首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 736 毫秒
1.
Understanding adaptive phenotypic variation is one of the most fundamental problems in evolutionary biology. Genes involved in adaptation are most likely those that affect traits most intimately connected to fitness: life-history traits. The genetics of quantitative trait variation (including life histories) is still poorly understood, but several studies suggest that (1) quantitative variation might be the result of variation in gene expression, rather than protein evolution, and (2) natural variation in gene expression underlies adaptation. The next step in studying the genetics of adaptive phenotypic variation is therefore an analysis of naturally occuring covariation of global gene expression and a life-history trait. Here, we report a microarray study addressing the covariation in larval gene expression and adult body weight, a life-history trait involved in adaptation. Natural populations of Drosophila melanogaster show adaptive geographic variation in adult body size, with larger animals at higher latitudes. Conditions during larval development also affect adult size with larger flies emerging at lower temperatures. We found statistically significant differences in normalized larval gene expression between geographic populations at one temperature (genetic variation) and within geographic populations between temperatures (developmental plasticity). Moreover, larval gene expression correlated highly with adult weight, explaining 81% of its natural variation. Of the genes that show a correlation of gene expression with adult weight, most are involved in cell growth or cell maintenance or are associated with growth pathways.  相似文献   

2.
Relative to an equivalent source of variation that do not present a hidden state, cryptic genetic variation is likely to be an effective source for possible adaptations at times of atypical environmental conditions. In addition to environmental perturbations, it has also been proposed that genetic disturbances can generate release of cryptic genetic variation. The genetic basis and physiology of olfactory response in Drosophila melanogaster is being studied profusely, but almost no analysis has addressed the question if populations harbor cryptic genetic variation for this trait that only manifests when populations experiences a typical or novel conditions. We quantified olfactory responses to benzaldehyde in both larval and adult lifecycle stages among samples of chromosome two substitution lines extracted from different natural populations of Argentina and substituted into a common inbred background. We also evaluated whether an effect of genetic background change, occurred during chromosome substitution, affect larval and adult olfactory response in terms of release of cryptic genetic variation. Results indicate the presence of genetic variation among chromosome substitution lines in both lifecycle stages analyzed. The comparative analyses between chromosome 2 substitution lines and isofemale lines used to generate the chromosome 2 substitution lines shown that only adults exhibited decanalizing process for olfactory response to benzaldehyde in natural populations of D. melanogaster, i.e., release of hidden genetic variation. We propose that this release of hidden genetic variation in adult flies is a consequence of the shift in genetic background context that happens in chromosome 2 substitution lines, that implies the disruption of natural epistatic interactions and generation of novel ones. All in all, we have found that changes across D. melanogaster development influence visible and cryptic natural variation of olfactory behavior. In this sense, changes in the genetic background can affect gene-by-gene interactions (epistasis) generating different or even novel phenotypes as consequence of phenotypic outcome of cryptic genetic variation.  相似文献   

3.
Electrophoretic variation at three enzyme loci-alcohol dehydrogenase (Adh), glycerophosphate dehydrogenase (Gpdh), triosephosphate isomerase (Tpi)- is compared in Australian Drosophila melanogaster populations at three levels of spatial heterogeneity; among breeding sites, within populations, and between populations at the geographic level. Heterogeneity at the breeding site level greatly exceeds that among adults within populations, indicating greater intermixing at the mobile adult stage than at the developmentally immature and less migratory larval stage. Heterogeneity at the microspatial level is large relative to the geographic level at two of these loci. Spatial patterns of variation in ecological phenotypes are also considered. It is argued that electrophoretic variants may contribute little to an understanding of this quantitative variation, and that a more useful approach in ecological genetics is to consider ecological phenotypes as primary data.  相似文献   

4.
Determinants of geographic variation in body size are often poorly understood, especially in organisms with complex life cycles. We examined patterns of adult body size and metamorphic traits variation in Iberian spadefoot toad ( Pelobates cultripes ) populations, which exhibit an extreme reduction in adult body size, 71.6% reduction in body mass, within just about 30 km at south-western Spain. We hypothesized that size at and time to metamorphosis would be predictive of the spatial pattern observed in adult body size. Larvae from eight populations were raised in a common garden experiment at two different larval densities that allow to differentiate whether population divergence was genetically based or was simply a reflection of environmental variation and, in addition, whether this population divergence was modulated by differing crowding larval environments. Larger adult size populations had higher larval growth rates, attaining larger sizes at metamorphosis, and exhibited higher survival than smaller-sized populations at both densities, although accentuated at a low larval density. These population differences appeared to be consistent once embryo size variation was controlled for, suggesting that this phenotypic divergence is not due to maternal effects. Our results suggest considerable genetic differentiation in metamorphic traits that parallels and may be a causal determinant of geographic variation in adult body size.  相似文献   

5.
Competition between individuals belonging to the same species is a universal feature of natural populations and is the process underpinning organismal adaptation. Despite its importance, still comparatively little is known about the genetic variation responsible for competitive traits. Here, we measured the phenotypic variation and quantitative genetics parameters for two fitness‐related traits—egg‐to‐adult viability and development time—across a panel of Drosophila strains under varying larval densities. Both traits exhibited substantial genetic variation at all larval densities, as well as significant genotype‐by‐environment interactions (GEIs). GEI was attributable to changes in the rank order of reaction norms for both traits, and additionally to differences in the between‐line variance for development time. The coefficient of genetic variation increased under stress conditions for development time, while it was higher at both high and low densities for viability. While development time also correlated negatively with fitness at high larval densities—meaning that fast developers have high fitness—there was no correlation with fitness at low density. This result suggests that GEI may be a common feature of fitness‐related genetic variation and, further, that trait values under noncompetitive conditions could be poor indicators of individual fitness. The latter point could have significant implications for animal and plant breeding programs, as well as for conservation genetics.  相似文献   

6.
Organisms utilize environmental cues to deal with heterogeneous environments. In this sense, behaviours that mediate interactions between organisms and their environment are complex traits, especially sensitive to environmental conditions. In animals, olfaction is a critical sensory system that allows them to acquire chemical information from the environment. The genetic basis and physiological mechanisms of the olfactory system of Drosophila melanogaster Meigen (Diptera: Drosophilidae) are well known, but the effects of ecological factors on the olfactory system have received less attention. In this study, we analysed the effect of environmental heterogeneity (different host fruits) on variation in larval olfactory behaviour in a natural population of D. melanogaster. We generated half‐sib lines of D. melanogaster derived from two nearby fruit plantations, Vitis vinifera L. (Vitaceae) (‘grape’) and Prunus persica L. (Rosaceae) (‘peach’), and measured, using a simple behavioural assay, larval olfactory response to natural olfactory stimuli. Results indicate that patterns of variation for this trait depend on host fruit plantation where lines were collected. In fact, only lines derived from ‘grape’ showed phenotypic plasticity for larval olfaction, whereas a genotype*environment interaction was detected solely in lines derived from ‘peach’. Therefore, our results demonstrate the existence of genetic differences in D. melanogaster larval olfactory behaviour at a micro‐geographical scale and also reveal that the trait studied presents a dynamic genetic architecture which is strongly influenced by the environment.  相似文献   

7.
We investigated the genetic basis of adult behavioral response and larval physiological tolerance to permethrin within two diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), populations from Wooster and Celeryville, OH, with different average levels of larval tolerance. The adult behavioral response was measured as oviposition site preference and was investigated using full-sib design and parent-offspring regression. Additive genetic variance (0.134 +/- 0.02) and the heritability (h2 = 0.31 +/- 0.08) for the behavioral response was significant for the Celeryville population, suggesting that in this population, a high proportion of phenotypic variation for adult behavioral response to permethrin was heritable genetic variation. The larval physiological response was measured with a topical application bioassay and was investigated using a half-sib design. Significant additive genetic variances and heritabilities for physiological tolerance to permethrin were detected in both populations. The genetic correlation between adult behavioral response and larval physiological tolerance to permethrin were negative, but significant only in the Celeryville population; indicating that adults from this population that are more behaviorally responsive produced offspring that are more susceptible to permethrin. Our findings have implications for the evolution and management of insecticide resistance in the diamondback moth. The adult behavioral response can lower the exposure of larvae to the insecticide, lowering selection pressure for physiological resistance in larvae. Furthermore, to the extent that the adult behavioral response increases fitness, it can indirectly select for larval susceptibility because of the negative correlation between the two traits.  相似文献   

8.
Marine scallops, with extended planktonic larval stages which can potentially disperse over large distances when advected by marine currents, are expected to possess low geographical differentiation. However, the sessile lifestyle as adult tends to form discrete "sea beds" with unique population dynamics and structure. The narrow distribution of Zhikong scallop (Chlamys farreri), its long planktonic larval stage, and the extremely hydrographic complexity in its distribution range provide an interesting case to elucidate the impact of marine currents on geographical differentiation for marine bivalves at a fine geographical scale. In this study, we analyzed genetic variation at nine microsatellite DNA loci in six locations throughout the distribution of Zhikong scallop in the Northern China. Very high genetic diversity was present in all six populations. Two populations sampled from the same marine gyre had no detectable genetic differentiation (F (ST) = 0.0013); however, the remaining four populations collected from different marine gyres or separated by strong marine currents showed low but significant genetic differentiation (F (ST) range 0.0184-0.0602). Genetic differentiation was further analyzed using the Monmonier algorithm to identify genetic barriers and using the assignment test conducted by software GeneClass2 to ascertain population membership of individuals. The genetic barriers fitting the orientation of marine gyres/currents were clearly identified, and the individual assignment analysis indicated that 95.6% of specimens were correctly allocated to one of the six populations sampled. The results support the hypothesis that significant population structure is present in Zhikong scallop at a fine geographical scale, and marine currents can be responsible for the genetic differentiation.  相似文献   

9.
Competition between microorganisms and arthropods has been shown to be an important ecological interaction determining animal development and spatial distribution patterns in saprophagous communities. In fruit-inhabiting Drosophila, variation in insect developmental success is not only determined by species-specific effects of various noxious filamentous fungi but, as suggested by an earlier study, also by additive genetic variation in the ability to successfully withstand the negative impact of the fungi. If this variation represents a direct adaptive response to the degree to which insect breeding substrates are infested with harmful fungi, genetic variation for successful development in the presence of fungi could be maintained by variation in infestation of resource patches with fungi. We selected for the ability to resist the negative influence of mould by maintaining replicated Drosophila melanogaster populations on substrates infested with Aspergillus nidulans. After five cycles of exposure to the fungus during the larval stage, the selected populations were compared with unselected control populations regarding adult survival and reproduction to reveal an evolved resistance against the fungal competitor. On fungus-infested larval feeding substrates, emerged adults from mould-selected populations had higher survival rates and higher early fecundity than the control populations. In the unselected populations, females had higher mortality rates than males, and a high proportion of both females and males appeared to be unable to lay eggs or fertilise eggs, respectively. When larvae developed on non-infested food we found indications of a loss of resistance to abiotic and starvation stress in the adult stage in flies from the selected populations. This suggests that there are costs associated with an increase in resistance against the microbial competitor. We discuss the underlying mechanisms that might have selected for increased resistance against harmful fungi.  相似文献   

10.
11.
Abstract The empirical study of interpopulation variation in life history and other fitness traits has been an important approach to understanding the ecology and evolution of organisms and gaining insight into possible sources of variation. We report a quantitative analysis for variations of five life history traits (larval developmental time, adult body weight, adult lifespan, age at first reproduction, total fecundity) and flight capacity among populations of Epiphyas postvittana originating from four localities in Australia and one in New Zealand. These populations were compared at two temperatures (15° and 25°C) after being maintained under uniform laboratory conditions for 1.5 generations, so that the relative role of genetic divergence and phenotypic plasticity in determining interpopulation variation could be disentangled. Genetic differentiation between populations was shown in all measured traits, with the greatest divergence occurring in developmental time, fecundity and adult body size. However, these traits were highly sensitive to changes in environmental temperatures; and furthermore, significant interactions between population and temperature occurred in all traits except for flight capacity of female moths. Thus, phenotypic plasticity may be another cause of interpopulation variation. The interpopulation variation for some measured traits was apparently related to climatic differences found where the populations originated. Individuals of the populations from the warmer climates tended to develop more slowly at immature stages, producing smaller and less fecund moths but with stronger flight capacity, in comparison to those from the cooler regions. It seems, therefore, that natural populations of E. postvittana have evolved different strategies to cope with local environmental conditions.  相似文献   

12.
Pesticides are now chronically found in numerous ecosystems incurring widespread toxic effects on multiple organisms. For insects, the larvae are very exposed to pesticide pollution and the acute effect of insecticides on larvae has been characterized in a range of species. However, the carry‐on effects in adults of sublethal exposure occurring in larvae are not well characterized. Here, we use a collection of strains of Drosophila melanogaster differing in their larval resistance to a commonly used insecticide, imidacloprid, and we test the effect of larval exposure on behavioural traits at the adult stage. Focusing on locomotor activity and on courtship and mating behaviour, we observed a significant carry‐on effect of imidacloprid exposure. The heritability of activity traits measured in flies exposed to imidacloprid was higher than measured in controls and in these, courtship traits were genetically less correlated from mating success. Altogether, we did not observe a significant effect of the larval insecticide resistance status on adult behavioural traits, suggesting that selection for resistance in larvae does not involve repeatable behavioural changes in adults. This lack of correlation between larval resistance and adult behaviour also suggests that resistance at the larval stage does not necessarily result in increased behavioural resilience at a later life stage. These findings imply that selection for resistance in larvae as well as for behavioural resilience to sublethal exposure in adult will combine and impose a greater evolutionary constraint. Our conclusions further substantiate the need to encompass multiple trait measures and life stages in toxicological assays to properly assess the environmental impact of pesticides.  相似文献   

13.
Sommer S  Pearman PB 《Genetica》2003,119(1):1-10
We estimated genetic and maternal variance components of larval life history characters in alpine populations of Rana temporaria (the common frog) using a full-sib/half-sib breeding design. We studied trait plasticity by raising tadpoles at 14 or 20°C in the laboratory. Larval period and metamorphic mass were greater at 14°C. Larval period did not differ between populations, but high elevation metamorphs were larger than low elevation metamorphs. Significant additive variation for larval period was detected in the low altitude population. No significant additive variation was detected for mass at metamorphosis (MM), which instead displayed significant maternal effects. Plasticity in metamorphic mass of froglets was greater in the high altitude population. The plastic response of larval period to temperature did not differ between the populations. Evolution of metamorphic mass is likely constrained by lack of additive genetic variation. In contrast, significant heritability for larval period suggests this trait may evolve in response to environmental change. These results differ from other studies on R. temporaria, suggesting that populations of this broadly distributed species present substantial geographic variation in the genetic architecture and plasticity of tadpole life history traits.  相似文献   

14.
15.
Paedomorphosis, the presence of ancestral larval and juvenile traits that occur at the descendent adult stage, is an evolutionary phenomenon that shaped morphological evolution in many vertebrate lineages, including tailed amphibians. Among salamandrid species, paedomorphic and metamorphic phenotypes can be observed within single populations (facultative paedomorphosis). Despite wide interest in facultative paedomorphosis and polymorphism produced by heterochronic changes (heterochronic polymorphism), the studies that investigate intraspecific morphological variation in facultative paedomorphic species are largely missing. By quantifying the cranium size and development (bone development and remodeling), we investigated the variation at multiple levels (i.e., between sexes, populations and species) of two facultatively paedomorphic European newt species: the alpine and the smooth newt. The pattern of variation between paedomorphs (individuals keeping larval traits at the adult stage) and metamorphs (metamorphosed adult individuals) varied between species and among populations within a single species. The patterns of variation in size and skull formation appear to be more uniform in the alpine than in the smooth newt, indicating that developmental constraints differed between species (more pronounced in alpine than in smooth newt). Our study shows that the cranial skeleton provides detailed insight in the pattern of variation and divergence in heterochronic polymorphism within and between species and open new questions related to heterochronic polymorphism and evolution of cranial skeleton.  相似文献   

16.
The density of olfactory sense organs on the antenna of the cockroach, Leucophaea maderae, is relatively constant throughout larval development (average 400 sensilla/mm2), but undergoes a substantial increase at the adult state (to about 620 sensilla/mm2). Experimental manipulations of juvenile hormone (JH) activity result in either supernumerary larval instars (induced by unilaterla antennectomy or addition of exogenous JH), or premature adulthood (induced by allatectomy). The density of antennal sensilla remains at the larval level during the extra instars, but increases to the adult level or surpasses it at the terminal ecdysis following the induction of extra instars. Adultoids resulting from allatectomized sixth instars also have the high density of antennal olfactory sensilla characteristic of the normal adult. These data suggest that an interplay of surface area effects and an inhibitory action of JH controls the pattern of postembryonic development of antennal olfactory sensilla. Limited behavioural observations of the insects resulting from these experiments are consistent with the hypothesis that sex attractant-specific olfactory receptors appear only at the adult stage. However, electrophysiological data will be needed to confirm or negate this hypothesis.  相似文献   

17.
Periods of nutrient shortage impose strong selection on animal populations. Experimental studies of genetic adaptation to nutrient shortage largely focus on resistance to acute starvation at adult stage; it is not clear how conclusions drawn from these studies extrapolate to other forms of nutritional stress. We studied the genomic signature of adaptation to chronic juvenile malnutrition in six populations of Drosophila melanogaster evolved for 150 generations on an extremely nutrient-poor larval diet. Comparison with control populations evolved on standard food revealed repeatable genomic differentiation between the two set of population, involving >3,000 candidate SNPs forming >100 independently evolving clusters. The candidate genomic regions were enriched in genes implicated in hormone, carbohydrate, and lipid metabolism, including some with known effects on fitness-related life-history traits. Rather than being close to fixation, a substantial fraction of candidate SNPs segregated at intermediate allele frequencies in all malnutrition-adapted populations. This, together with patterns of among-population variation in allele frequencies and estimates of Tajima’s D, suggests that the poor diet results in balancing selection on some genomic regions. Our candidate genes for tolerance to larval malnutrition showed a high overlap with genes previously implicated in acute starvation resistance. However, adaptation to larval malnutrition in our study was associated with reduced tolerance to acute adult starvation. Thus, rather than reflecting synergy, the shared genomic architecture appears to mediate an evolutionary trade-off between tolerances to these two forms of nutritional stress.  相似文献   

18.
Drosophila uses different olfactory organs at different developmental stages. The larval and adult olfactory organs are morphologically dissimilar and have different developmental origins: the antenno-maxillary complex (AMC), which houses the larval olfactory organ, is histolyzed during metamorphosis; the third antennal segment--the principal adult olfactory organ--derives from an imaginal disc. A screen for genes expressed in both larval and adult olfactory organs, but in relatively few other tissues, has been carried out. Seven enhancer trap lines showing reporter gene expression in both the larval AMC and in certain subsets of the adult antenna are described. The antennal staining pattern of one line shows a striking change over the first few days of adult life, with a time course comparable to that of the development of sexual maturity. A pronounced sexual dimorphism in antennal staining pattern is seen in another line. Some staining patterns resemble the patterns of certain classes of antennal sensilla; others show expression restricted to only a small number of cells. Some lines also show expression associated with other chemosensory organs at either the larval or adult stage, including the maxillary palps, labellum, and anterior wing margin. One line, which also shows staining in the male reproductive tract, is male sterile. The significance of these results is considered in terms of (1) the molecular organization of the olfactory system; (2) the recruitment of olfactory genes for use in two developmental contexts; (3) the sharing of genes among different sensory modalities; (4) the role of olfaction in sexual behavior; and (5) posteclosional changes in the olfactory system.  相似文献   

19.
Even though laboratory evolution experiments have demonstrated genetic variation for learning ability, we know little about the underlying genetic architecture and genetic relationships with other ecologically relevant traits. With a full diallel cross among twelve inbred lines of Drosophila melanogaster originating from a natural population (0.75 < F < 0.93), we investigated the genetic architecture of olfactory learning ability and compared it to that for another behavioral trait (unconditional preference for odors), as well as three traits quantifying the ability to deal with environmental challenges: egg‐to‐adult survival and developmental rate on a low‐quality food, and resistance to a bacterial pathogen. Substantial additive genetic variation was detected for each trait, highlighting their potential to evolve. Genetic effects contributed more than nongenetic parental effects to variation in traits measured at the adult stage: learning, odorant perception, and resistance to infection. In contrast, the two traits quantifying larval tolerance to low‐quality food were more strongly affected by parental effects. We found no evidence for genetic correlations between traits, suggesting that these traits could evolve at least to some degree independently of one another. Finally, inbreeding adversely affected all traits.  相似文献   

20.
Comparative genetic differences for the phosphoglucomutase and trehalase loci were surveyed in larval and adult blackfly populations of the onchocerciasis vectors Simulium yahense Vajime and Dunbar, and S.sanctipauli Vajime and Dunbar. Genotype frequencies for each stage and all populations were at Hardy-Weinberg equilibrium, indicating that S.yahense and S.sanctipauli remain genetically distinct. S.yahense populations from three different locations were found to be genotypically comparable. The larval population of S.yahense found in closest proximity to a S.sanctipauli population was found to express the phosphoglucomutase allele 1.33, characteristic of S.sanctipauli, with significantly greater frequency than other larval populations of S.yahense. This may constitute evidence of limited genetic introgression of S.sanctipauli with the S.yahense population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号