首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:利用基因工程的方法原核表达无标签的重组人硫氧还蛋白(rhTrx)并对其进行大规模表达、纯化和鉴定.方法:从人胚胎肾HEK293细胞中提取总RNA,反转录合成cDNA,经PCR扩增、酶切后连入pET-22b(+)载体构建重组质粒,重组质粒转化大肠杆菌BL21( DE3)感受态细胞,IPTG诱导表达,经两步离子交换层析纯化重组蛋白,采用SDS-PAGE、Western blotting、HPLC、MALDI-TOF-MS及经典的胰岛素二硫键还原法对重组蛋白进行鉴定.结果:构建成功了rhTrx基因表达载体;实现了rhTrx在原核细胞中的可溶性表达;纯化出的蛋白经SDS-PAGE和Western blotting分析证实为rhTrx;HPLC和MALDI-TOF-MS分析表明,纯化出的目的蛋白纯度大于95%;胰岛素二硫键还原法证实纯化出的rhTrx具有生物学活性.结论:成功构建了rhTrx的原核表达体系,建立了rhTrx的纯化和鉴定方法,为其进一步的理论研究和生产开发提供了有效基础数据.  相似文献   

2.
Abstract: Amyloid precursor protein (APP) gives rise by proteolytic processing to the amyloid β peptide (Aβ) found abundantly in cerebral senile plaques of individuals with Alzheimer's disease. APP is highly expressed in the brain. To assess the source of cerebral Aβ, the metabolism of APP was investigated in the major cell types of the newborn rat cerebral cortex by pulse/chase labeling and immunoprecipitation of the APP and APP metabolic fragments. We describe a novel C-terminally truncated APP isoform that appears to be made only in neurons. The synthesis, degradation, and metabolism of APP were quantified by phosphorimaging in neurons, astrocytes, and microglia. The results show that although little APP is metabolized through the amyloidogenic pathways in each of the three cultures, neurons appear to generate more Aβ than astrocytes or microglia.  相似文献   

3.
Abstract: We have previously shown that a recombinant carboxyl-terminal 105-amino-acid fragment (CT105) of the amyloid precursor protein (APP) induced strong non-selective inward currents in Xenopus oocytes. Here we investigated the toxic effect of CT105 peptide on the cultured mammalian cells. The CT105 peptide induced a significant lactate dehydrogenase (LDH) release from cultured rat cortical neurons and PC12 cells in a concentration (from 10 µ M )- and time (from 48 h)-dependent manner. The toxic effect of CT105 was more potent than that of any fragments of amyloid β protein (Aβ). However, CT105 peptide did not affect the viability of U251 human glioblastoma cells. In contrast to CT105, Aβ increased LDH release only slightly even at 50 µ M but significantly inhibited 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction at submicromolar concentrations. Among the various neuroprotective drugs tested, only cholesterol, which alters membrane fluidity, could attenuate the cytotoxicity of CT105 significantly. The CT105 peptide formed multiple self-aggregates on solubilization. Pretreatment with a sublethal concentration of CT105 did not significantly alter the susceptibility of cells to hydrogen peroxide and glutamate. Endogenous CT peptides were found not only in the cell lysates but also in the conditioned medium of PC12 cells. These results imply that CT peptide can directly attack the cell membrane probably by making pores or nonselective ion channels, whereas Aβ impairs the intracellular metabolic pathway first. Thus, it is thought that both CT and Aβ, which are formed during the processing of APP, may participate in the neuronal degeneration in Alzheimer's disease by different mechanisms.  相似文献   

4.
Abstract: Increased production of amyloid β peptide (Aβ) is highly suspected to play a major role in Alzheimer's disease (AD) pathogenesis. Because Aβ deposits in AD senile plaques appear uniquely in the brain and are fairly restricted to humans, we assessed amyloid precursor protein (APP) metabolism in primary cultures of the cell types associated with AD senile plaques: neurons, astrocytes, and microglia. We find that neurons secrete 40% of newly synthesized APP, whereas glia secrete only 10%. Neuronal and astrocytic APP processing generates five C-terminal fragments similar to those observed in human adult brain, of which the most amyloidogenic higher-molecular-weight fragments are more abundant. The level of amyloidogenic 4-kDa Aβ exceeds that of nonamyloidogenic 3-kDa Aβ in both neurons and astrocytes. In contrast, microglia make more of the smallest C-terminal fragment and no detectable Aβ. We conclude that human neurons and astrocytes generate higher levels of amyloidogenic fragments than microglia and favor amyloidogenic processing compared with previously studied culture systems. Therefore, we propose that the higher amyloidogenic processing of APP in neurons and astrocytes, combined with the extended lifespan of individuals, likely promotes AD pathology in aging humans.  相似文献   

5.
This work is focused on physicochemical and emulsifying properties of pea (PP), chickpea (CP) and lentil (LP) proteins. We evaluated the molecular weight distributions, surface net charge, free sulfhydryl group (SH) and disulfide bond (SS) contents, protein solubility and thermal stability of the protein isolates. Their emulsifying properties (droplet size distribution, flocculation, coalescence and creaming) were also determined as function of pH values. The three protein isolates exhibit similar physicochemical properties, including good solubility and high thermal stability despite a high degree of denaturation. In addition, we analysed the influence of pH on stability of oil-in-water (O/W; 10 wt%/90 wt%) emulsions stabilized by the legume protein isolates. Concerning emulsifying ability and stability, the most unfavourable results for all three protein isolates relate to their isoelectric point (pI?=?4.5). A significant improvement in emulsion stability takes place as the pH value departs from the pI. Overall, this study indicates that pea, chickpea and lentil proteins have great potential as food emulsifiers.  相似文献   

6.
Regulation of Amyloid Precursor Protein Cleavage   总被引:12,自引:6,他引:6  
Abstract : Multiple lines of evidence suggest that increased production and/or deposition of the β-amyloid peptide, derived from the amyloid precursor protein, contributes to Alzheimer's disease. A growing list of neuro-transmitters, growth factors, cytokines, and hormones have been shown to regulate amyloid precursor protein processing. Although traditionally thought to be mediated by activation of protein kinase C, recent data have implicated other signaling mechanisms in the regulation of this process. Moreover, novel mechanisms of regulation involving cholesterol-, apolipoprotein E-, and stress-activated pathways have been identified. As the phenotypic changes associated with Alzheimer's disease encompass many of these signaling systems, it is relevant to determine how altered cell signaling may be contributing to increasing brain amyloid burden. We review the myriad ways in which first messengers regulate amyloid precursor protein catabolism as well as the signal transduction cascades that give rise to these effects.  相似文献   

7.
We purified to homogeneity and characterized a heat stable thioredoxin which catalyzes thiol/disulfide exchange reaction, for the first time from dromedary pancreas. The purification involved heat and acidic treatment (90 °C; pH 2.5), precipitation by ammonium sulphate and ethanol, respectively followed by sequential column chromatography reverse HPLC column, and it resulted in an apparently pure protein after a 217-fold purification with a final yield of 55% of the initial thioredoxin activity. The thioredoxin preparation obtained was homogeneous as judged by polyacrylamide gel electrophoresis and the presence of valine as the only NHt-terminal amino acid. MALDI-TOF mass spectrometry revealed that the protein has a molecular mass of 11,302.9 Da. The first 40 amino-acid residues at the N-terminal extremity of purified DrTrx was determined by automatic Edman degradation and showed a high sequence homology with known Thioredoxin. It contained he tetrapeptide-Cys-Gly-Pro-Cys-, which constitutes the active site of mammalian thioredoxins. DrTrx activity was compatible with the presence of organic solvents and the maximum activity appeared at pH 7.5 using the insulin precipitation assay. Thioredoxin stability in the presence of organic solvents, as well as in acidic and alkaline pHs and at high temperatures makes it a good candidate for its application in pharmaceutical and food industry.  相似文献   

8.
The NAD+-dependent isocitrate dehydrogenase from etiolated pea (Pisum sativum L.) mitochondria was purified more than 200-fold by dye-ligand binding on Matrix Gel Blue A and gel filtration on Superose 6. The enzyme was stabilized during purification by the inclusion of 20% glycerol. In crude matrix extracts, the enzyme activity eluted from Superose 6 with apparent molecular masses of 1400 ± 200, 690 ± 90, and 300 ± 50 kD. During subsequent purification steps the larger molecular mass species disappeared and an additional peak at 94 ± 16 kD was evident. The monomer for the enzyme was tentatively identified at 47 kD by sodium dodecyl-polyacrylamide gel electrophoresis. The NADP+-specific isocitrate dehydrogenase activity from mitochondria eluted from Superose 6 at 80 ± 10 kD. About half of the NAD+ and NADP+-specific enzymes remained bound to the mitochondrial membranes and was not removed by washing. The NAD+-dependent isocitrate dehydrogenase showed sigmodial kinetics in response to isocitrate (S0.5 = 0.3 mm). When the enzyme was aged at 4°C or frozen, the isocitrate response showed less allosterism, but this was partially reversed by the addition of citrate to the reaction medium. The NAD+ isocitrate dehydrogenase showed standard Michaelis-Menten kinetics toward NAD+ (Km = 0.2 mm). NADH was a competitive inhibitor (Ki = 0.2 mm) and, unexpectedly, NADPH was a noncompetitive inhibitor (Ki = 0.3 mm). The regulation by NADPH may provide a mechanism for coordination of pyridine nucleotide pools in the mitochondria.  相似文献   

9.
Alban C  Jullien J  Job D  Douce R 《Plant physiology》1995,109(3):927-935
Pea (Pisum sativum L.) leaf acetyl-coenzyme A carboxylase (ACCase) exists as two structurally different forms: a major, chloroplastic, dissociable form and a minor, multifunctional enzyme form located in the leaf epidermis. The dissociable form is able to carboxylate free D-biotin as an alternate substrate in place of the natural substrate, biotin carboxyl carrier protein. Here we report the purification of the biotin carboxylase component of the chloroplastic pea leaf ACCase. The purified enzyme, free from carboxyltransferase activity, is composed of two firmly bound polypeptides, one of which (38 kD) is biotinylated. In contrast to bacterial biotin carboxylase, which retains full activity upon removal of the biotin carboxyl carrier component, attempts to dissociate the two subunits of the plant complex led to a complete loss of biotin carboxylase activity. Steady-state kinetic studies of the biotin carboxylase reaction reveal that addition of all substrates on the enzyme is sequential and that no product release is possible until all three substrates (MgATP, D-biotin, bicarbonate) are bound to the enzyme and all chemical processes at the active site are completed. In agreement with this mechanism, bicarbonate-dependent ATP hydrolysis by the enzyme is found to be strictly dependent on the presence of exogenous D-biotin in the reaction medium.  相似文献   

10.
Abstract: Amyloid β protein (Aβ), 39–43 amino acids long, is the principal constituent of the extracellular amyloid deposits in brain that are characteristic of Alzheimer's disease (AD). Several lines of evidence indicate that Aβ may play an important role in the pathogenesis of AD. However, there are several discrepancies between the production of Aβ and the development of the disease. Thus, Aβ may not be the sole active fragment of β-amyloid precursor protein (βAPP) in the neurotoxicity associated with AD. Consequently, the possible effects of other cleaved products of βAPP need to be explored. The recent concentration on other potentially amyloidogenic products of βAPP has produced interesting candidates, the most promising of which are the amyloidogenic carboxyl-terminal (CT) fragments of βAPP. This review discusses a possible etiological role of CT fragments of βAPP in AD.  相似文献   

11.
淀粉样前体蛋白(APP)参与了神经肌肉的信号传导、突触的可塑性及空间学习等生理过程,APP在阿兹海默病(AD)人脑组织中高表达,其切割产物β淀粉样蛋白(Aβ)则在AD的发生发展中起到重要作用。2011年4月,美国阿兹海默病协会将Aβ的聚集程度列入了新版AD诊疗指南中,通过减少APP的表达或降低其以β切割方式进行代谢来延缓AD的进展已成为很多学者的共识。microRNA(miRNA)是一类内生的、长度约19-24个核苷酸的小RNA,其在细胞内具有多种重要的调节作用,据推测,miRNA调控着人类约三分之一的基因。自2008年首次明确miRNA对APP表达存在调控作用之后,miRNA对APP的调控和相关机制的研究以及其对AD诊断和治疗潜在价值的探索已成为AD研究领域的热点之一,本文主要就miRNA对APP的表达、剪切和切割的调控及Aβ对miRNA的影响做一综述。  相似文献   

12.
利用RT-PCR和RACE技术,从珍稀濒危兰科药用植物铁皮石斛中分离到1个编码M型硫氧还蛋白(TRX)基因cDNA全长,命名为Do TRXm1(GenBank注册号KC178573).序列分析结果表明,DoTRXm1基因长850 bp,ORF(570 bp)编码1条由189个氨基酸组成的肽链,分子量20.32 kD,等电点9.44;DoTRXm1蛋白具有保守的硫氧还蛋白结构域(第87~187位氨基酸)和催化位点(106~124).多序列比对和系统进化分析结果显示,DoTRXm1与植物M型TRXs基因有较高相似性(53%~70%),与水稻、玉米以及高梁等单子叶植物TRXs聚在1个分支,隶属于M型TRXs基因进化系统的Ⅱ类群.实时定量PCR分析显示,DoTRXm1基因为组成型表达,其转录本在石斛根中的相对表达量较高,为叶中的5.63倍,茎中次之(2.35倍),叶中最低.该研究为进一步解析DoTRXml在铁皮石斛生长发育、逆境胁迫等过程中的生物学功能奠定基础.  相似文献   

13.
用~(35)S-Met在照光下与豌豆完整叶绿体保温,显示新合成的标记的RubisCO大亚基与结合蛋白形成一复合物,经ATP处理后解离为结合蛋白亚基,同时释放出的标记的RubisCO大亚基参与了RubisCO的装配。豌豆叶片提取液经热处理,硫酸铵分部,DEAE-Sepharose fast flow和Sephacryl S-300柱层析在ND-PAGE,SDS-PAGE上显示为一条带,估计纯度达90%以上,得率比以前报道的高12倍。纯化的结合蛋白表面巯基数经测定为12±1个,总巯基数为36±1个。远紫外CD光谱具有典型的α-螺旋结构的光谱特性,α-螺旋度为39%。此外,以纯化的豌豆结合蛋白制备了多克隆抗体。琼脂糖双扩散实验显示,结合蛋白的抗体与结合蛋白产生一条沉淀线,而与豌豆的RubisCO无沉淀反应,这表明所得到的抗体是高度专一的。  相似文献   

14.
Vadim N Gladyshev 《Proteins》2002,46(2):149-152
Thioredoxin (Trx) and peptide methionine sulfoxide reductase (PMSR) are small thiol oxidoreductases implicated in antioxidant defense and redox regulation of cellular processes. Here we show that the structures of Trx and PMSR exhibit resemblance in their alphabeta core regions and that the active site cysteines in two proteins occupy equivalent positions downstream of a central beta-strand and at the N-terminus of an alpha-helix. Moreover, we identified a PMSR subfamily that contains an active site CxxC motif (two cysteines separated by two other amino acids) positioned similarly to the catalytic redox active CxxC motif in Trx. However, Trx and PMSR are characterized by distinct ancient folds that differ in both orientation of secondary structures and their patterns. Trx is a member of the Trx-fold superfamily, whereas PMSR has a unique fold not found in other proteins. The data suggest that similar structures and functions of Trx and PMSR were acquired independently during evolution and point to a general strategy of identifying new redox regulatory proteins.  相似文献   

15.
A sample preparation method for protein C-terminal peptide isolation from cyanogen bromide (CNBr) digests has been developed. In this strategy, the analyte was reduced and carboxyamidomethylated, followed by CNBr cleavage in a one-pot reaction scheme. The digest was then adsorbed on ZipTipC18 pipette tips for conjugation of the homoserine lactone-terminated peptides with 2,2′-dithiobis (ethylamine) dihydrochloride, followed by reductive release of 2-aminoethanethiol from the derivatives. The thiol-functionalized internal and N-terminal peptides were scavenged on activated thiol sepharose, leaving the C-terminal peptide in the flow-through fraction. The use of reversed-phase supports as a venue for peptide derivatization enabled facile optimization of the individual reaction steps for throughput and completeness of reaction. Reagents were replaced directly on the support, allowing the reactions to proceed at minimal sample loss. By this sequence of solid-phase reactions, the C-terminal peptide could be recognized uniquely in mass spectra of unfractionated digests by its unaltered mass signature. The use of the sample preparation method was demonstrated with low-level amounts of a whole, intact model protein. The C-terminal fragments were retrieved selectively and efficiently from the affinity support. The use of covalent chromatography for C-terminal peptide purification enabled recovery of the depleted material for further chemical and/or enzymatic manipulation. The sample preparation method provides for robustness and simplicity of operation and is anticipated to be expanded to gel-separated proteins and in a scaled-up format to high-throughput protein profiling in complex biological mixtures.  相似文献   

16.
hFE65L Influences Amyloid Precursor Protein Maturation and Secretion   总被引:1,自引:0,他引:1  
The amyloid precursor protein (APP) is processed in the secretory and endocytic pathways, where both the neuroprotective alpha-secretase-derived secreted APP (APPs alpha) and the Alzheimer's disease-associated beta-amyloid peptide are generated. All three members of the FE65 protein family bind the cytoplasmic domain of APP, which contains two sorting signals, YTS and YENPTY. We show here that binding of APP to the C-terminal phosphotyrosine interaction domain of hFE65L requires an intact YENPTY clathrin-coated pit internalization sequence. To study the effects of the hFE65L/APP interaction on APP trafficking and processing, we performed pulse/chase experiments and examined APP maturation and secretion in an H4 neuroglioma cell line inducible for expression of the hFE65L protein. Pulse/chase analysis of endogenous APP in these cells showed that the ratio of mature to total cellular APP increased after the induction of hFE65L. We also observed a three-fold increase in the amount of APPs alpha recovered from conditioned media of cells overexpressing hFE65L compared with uninduced controls. The effect of hFE65L on the levels of APPs alpha secreted is due neither to a simple increase in the steady-state levels of APP nor to activation of the protein kinase C-regulated APP secretion pathway. We conclude that the effect of hFE65L on APP processing is due to altered trafficking of APP as it transits through the secretory pathway.  相似文献   

17.
The major component of the amyloid deposition that characterizes Alzheimer's disease is the 4-kDa beta A4 protein, which is derived from a much larger amyloid protein precursor (APP). A procedure for the complete purification of APP from human brain is described. The same amino terminal sequence of APP was found in two patients with Alzheimer's disease and one control subject. Two major forms of APP were identified in human brain with apparent molecular masses of 100-110 kDa and 120-130 kDa. Soluble and membrane fractions of brain contained nearly equal amounts of APP in both humans and rats. Immunoprecipitation with carboxyl terminus-directed antibodies indicates that the soluble forms of APP are truncated. Carboxyl terminus truncation of membrane-associated forms of human brain APP was also found to occur during postmortem autolysis. The availability of purified human brain APP will facilitate the investigation of its normal function and the events that lead to its abnormal cleavage in patients with Alzheimer's disease.  相似文献   

18.
Abstract: The amyloid precursor protein (APP) is a membrane-spanning glycoprotein that is the source of βA4 peptides, which aggregate in Alzheimer's disease to form senile plaques. APP is cleaved within the βA4 sequence to release a soluble N-terminal derivative (APPsol), which has a wide range of trophic and protective functions. In the current study we have examined the hypothesis that iron availability may modulate expression or processing of APP, whose mRNA contains, based on sequence homology, a putative iron response element (IRE). Radiolabeled APP and its catabolites were precipitated from lysates and conditioned medium of stably transfected HEK 293 cells using antibodies selective for C-terminal, βA4, and N-terminal domains. The relative abundance of the different APP catabolites under different conditions of iron availability was determined by quantitative densitometry after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The data show a specific effect on the production of APPsol. Using standard conditions previously established for IRE studies, it was found that iron chelation reduces APPsol production, whereas iron level elevation augments it. No changes were observed in levels of immature and mature APP holoprotein or in the C-terminal α-secretase derivative C83, βA4, and p3 peptides. The specificity for modulatory changes in APPsol suggests that iron acts at the level of α-secretase activity. In addition to its modulatory effects, iron at very high levels was found to inhibit maturation of APP and production of its downstream catabolites without blocking formation of immature APP. The data establish a potential physiological role for iron in controlling the processing of APP. If APPsol were to function trophically, as suggested by other studies, the current conclusion suggests that changes in iron and iron-regulating proteins in Alzheimer's disease could contribute to neuronal degeneration by decreasing the production of APPsol.  相似文献   

19.
Amyloid precursor protein intracellular domain(AICD) is one of the potential candidates in deciphering the complexity of Alzheimer’s disease.It plays important roles in determining cell fate and neurodegeneration through its interactions with several adaptors.The presence or absence of phosphorylation at specific sites determines the choice of partners.In this study,we identified 20 novel AICDinteracting proteins by in vitro pull down experiments followed by 2D gel electrophoresis and MALDI-MS analysis.The identified proteins can be grouped into different functional classes including molecular chaperones,structural proteins,signaling and transport molecules,adaptors,motor proteins and apoptosis determinants.Interactions of nine proteins were further validated either by colocalization using confocal imaging or by co-immunoprecipitation followed by immunoblotting.The cellular functions of most of the proteins can be correlated with AD.Hence,illustration of their interactions with AICD may shed some light on the disease pathophysiology.  相似文献   

20.
Effect of Ischemic Neuronal Insults on Amyloid Precursor Protein Processing   总被引:3,自引:0,他引:3  
The nature of the association between ischemic stroke and Alzheimer’s disease (AD) at the cellular and molecular level is still unknown. We evaluated the effect of ischemic neuronal insults on the regulation of amyloid precursor protein (APP) processing. We used an in vitro model of cerebral ischemia (oxygen-glucose deprivation) to evaluate the effect of ischemic neuronal insults on the amyloidogenic and non-amyloidogenic pathways using human neuroblastoma cell line and primary cultured cells of transgenic mice which expressed human APP (Tg2576). Ischemic neuronal insults increased the production of Aβ in Tg2576 primary culture cells compared to controls. A disintegrin and metalloprotease 10 (ADAM 10) was markedly increased in early stage of ischemic insults, which was followed by decreased level of ADAM 10 expression in later stage. The protein and mRNA expression of β-site cleavage enzyme (BACE) and BACE activity was not significantly different between the group of ischemic insults and control. By contrast, the activity of γ-secretase was significantly increased after 4 h of ischemic insults, as compared to controls. The present study showed that the ischemic neuronal insults increased the production of Aβ by influencing APP metabolism, which may link the role of ischemic insults to the pathogenesis of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号