effects on PAP, whereas ET(B) antagonism blocked the PAP increase. Therefore, ET-1-induced pulmonary vasoconstriction is shifted from an ET(A)-related to an ET(B)-mediated mechanism after pulmonary vascular preconstriction.  相似文献   

14.
The adventitia has been recognized to play important roles in vascular oxidative stress, remodeling, and contraction. We recently demonstrated that adventitial fibroblasts are able to express endothelin (ET)-1 in response to ANG II. However, it is unclear whether ET-1 receptors are expressed in the adventitia. We therefore investigated the expression and roles of both ET(A) and ET(B) receptors in collagen synthesis and ET-1 clearance in adventitial fibroblasts. Adventitial fibroblasts were isolated and cultured from the mouse thoracic aorta by the explant method. Cultured cells were treated with ANG II (100 nmol/l) or ET-1 (10 pM) in the presence or absence of the ANG II type 1 receptor antagonist losartan (100 μM), the ET-1 receptor antagonists BQ-123 (ET(A) receptor, 1 μM) and BQ-788 (ET(B) receptor, 1 μM), and the ET(B) receptor agonist sarafotoxin 6C (100 nM). ET-1 peptide levels were determined by ELISA, whereas ET(A), ET(B), and collagen levels were determined by Western blot analysis. ANG II increased ET-1 peptide levels in a time-dependent manner. ANG II increased ET(A) and ET(B) receptor protein levels as well as collagen in a similar fashion. ANG II-induced collagen was reduced while in the presence of BQ-123, suggesting a role for the ET(A) receptor in the regulation of the extracellular matrix. ANG II treatment in the presence of BQ-788 significantly increased ET-1 peptide levels. Conversely, the ET(B) receptor agonist sarafotoxin 6C significantly decreased ET-1 peptide levels. These data implicate a role for the ET(B) receptor in the clearance of the ET-1 peptide. In conclusion, both ET(A) and ET(B) receptors are expressed in adventitial fibroblasts, which paves the ground for the biological significance of adventitial ET-1. The ET(A) receptor subtype mediates collagen I expression, whereas the ET(B) receptor subtype may play a protective role through increasing the clearance of the ET-1 peptide.  相似文献   

15.
Endothelin (ET)-1 contributes to regulation of pulmonary vascular tone and structure in the normal ovine fetus and in models of perinatal pulmonary hypertension. The hemodynamic effects of ET-1 are due to activation of its receptors. The ET(A) receptor mediates vasoconstriction and smooth muscle cell proliferation, whereas the ET(B) receptor mediates vasodilation. In a lamb model of chronic intrauterine pulmonary hypertension, ET(B) receptor activity and gene expression are decreased. To determine whether prolonged ET(B) receptor blockade causes pulmonary hypertension, we studied the hemodynamic effects of selective ET(B) receptor blockade with BQ-788. Animals were treated with an infusion of either BQ-788 or vehicle for 7 days. Prolonged BQ-788 treatment increased pulmonary arterial pressure and pulmonary vascular resistance (P < 0.05). The pulmonary vasodilator response to sarafotoxin 6c, a selective ET(B) receptor agonist, was attenuated after 7 days of BQ-788 treatment, demonstrating pharmacological blockade of the ET(B) receptor. Animals treated with BQ-788 had greater right ventricular hypertrophy and muscularization of small pulmonary arteries (P < 0. 05). Lung ET-1 levels were threefold higher in the animals treated with BQ-788 (P < 0.05). We conclude that prolonged selective ET(B) receptor blockade causes severe pulmonary hypertension and pulmonary vascular remodeling in the late-gestation ovine fetus.  相似文献   

16.
There is controversy on the role of endothelin (ET)-1 in the mechanism of hypoxic pulmonary vasoconstriction (HPV). Although HPV is inhibited by ET-1 subtype A (ET(A))-receptor antagonists in animals, it has been reported that ET(A)-receptor blockade does not affect HPV in isolated lungs. Thus we reassessed the role of ET-1 in HPV in both rats and isolated blood- and physiological salt solution (PSS)-perfused rat lungs. In rats, the ET(A)-receptor antagonist BQ-123 and the nonselective ET(A)- and ET(B)-receptor antagonist PD-145065, but not the ET(B)-receptor antagonist BQ-788, inhibited HPV. Similarly, BQ-123, but not BQ-788, attenuated HPV in blood-perfused lungs. In PSS-perfused lungs, either BQ-123, BQ-788, or the combination of both attenuated HPV equally. Inhibition of HPV by combined BQ-123 and BQ-788 in PSS-perfused lungs was prevented by costimulation with angiotensin II. The ATP-sensitive K(+) (K(ATP))-channel blocker glibenclamide also prevented inhibition of HPV by BQ-123 in both lungs and rats. These results suggest that ET-1 contributes to HPV in both isolated lungs and intact animals through ET(A) receptor-mediated suppression of K(ATP)-channel activity.  相似文献   

17.
Production of reactive oxygen species (ROS) may be increased during hypoxia in pulmonary arteries. In this study, the role of ROS in the effect of hypoxia on endothelin (ET) type B (ETB) receptor-mediated vasocontraction in lungs was determined. In rat intrapulmonary (approximately 0.63 mm ID) arteries, contraction induced by IRL-1620 (a selective ETB receptor agonist) was significantly attenuated after 4 h of hypoxia (30 mmHg Po2) compared with normoxic control (140 mmHg Po2). The effect was abolished by tiron, a scavenger of superoxide anions, but not by polyethylene glycol (PEG)-conjugated catalase, which scavenges H2O2. The hypoxic effect on ETB receptor-mediated vasoconstriction was also abolished by endothelium denudation but not by nitro-L-arginine and indomethacin. Exposure for 4 h to exogenous superoxide anions, but not H2O2, attenuated the vasoconstriction induced by IRL-1620. Confocal study showed that hypoxia increased ROS production in pulmonary arteries that were scavenged by PEG-conjugated SOD. In endothelium-intact pulmonary arteries, the ETB receptor protein was reduced after 4 h of exposure to hypoxia, exogenous superoxide anions, or ET-1. BQ-788, a selective ETB receptor antagonist, prevented these effects. ET-1 production was stimulated in endothelium-intact arteries after 4 h of exposure to hypoxia or exogenous superoxide anions. This effect was blunted by PEG-conjugated SOD. These results demonstrate that exposure to hypoxia attenuates ETB receptor-mediated contraction of rat pulmonary arteries. A hypoxia-induced production of superoxide anions may increase ET-1 release from the endothelium and result in downregulation of ETB receptors on smooth muscle.  相似文献   

18.
Endothelin-1 (ET-1) is a potent endothelium-derived vasoconstrictor, which also stimulates insulin release. The aim of the present study was to evaluate whether exogenously administered ET-1 affected pancreatic islet blood flow in vivo in rats and the islet arteriolar reactivity in vitro in mice. Furthermore, we aimed to determine the ET-receptor subtype that was involved in such responses. When applying a microsphere technique for measurements of islet blood perfusion in vivo, we found that ET-1 (5 nmol/kg) consistently and markedly decreased total pancreatic and especially islet blood flow, despite having only minor effects on blood pressure. Neither endothelin A (ET(A)) receptor (BQ-123) nor endothelin-B (ET(B)) receptor (BQ-788) antagonists, alone or in combination, could prevent this reduction in blood flow. To avoid confounding interactions in vivo, we also examined the arteriolar vascular reactivity in isolated, perfused mouse islets. In the latter preparation, we demonstrated a dose-dependent constriction in response to ET-1. Administration of BQ-123 prevented this, whereas BQ-788 induced a right shift in the response. In conclusion, the pancreatic islet vasculature is highly sensitive to exogenous ET-1, which mediates its effect mainly through ET(A) receptors.  相似文献   

19.
Brain catecholamines are involved in several biological functions regulated by the hypothalamus. We have previously reported that endothelin-1 and -3 (ET-1 and ET-3) modulate norepinephrine release in the anterior and posterior hypothalamus. As tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis, the aim of the present work was to investigate the effects of ET-1 and ET-3 on TH activity, total enzyme level and the phosphorylated forms of TH in the rat posterior hypothalamus. Results showed that ET-1 and ET-3 diminished TH activity but the response was abolished by both selective ET(A) and ET(B) antagonists (BQ-610 and BQ-788, respectively). In addition ET(A) and ET(B) selective agonists (sarafotoxin S6b and IRL-1620, respectively) failed to affect TH activity. In order to investigate the intracellular signaling coupled to endothelins (ETs) response, nitric oxide (NO), phosphoinositide, cAMP/PKA and CaMK-II pathways were studied. Results showed that N(omega)-nitro-l-arginine methyl ester and 7-nitroindazole (NO synthase and neuronal NO synthase inhibitors, respectively), 1H-[1,2,4]-oxadiazolo[4,3-alpha]quinozalin-1-one and KT-5823 (soluble guanylyl cyclase, and PKG inhibitors, respectively) inhibited ETs effect on TH activity. Further, sodium nitroprusside and 8-bromoguanosine-3',5'-cyclic monophosphate (NO donor and cGMP analog, respectively) mimicked ETs response. ETs-induced reduction of TH activity was not affected by a PKA inhibitor but it was abolished by PLC, PKC and CaMK-II inhibitors as well as by an IP(3) receptor antagonist. On the other hand, both ETs did not modify TH total level but reduced the phosphorylation of serine residues of the enzyme at positions 19, 31 and 40. Present results suggest that ET-1 and ET-3 diminished TH activity through an atypical ET or ET(C) receptor coupled to the NO/cGMP/PKG, phosphoinositide and CaMK-II pathways. Furthermore, TH diminished activity may result from the reduction of the phosphorylated sites of the enzyme without changes in its total level. Taken jointly present and previous results support that ET-1 and ET-3 may play a relevant role in the modulation of catecholaminergic neurotransmission in the posterior hypothalamus of the rat.  相似文献   

20.
Our previous work showed that ET-1 induced a concentration-dependent increase of cytosolic Ca2+ ([Ca]c) and nuclear Ca2+ ([Ca]n) in human aortic vascular smooth muscle cells (hVSMCs). In the present study, using hVSMCs and 3-dimensional confocal microscopy coupled to the Ca2+ fluorescent probe Fluo-3, we showed that peptidic antagonists of ETA and ETB receptors (BQ-123 (10(-6) mol/L) and BQ-788 (10(-7) mol/L), respectively) prevented, but did not reverse, ET-1-induced sustained increase of [Ca]c and [Ca]n. In contrast, nonpeptidic antagonists of ETA and ETB (respectively, BMS-182874 (10(-8)-10(-6) mol/L) and A-192621 (10(-7) mol/L)) both prevented and reversed ET-1-induced sustained increase of [Ca]c and [Ca]n. Furthermore, activation of the ETB receptor alone using the specific agonist IRL-1620 (10(-9) mol/L) induced sustained increases of [Ca]c and [Ca]n, and subsequent administration of ET-1 (10(-7) mol/L) further increased nuclear Ca2+. ET-1-induced increase of [Ca]c and [Ca]n was completely blocked by extracellular application of the Ca2+ chelator EGTA. Pretreatment with the G protein inhibitors pertussis toxin (PTX) and cholera toxin (CTX) also prevented the ET-1 response; however, strong membrane depolarization with KCl (30 mmol/L) subsequently induced sustained increase of [Ca]c and [Ca]n. Pretreatment of hVSMCs with either the PKC activator phorbol-12,13-dibutyrate or the PKC inhibitor bisindolylmaleimide did not affect ET-1-induced sustained increase of intracellular Ca2+. These results suggest that both ETA- and ETB-receptor activation contribute to ET-1-induced sustained increase of [Ca]c and [Ca]n in hVSMCs. Moreover, in contrast to the peptidic antagonists of ET-1 receptors, the nonpeptidic ETA-receptor antagonist BMS-182874 and the nonpeptidic ETB-receptor antagonist A-192621 were able to reverse the effect of ET-1. Nonpeptidic ETA- and ETB-receptor antagonists may therefore be better pharmacological tools for blocking ET-1-induced sustained increase of intracellular Ca2+ in hVSMCs. Our results also suggest that the ET-1-induced sustained increase of [Ca]c and [Ca]n is not mediated via activation of PKC, but via a PTX- and CTX-sensitive G protein calcium influx through the R-type Ca2+ channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号