首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects.  相似文献   

2.
The increasing fragmentation of natural habitats may strongly affect patterns of dispersal and gene flow among populations, and thus alter evolutionary dynamics. We examined genetic variation at twelve microsatellite loci in the Agile frog (Rana dalmatina) from 22 breeding ponds in the Iberian Peninsula, the southwest limit of its range, where populations of this species are severely fragmented and are of conservation concern. We investigated genetic diversity, structure and gene flow within and among populations. Diversity as observed heterozygosities ranged from 0.257 to 0.586. The mean number of alleles was 3.6. Just one population showed a significant F IS value. Four populations show evidence of recent bottlenecks. Strong pattern of structure was observed due to isolation by distance and to landscape structure. The average degree of genetic differentiation among populations was F ST = 0.185. Three operational conservation units with metapopulation structure were identified. Additionally, there are some other isolated populations. The results reinforce the view that amphibian populations are highly structured even in small geographic areas. The knowledge of genetic structure pattern and gene flow is fundamental information for developing programmes for the preservation of R. dalmatina at the limits of its geographic distribution.  相似文献   

3.
Resolving the genetic population structure of species inhabiting pristine, high latitude ecosystems can provide novel insights into the post‐glacial, evolutionary processes shaping the distribution of contemporary genetic variation. In this study, we assayed genetic variation in lake trout (Salvelinus namaycush) from Great Bear Lake (GBL), NT and one population outside of this lake (Sandy Lake, NT) at 11 microsatellite loci and the mtDNA control region (d‐loop). Overall, population subdivision was low, but significant (global FST θ = 0.025), and pairwise comparisons indicated that significance was heavily influenced by comparisons between GBL localities and Sandy Lake. Our data indicate that there is no obvious genetic structure among the various basins within GBL (global FST = 0.002) despite the large geographic distances between sampling areas. We found evidence of low levels of contemporary gene flow among arms within GBL, but not between Sandy Lake and GBL. Coalescent analyses suggested that some historical gene flow occurred among arms within GBL and between GBL and Sandy Lake. It appears, therefore, that contemporary (ongoing dispersal and gene flow) and historical (historical gene flow and large founding and present‐day effective population sizes) factors contribute to the lack of neutral genetic structure in GBL. Overall, our results illustrate the importance of history (e.g., post‐glacial colonization) and contemporary dispersal ecology in shaping genetic population structure of Arctic faunas and provide a better understanding of the evolutionary ecology of long‐lived salmonids in pristine, interconnected habitats.  相似文献   

4.
Relatively little information is available on mating systems and interpopulational gene flow in species of homosporous pteridophytes. Because of the proximity of antheridia and archegonia on the same thallus, it has long been maintained that intragametophytic selling is the predominant mode of reproduction in natural populations of homosporous ferns and other homosporous plants. Furthermore, quantitative estimates of interpopulational gene flow via spore dispersal are lacking. In this paper, we examine five species of homosporous ferns (Botrychium virginianum, Polystichum munitum, P. imbricans, Blechnum spicant, and Dryopteris expansa) and present estimates of 1) rates of intragametophytic selling, 2) levels of interpopulational gene flow, and 3) interpopulational genetic differentiation (FST). Our data demonstrate that mating systems vary among species of ferns, just as they do among species of seed plants. The data also suggest that levels of interpopulational gene flow are generally high. The FST values indicate little genetic divergence among populations for all species except Dryopteris expansa, which exhibits significant levels of interpopulational genetic differentiation. Patterns of genetic diversity in the five species examined are related to the mating system and rate of interpopulational gene flow in each species. The FST values for all species except Botrychium virginianum are in close agreement with those predicted for an island model of population structure.  相似文献   

5.
The wheat midge, Sitodiplosis mosellana, is an important pest in Northern China. We tested the hypothesis that the population structure of this species arises during a range expansion over the past 30 years. This study used microsatellite and mitochondrial loci to conduct population genetic analysis of S. mosellana across its distribution range in China. We found strong genetic structure among the 16 studied populations, including two genetically distinct groups (the eastern and western groups), broadly consistent with the geography and habitat fragmentation. These results underline the importance of natural barriers in impeding dispersal and gene flow of S. mosellana populations. Low to moderate genetic diversity among the populations and moderate genetic differentiation (F ST = 0.117) between the two groups were also found. The populations in the western group had lower genetic diversity, higher genetic differentiation and lower gene flow (F ST = 0.116, Nm = 1.89) than those in the eastern group (F ST = 0.049, Nm = 4.91). Genetic distance between populations was positively and significantly correlated with geographic distance (r = 0.56, P<0.001). The population history of this species provided no evidence for population expansion or bottlenecks in any of these populations. Our data suggest that the distribution of genetic diversity, genetic differentiation and population structure of S. mosellana have resulted from a historical event, reflecting its adaptation to diverse habitats and forming two different gene pools. These results may be the outcome of a combination of restricted gene flow due to geographical and environmental factors, population history, random processes of genetic drift and individual dispersal patterns. Given the current risk status of this species in China, this study can offer useful information for forecasting outbreaks and designing effective pest management programs.  相似文献   

6.
Population history plays an important role in shaping contemporary levels of genetic variation and geographic structure. This is especially true in small, isolated range‐margin populations, where effects of inbreeding, genetic drift and gene flow may be more pronounced than in large continuous populations. Effects of landscape fragmentation and isolation distance may have implications for persistence of range‐margin populations if they are demographic sinks. We studied four small, disjunct populations of ponderosa pine over a 500‐year period. We coupled demographic data obtained through dendroecological methods with microsatellite data to discern how and when contemporary levels of allelic diversity, among and within‐population levels of differentiation, and geographic structure, arose. Alleles accumulated rapidly following initial colonization, demonstrating proportionally high levels of gene flow into the populations. At population sizes of approximately 100 individuals, allele accumulation saturated. Levels of genetic differentiation among populations (FST and Jost's Dest) and diversity within populations (FIS) remained stable through time. There was no evidence of geographic genetic structure at any time in the populations' history. Proportionally, high gene flow in the early stages of population growth resulted in rapid accumulation of alleles and quickly created relatively homogenous genetic patterns among populations. Our study demonstrates that contemporary levels of genetic diversity were formed quickly and early in population development. How contemporary genetic diversity accumulates over time is a key facet of understanding population growth and development. This is especially relevant given the extent and speed at which species ranges are predicted to shift in the coming century.  相似文献   

7.
Aim This study investigated the influence of contemporary habitat loss on the genetic diversity and structure of animal species using a common, but ecologically specialized, butterfly, Theclinesthes albocincta (Lepidoptera: Lycaenidae), as a model. Location South Australia. Methods We used amplified fragment length polymorphism (AFLP) and allozyme datasets to investigate the genetic structure and genetic diversity among populations of T. albocincta in a fragmented landscape and compared this diversity and structure with that of populations in two nearby landscapes that have more continuous distributions of butterflies and their habitat. Butterflies were sampled from 15 sites and genotyped, first using 363 informative AFLP bands and then using 17 polymorphic allozyme loci (n = 248 and 254, respectively). We complemented these analyses with phylogeographic information based on mitochondrial DNA (mtDNA) haplotype information derived from a previous study in the same landscapes. Results Both datasets indicated a relatively high level of genetic structuring across the sampling range (AFLP, FST = 0.34; allozyme, FST = 0.13): structure was greatest among populations in the fragmented landscape (AFLP, FST = 0.15; allozyme, FST = 0.13). Populations in the fragmented landscape also had significantly lower genetic diversity than populations in the other two landscapes: there were no detectable differences in genetic diversity between the two continuous landscapes. There was also evidence (r2 = 0.33) of an isolation by distance effect across the sampled range of the species. Main conclusions The multiple lines of evidence, presented within a phylogeographic context, support the hypothesis that contemporary habitat fragmentation has been a major driver of genetic erosion and differentiation in this species. Theclinesthes albocincta populations in the fragmented landscape are thus likely to be at greater risk of extinction because of reduced genetic diversity, their isolation from conspecific subpopulations in other landscapes, and other extrinsic forces acting on their small population sizes. Our study provides compelling evidence that habitat loss and fragmentation have significant rapid impacts on the genetic diversity and structure of butterfly populations, especially specialist species with particular habitat preferences and poor dispersal abilities.  相似文献   

8.
Background selection is a process whereby recurrent deleterious mutations cause a decrease in the effective population size and genetic diversity at linked loci. Several authors have suggested that variation in the intensity of background selection could cause variation in FST across the genome, which could confound signals of local adaptation in genome scans. We performed realistic simulations of DNA sequences, using recombination maps from humans and sticklebacks, to investigate how variation in the intensity of background selection affects FST and other statistics of population differentiation in sexual, outcrossing species. We show that, in populations connected by gene flow, Weir and Cockerham's (1984; Evolution, 38 , 1358) estimator of FST is largely insensitive to locus‐to‐locus variation in the intensity of background selection. Unlike FST, however, dXY is negatively correlated with background selection. Moreover, background selection does not greatly affect the false‐positive rate in FST outlier studies in populations connected by gene flow. Overall, our study indicates that background selection will not greatly interfere with finding the variants responsible for local adaptation.  相似文献   

9.
Comparisons of genetic diversity and population genetic structure among different life history stages provide important information on the effect of the different forces and micro‐evolutionary processes that mould diversity and genetic structure after fragmentation. Here we assessed genetic diversity and population genetic structure using 32 allozymic loci in adults, seeds, seedlings and juveniles of eight populations of the micro‐endemic shrub Cestrum miradorense in a highly fragmented cloud forest in central–eastern Mexico. We expected that due to its long history or rarity, this species may have endured the negative effects of fragmentation and would show moderate to high levels of genetic diversity. High genetic diversity (He = 0.445 ± 0.03), heterozygote excess (FIT = ?0.478 ± 0.034, FIS = ?0.578 ± 0.023) and low population differentiation (FST = 0.064 ± 0.011) were found. Seeds had higher genetic diversity (He = 0.467 ± 0.05) than the later stages (overall mean for adults, seedlings and juveniles He = 0.438 ± 0.08). High gene flow was observed despite the fact that the fragmentation process began more than 100 years ago. We conclude that the high genetic diversity was the result of natural selection, which favours heterozygote excess in all stages, coupled with a combination of a reproductive system and seed/pollen dispersal mechanisms that favour gene flow.  相似文献   

10.
Gene flow via seed and pollen is a primary determinant of genetic and species diversity in plant communities at different spatial scales. This paper reviews studies of gene flow and population genetic structure in tropical rain forest trees and places them in ecological and biogeographic context. Although much pollination is among nearest neighbors, an increasing number of genetic studies report pollination ranging from 0.5–14 km for canopy tree species, resulting in extensive breeding areas in disturbed and undisturbed rain forest. Direct genetic measures of seed dispersal are still rare; however, studies of fine scale spatial genetic structure (SGS) indicate that the bulk of effective seed dispersal occurs at local scales, and we found no difference in SGS (Sp statistic) between temperate (N?=?24 species) and tropical forest trees (N?=?15). Our analysis did find significantly higher genetic differentiation in tropical trees (F ST?=?0.177; N?=?42) than in temperate forest trees (F ST?=?0.116; N?=?82). This may be due to the fact that tropical trees experience low but significant rates of self-fertilization and bi-parental inbreeding, whereas half of the temperate tree species in our survey are wind pollinated and are more strictly allogamous. Genetic drift may also be more pronounced in tropical trees due to the low population densities of most species.  相似文献   

11.
In natural populations of Festuca pratensis Huds. from the islands of Onega Lake, the level of genetic diversity was evaluated. In three populations variability of 64 RAPD loci was tested. The level of genetic diversity (P 95% = 30.2; H exp = 0.093) was low for a cross-pollinating plant species. Furthermore, genetic similarity between the plants from insular populations was found to be high (I N = 0.887). It was demonstrated that genetic variation among the population accounted for at most 5.3% of total genetic diversity, which, however, was higher than the F ST values for continental populations (F ST = 0.022). It was suggested that specific features of the genetic structure of insular population, i.e., low gene diversity within the populations along with high differentiation among the populations, were caused by the gene flow attenuation, as a result of isolation, and intensification of inbreeding. These features had negative effect on total population adaptation.  相似文献   

12.
The Orchidaceae is characterised by a diverse range of life histories, reproductive strategies and geographic distribution, reflected in a variety of patterns in the population genetic structure of different species. In this study, the genetic diversity and structure was assessed within and among remnant populations of the critically endangered sexually deceptive orchid, Caladenia huegelii. This species has experienced severe recent habitat loss in a landscape marked by ancient patterns of population fragmentation within the Southwest Australian Floristic Region, a global biodiversity hotspot. Using seven polymorphic microsatellite loci, high levels of within-population diversity (mean alleles/locus = 6.73; mean H E = 0.690), weak genetic structuring among 13 remnant populations (F ST = 0.047) and a consistent deficit of heterozygotes from Hardy–Weinberg expectation were found across all populations (mean F IS = 0.22). Positive inbreeding coefficients are most likely due to Wahlund effects and/or inbreeding effects from highly correlated paternity and typically low fruit set. Indirect estimates of gene flow (Nm = 5.09 using F ST; Nm = 3.12 using the private alleles method) among populations reflects a historical capacity for gene flow through long distance pollen dispersal by sexually deceived wasp pollinators and/or long range dispersal of dust-like orchid seed. However, current levels of gene flow may be impacted by habitat destruction, fragmentation and reduced population size. A genetically divergent population was identified, which should be a high priority for conservation managers. Very weak genetic differentiation indicates that the movement and mixing of seeds from different populations for reintroduction programs should result in minimal negative genetic effects.  相似文献   

13.
Melampyrum sylvaticum is an endangered annual hemiparasitic plant that is found in only 19 small and isolated populations in the United Kingdom (UK). To evaluate the genetic consequences of this patchy distribution we compared levels of diversity, inbreeding and differentiation from ten populations from the UK with eight relatively large populations from Sweden and Norway where the species is more continuously distributed. We demonstrate that in both the UK and Scandinavia, the species is highly inbreeding (global F IS = 0.899). Levels of population differentiation were high (FST = 0.892) and significantly higher amongst UK populations (FST = 0.949) than Scandinavian populations (FST = 0.762; P < 0.01). The isolated populations in the UK have, on average, lower genetic diversity (allelic richness, proportion of loci that are polymorphic, gene diversity) than Scandinavian populations, and this diversity difference is associated with the smaller census size and population area of UK populations. From a conservation perspective, the naturally inbreeding nature of the species may buffer the species against immediate effects of inbreeding depression, but the markedly lower levels of genetic diversity in UK populations may represent a genetic constraint to evolutionary change. In addition, the high levels of population differentiation suggest that gene flow among populations will not be effective at replenishing lost variation. We thus recommend supporting in situ conservation management with ex situ populations and human-mediated seed dispersal among selected populations in the UK.  相似文献   

14.
As global warming accelerates the melting of Arctic sea ice, polar bears (Ursus maritimus) must adapt to a rapidly changing landscape. This process will necessarily alter the species distribution together with population dynamics and structure. Detailed knowledge of these changes is crucial to delineating conservation priorities. Here, we sampled 361 polar bears from across the center of the Canadian Arctic Archipelago spanning the Gulf of Boothia (GB) and M'Clintock Channel (MC). We use DNA microsatellites and mitochondrial control region sequences to quantify genetic differentiation, estimate gene flow, and infer population history. Two populations, roughly coincident with GB and MC, are significantly differentiated at both nuclear (FST = 0.01) and mitochondrial (ΦST = 0.47; FST = 0.29) loci, allowing Bayesian clustering analyses to assign individuals to either group. Our data imply that the causes of the mitochondrial and nuclear genetic patterns differ. Analysis of mtDNA reveals the matrilineal structure dates at least to the Holocene, and is common to individuals throughout the species’ range. These mtDNA differences probably reflect both genetic drift and historical colonization dynamics. In contrast, the differentiation inferred from microsatellites is only on the scale of hundreds of years, possibly reflecting contemporary impediments to gene flow. Taken together, our data suggest that gene flow is insufficient to homogenize the GB and MC populations and support the designation of GB and MC as separate polar bear conservation units. Our study also provide a striking example of how nuclear DNA and mtDNA capture different aspects of a species demographic history.  相似文献   

15.
Quantifying the lag time to detect barriers in landscape genetics   总被引:1,自引:0,他引:1  
Understanding how spatial genetic patterns respond to landscape change is crucial for advancing the emerging field of landscape genetics. We quantified the number of generations for new landscape barrier signatures to become detectable and for old signatures to disappear after barrier removal. We used spatially explicit, individual‐based simulations to examine the ability of an individual‐based statistic [Mantel’s r using the proportion of shared alleles’ statistic (Dps)] and population‐based statistic (FST) to detect barriers. We simulated a range of movement strategies including nearest neighbour dispersal, long‐distance dispersal and panmixia. The lag time for the signal of a new barrier to become established is short using Mantel’s r (1–15 generations). FST required approximately 200 generations to reach 50% of its equilibrium maximum, although G’ST performed much like Mantel’s r. In strong contrast, FST and Mantel’s r perform similarly following the removal of a barrier formerly dividing a population. Also, given neighbour mating and very short‐distance dispersal strategies, historical discontinuities from more than 100 generations ago might still be detectable with either method. This suggests that historical events and landscapes could have long‐term effects that confound inferences about the impacts of current landscape features on gene flow for species with very little long‐distance dispersal. Nonetheless, populations of organisms with relatively large dispersal distances will lose the signal of a former barrier within less than 15 generations, suggesting that individual‐based landscape genetic approaches can improve our ability to measure effects of existing landscape features on genetic structure and connectivity.  相似文献   

16.
The intensification of agricultural land use over wide parts of Europe has led to the decline of semi-natural habitats, such as extensively used meadows, with those that remain often being small and isolated. These rapid changes in land use during recent decades have strongly affected populations inhabiting these ecosystems. Increasing habitat deterioration and declining permeability of the surrounding landscape matrix disrupt the gene flow within metapopulations. The burnet moth species Zygaena loti has suffered strongly from recent habitat fragmentation, as reflected by its declining abundance. We have studied its population genetic structure and found a high level of genetic diversity in some of the populations analysed, while others display low genetic diversity and a lack of heterozygosity. Zygaena loti was formerly highly abundant in meadows and along the skirts of forests. However, the species is currently restricted to isolated habitat remnants, which is reflected by the high genetic divergence among populations (F ST: 0.136). Species distribution modelling as well as the spatial examination of panmictic clusters within the study area strongly support a scattered population structure for this species. We suggest that populations with a high level of genetic diversity still represent the former genetic structure of interconnected populations, while populations with low numbers of alleles, high F IS values, and a lack of heterozygosity display the negative effects of reduced interconnectivity. A continuous exchange of individuals is necessary to maintain high genetic variability. Based on these results, we draw the general conclusion that more common taxa with originally large population networks and high genetic diversity suffer stronger from sudden habitat fragmentation than highly specialised species with lower genetic diversity which have persisted in isolated patches for long periods of time.  相似文献   

17.
The Chinese walnut (Juglans cathayensis L.), valued for both its nut and wood, is an ecologically important tree species endemic temperate southern China. Investigation of the genetic diversity of Chinese walnut has been limited to natural population genetics and genetic germplasm resources. Here, we describe the development of 12 polymorphic microsatellite markers using next-generation sequencing to screen 96 Chinese walnut individuals collected from 11 natural populations. The number of alleles per locus ranged from 5 to 12. The observed heterozygosity (0.288–0.748) overlapped well with the expected heterozygosity (0.337–0.751). This species has high genetic diversity and gene flow among different populations (FST = 0.075, Nm = 3.088). These markers will be useful for future studies on population genetic structure, evolutionary ecology, and genetic breeding of this walnut tree or other Juglans species.  相似文献   

18.
In landscape genetics, isolation-by-distance (IBD) is regarded as a baseline pattern that is obtained without additional effects of landscape elements on gene flow. However, the configuration of suitable habitat patches determines deme topology, which in turn should affect rates of gene flow. IBD patterns can be characterized either by monotonically increasing pairwise genetic differentiation (for example, FST) with increasing interdeme geographic distance (case-I pattern) or by monotonically increasing pairwise genetic differentiation up to a certain geographical distance beyond which no correlation is detectable anymore (case-IV pattern). We investigated if landscape configuration influenced the rate at which a case-IV pattern changed to a case-I pattern. We also determined at what interdeme distance the highest correlation was measured between genetic differentiation and geographic distance and whether this distance corresponded to the maximum migration distance. We set up a population genetic simulation study and assessed the development of IBD patterns for several habitat configurations and maximum migration distances. We show that the rate and likelihood of the transition of case-IV to case-I FST–distance relationships was strongly influenced by habitat configuration and maximum migration distance. We also found that the maximum correlation between genetic differentiation and geographic distance was not related to the maximum migration distance and was measured across all deme pairs in a case-I pattern and, for a case-IV pattern, at the distance where the FST–distance curve flattens out. We argue that in landscape genetics, separate analyses should be performed to either assess IBD or the landscape effects on gene flow.  相似文献   

19.
Alnus hirsuta in Korea was measured to estimate the amount and pattern of genetic diversity and population structure. The mean genetic diversity within populations was 0.166. Korean alder populations have slightly high levels of genetic diversity compared to those of two Canadian alder species. The genetic differentiation among populations accounted for 9% of the total variation. The rate of gene flow was estimated high (Nm=2.63). Analysis of inbreeding coefficient, calculated for all polymorphic loci in each population, showed a substantial heterozygote deficiency relative to Hardy-Weinberg expectations. The mean G ST value of A. hirsuta in Korea was 0.087. The low value of G ST in this species, reflecting little spatial genetic differentiation, may indicate extensive gene flow. A relationship between the mean heterozygosity and annual rainfall showed a positive relationship (r 2=0.54, F=4.67). Received 8 August 1998/ Accepted in revised form 7 July 1999  相似文献   

20.
Little is known about the Australian snubfin (Orcaella heinsohni) and Indo-Pacific humpback (Sousa chinensis) dolphins (‘snubfin’ and ‘humpback dolphins’, hereafter) of north-western Australia. While both species are listed as ‘near threatened’ by the IUCN, data deficiencies are impeding rigorous assessment of their conservation status across Australia. Understanding the genetic structure of populations, including levels of gene flow among populations, is important for the assessment of conservation status and the effective management of a species. Using nuclear and mitochondrial DNA markers, we assessed population genetic diversity and differentiation between snubfin dolphins from Cygnet (n = 32) and Roebuck Bays (n = 25), and humpback dolphins from the Dampier Archipelago (n = 19) and the North West Cape (n = 18). All sampling locations were separated by geographic distances >200 km. For each species, we found significant genetic differentiation between sampling locations based on 12 (for snubfin dolphins) and 13 (for humpback dolphins) microsatellite loci (F ST = 0.05–0.09; P<0.001) and a 422 bp sequence of the mitochondrial control region (F ST = 0.50–0.70; P<0.001). The estimated proportion of migrants in a population ranged from 0.01 (95% CI 0.00–0.06) to 0.13 (0.03–0.24). These are the first estimates of genetic diversity and differentiation for snubfin and humpback dolphins in Western Australia, providing valuable information towards the assessment of their conservation status in this rapidly developing region. Our results suggest that north-western Australian snubfin and humpback dolphins may exist as metapopulations of small, largely isolated population fragments, and should be managed accordingly. Management plans should seek to maintain effective population size and gene flow. Additionally, while interactions of a socio-sexual nature between these two species have been observed previously, here we provide strong evidence for the first documented case of hybridisation between a female snubfin dolphin and a male humpback dolphin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号