首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral''s actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral''s stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral''s actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral''s broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.  相似文献   

2.
Thermosensitive TRP channels display unique thermal responses, suggesting distinct roles mediating sensory transmission of temperature. However, whether relative expression of these channels in dorsal root ganglia (DRG) is altered in nerve injury is unknown. We developed a multiplex ribonuclease protection assay (RPA) to quantify rat TRPV1, TRPV2, TRPV3, TRPV4, TRPA1, and TRPM8 RNA levels in DRG. We used the multiplex RPA to measure thermosensitive TRP channel RNA levels in DRG from RTX-treated rats (300 microg/kg) or rats with unilateral sciatic nerve chronic constriction injury (CCI). TRPV1 and TRPA1 RNA were significantly decreased in DRG from RTX-treated rats, indicating functional colocalization of TRPA1 and TRPV1 in sensory nociceptors. In DRG from CCI rats, TRPA1, TRPV2, and TRPM8 RNA showed slight but significant increases ipsilateral to peripheral nerve injury. Our findings support the hypothesis that increased TRP channel expression in sensory neurons may contribute to mechanical and cold hypersensitivity.  相似文献   

3.
《Cell calcium》2014,55(4):208-218
Merkel cells (MCs) have been proposed to form a part of the MC-neurite complex with sensory neurons. Many transient receptor potential (TRP) channels have been identified in mammals; however, the activation properties of these channels in oral mucosal MCs remain to be clarified. We investigated the biophysical and pharmacological properties of TRP vanilloid (TRPV)-1, TRPV2, TRPV4, TRP ankyrin (TRPA)-1, and TRP melastatin (TRPM)-8 channels, which are sensitive to osmotic and mechanical stimuli by measurement of intracellular free Ca2+ concentration ([Ca2+]i) using fura-2. We also analyzed their localization patterns through immunofluorescence. MCs showed immunoreaction for TRPV1, TRPV2, TRPV4, TRPA1, and TRPM8 channels. In the presence of extracellular Ca2+, the hypotonic test solution evoked Ca2+ influx. The [Ca2+]i increases were inhibited by TRPV1, TRPV2, TRPV4, or TRPA1 channel antagonists, but not by the TRPM8 channel antagonist. Application of TRPV1, TRPV2, TRPV4, TRPA1, or TRPM8 channel selective agonists elicited transient increases in [Ca2+]i only in the presence of extracellular Ca2+. The results indicate that membrane stretching in MCs activates TRPV1, TRPV2, TRPV4, and TRPA1 channels, that it may be involved in synaptic transmission to sensory neurons, and that MCs could contribute to the mechanosensory transduction sequence.  相似文献   

4.
Willis DN  Liu B  Ha MA  Jordt SE  Morris JB 《FASEB journal》2011,25(12):4434-4444
Menthol, the cooling agent in peppermint, is added to almost all commercially available cigarettes. Menthol stimulates olfactory sensations, and interacts with transient receptor potential melastatin 8 (TRPM8) ion channels in cold-sensitive sensory neurons, and transient receptor potential ankyrin 1 (TRPA1), an irritant-sensing channel. It is highly controversial whether menthol in cigarette smoke exerts pharmacological actions affecting smoking behavior. Using plethysmography, we investigated the effects of menthol on the respiratory sensory irritation response in mice elicited by smoke irritants (acrolein, acetic acid, and cyclohexanone). Menthol, at a concentration (16 ppm) lower than in smoke of mentholated cigarettes, immediately abolished the irritation response to acrolein, an agonist of TRPA1, as did eucalyptol (460 ppm), another TRPM8 agonist. Menthol's effects were reversed by a TRPM8 antagonist, AMTB. Menthol's effects were not specific to acrolein, as menthol also attenuated irritation responses to acetic acid, and cyclohexanone, an agonist of the capsaicin receptor, TRPV1. Menthol was efficiently absorbed in the respiratory tract, reaching local concentrations sufficient for activation of sensory TRP channels. These experiments demonstrate that menthol and eucalyptol, through activation of TRPM8, act as potent counterirritants against a broad spectrum of smoke constituents. Through suppression of respiratory irritation, menthol may facilitate smoke inhalation and promote nicotine addiction and smoking-related morbidities.  相似文献   

5.
Six members of the mammalian transient receptor potential (TRP) ion channels respond to varied temperature thresholds. The natural compounds capsaicin and menthol activate noxious heat-sensitive TRPV1 and cold-sensitive TRPM8, respectively. The burning and cooling perception of capsaicin and menthol demonstrate that these ion channels mediate thermosensation. We show that, in addition to noxious cold, pungent natural compounds present in cinnamon oil, wintergreen oil, clove oil, mustard oil, and ginger all activate TRPA1 (ANKTM1). Bradykinin, an inflammatory peptide acting through its G protein-coupled receptor, also activates TRPA1. We further show that phospholipase C is an important signaling component for TRPA1 activation. Cinnamaldehyde, the most specific TRPA1 activator, excites a subset of sensory neurons highly enriched in cold-sensitive neurons and elicits nociceptive behavior in mice. Collectively, these data demonstrate that TRPA1 activation elicits a painful sensation and provide a potential molecular model for why noxious cold can paradoxically be perceived as burning pain.  相似文献   

6.
Mammals detect temperature with specialized neurons in the peripheral nervous system. Four TRPV-class channels have been implicated in sensing heat, and one TRPM-class channel in sensing cold. The combined range of temperatures that activate these channels covers a majority of the relevant physiological spectrum sensed by most mammals, with a significant gap in the noxious cold range. Here, we describe the characterization of ANKTM1, a cold-activated channel with a lower activation temperature compared to the cold and menthol receptor, TRPM8. ANKTM1 is a distant family member of TRP channels with very little amino acid similarity to TRPM8. It is found in a subset of nociceptive sensory neurons where it is coexpressed with TRPV1/VR1 (the capsaicin/heat receptor) but not TRPM8. Consistent with the expression of ANKTM1, we identify noxious cold-sensitive sensory neurons that also respond to capsaicin but not to menthol.  相似文献   

7.
8.
Thermosensation and pain   总被引:12,自引:0,他引:12  
We feel a wide range of temperatures spanning from cold to heat. Within this range, temperatures over about 43 degrees C and below about 15 degrees C evoke not only a thermal sensation, but also a feeling of pain. In mammals, six thermosensitive ion channels have been reported, all of which belong to the TRP (transient receptor potential) superfamily. These include TRPV1 (VR1), TRPV2 (VRL-1), TRPV3, TRPV4, TRPM8 (CMR1), and TRPA1 (ANKTM1). These channels exhibit distinct thermal activation thresholds (>43 degrees C for TRPV1, >52 degrees C for TRPV2, > approximately 34-38 degrees C for TRPV3, > approximately 27-35 degrees C for TRPV4, < approximately 25-28 degrees C for TRPM8 and <17 degrees C for TRPA1), and are expressed in primary sensory neurons as well as other tissues. The involvement of TRPV1 in thermal nociception has been demonstrated by multiple methods, including the analysis of TRPV1-deficient mice. TRPV2, TRPM8, and TRPA1 are also very likely to be involved in thermal nociception, because their activation thresholds are within the noxious range of temperatures.  相似文献   

9.
10.
Oxidation products of the naturally occurring phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (PAPC), which are known as OxPAPC, accumulate in atherosclerotic lesions and at other sites of inflammation in conditions such as septic inflammation and acute lung injury to exert pro- or anti-inflammatory effects. It is currently unknown whether OxPAPC also contributes to inflammatory pain and peripheral neuronal excitability in these conditions. Here, we observed that OxPAPC dose-dependently and selectively activated human TRPA1 nociceptive ion channels expressed in HEK293 cells in vitro, without any effect on other TRP channels, including TRPV1, TRPV4 and TRPM8. OxPAPC agonist activity was dependent on essential cysteine and lysine residues within the N-terminus of the TRPA1 channel protein. OxPAPC activated calcium influx into a subset of mouse sensory neurons which were also sensitive to the TRPA1 agonist mustard oil. Neuronal OxPAPC responses were largely abolished in neurons isolated from TRPA1-deficient mice. Intraplantar injection of OxPAPC into the mouse hind paw induced acute pain and persistent mechanical hyperalgesia and this effect was attenuated by the TRPA1 inhibitor, HC-030031. More importantly, we found levels of OxPAPC to be significantly increased in inflamed tissue in a mouse model of chronic inflammatory pain, identified by the binding of an OxPAPC-specific antibody. These findings suggest that TRPA1 is a molecular target for OxPAPC and OxPAPC may contribute to chronic inflammatory pain through TRPA1 activation. Targeting against OxPAPC and TRPA1 signaling pathway may be promising in inflammatory pain treatment.  相似文献   

11.
ABSTRACT: BACKGROUND: Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the "headache circuit". Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. METHODS: We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG.Results and conclusionsWe report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM8-expressing neurons are virtually absent in the dural afferent population, nor do these neurons cluster around dural afferent neurons. Taken together, our results suggest that TRPV1 and TRPA1 but not TRPM8 channels likely contribute to the excitation of dural afferent neurons and the subsequent activation of the headache circuit. These results provide an anatomical basis for understanding further the functional significance of TRP channels in headache pathophysiology.  相似文献   

12.
13.
The effects of pharmacological stimulation of skin ion channels TRPA1, TRPM8, TRPV1 on the immune response are presented. These effects are compared with the effects of different types of temperature exposures - skin cooling, deep cooling, and deep heating. This analysis allows us to clear the differences in the influence on the immune response of thermosensitive ion channels localized in the skin; (2) whether the changes in the immune response under temperature exposures are due to these thermosensitive ion channels. Experiments were performed on Wistar rats. For stimulation of TRPM8 ion channel, an application to the skin of 1% menthol was used, for TRPA1 - 0.04% allylisotiocianate, and for TRPV1 - capsaicin in a concentration of 0.001.The antigen binding in the spleen was two-times stimulated by activation of the cold-sensitive ion channel TRPM8 and much weaker by activation of warm-sensitive TRPV1 (by 15%), and another cold-sensitive ion channel TRPA1 (by 40%). Only the stimulation of TRPA1 significantly (by 140%) increased antibody formation in the spleen, while TRPM8 had practically no effect on this process, and activation of TRPV1 significantly (by 60%) inhibited antibody formation. Stimulation of the TRPM8 ion channel significantly (by 60%) reduced the level of IgG in the blood, which is believed to control of infectious diseases.The obtained results show that pharmacological activation of the skin TRPA1, TRPM8, TRPV1 ion channels can differently affect the immune system. At the epicenter of changes there were the antigen binding and antibody formation in the spleen, as well as the level of IgG in the blood. Exactly stimulation of the TRPM8 ion channel determines the changes in the immune response when only the skin is cooling, while at deep body heating, the changes in the immune response are mostly determined by the activation of the skin TRPV1 ion channel.  相似文献   

14.
Several members of the transient receptor channel (TRP) family can mediate a calcium-dependent cytotoxicity. In sensory neurons, vanilloids like capsaicin induce neurotoxicity by activating TRPV1. The closely related ion channel TRPA1 is also activated by irritants, but it is unclear if and how TRPA1 mediates cell death. In the present study we explored cytotoxicity and intracellular calcium signalling resulting from activation of TRPV1 and TRPA1, either heterologously expressed in HEK 293 cells or in native mouse dorsal root ganglion (DRG) neurons. While activation of TRPV1 by the vanilloids capsaicin, resiniferatoxin and anandamide results in calcium-dependent cell death, activation by protons and the oxidant chloramine-T failed to reduce cell viability. The TRPA1-agonists acrolein, carvacrol and capsazepine all induced cytotoxicity, but this effect is independent of TRPA1. Activation of both TRPA1 and TRPV1 triggers a strong influx of external calcium, but also a strong calcium-release from intracellular stores most likely including the endoplasmic reticulum (ER). Activation of TRPV1, but not TRPA1 also results in a strong increase of mitochondrial calcium both in HEK 293 cells and mouse DRG neurons. Our data demonstrate that activation of TRPV1, but not TRPA1 mediates a calcium-dependent cell death. While both receptors mediate a release of calcium from intracellular stores, only activation of TRPV1 seems to mediate a robust and probably lethal increase in mitochondrial calcium.  相似文献   

15.
Transient receptor potential (TRP) channels of the TRPV, TRPA, and TRPM subfamilies play important roles in somatosensation including nociception. While particularly the Thermo TRPs have been extensively investigated in sensory neurons, the relevance of the subclass of "canonical" TRPC channels in primary afferents is yet elusive. In the present study, we investigated the presence and contribution to Ca(2+) transients of TRPC channels in dorsal root ganglion neurons. We found that six of the seven known TRPC subtypes were expressed in lumbar DRG, with TRPC1, C3, and C6 being the most abundant. Microfluorimetric calcium measurements showed Ca(2+) influx induced by oleylacylglycerol (OAG), an activator of the TRPC3/C6/C7 subgroup. Furthermore, OAG induced rises in [Ca(2+)](i) were inhibited by SKF96365, an inhibitor of receptor and store operated calcium channel. OAG induced calcium transients were also inhibited by blockers of diacylglycerol (DAG) lipase, lipoxygenase or cyclooxygenase and, intriguingly, by inhibitors of the capsaicin receptor TRPV1. Notably, SKF96365 did not affect capsaicin-induced calcium transients. Taken together, our findings suggest that TRPC are functionally expressed in subpopulations of DRG neurons. These channels, along with TRPV1, contribute to calcium homeostasis in rat sensory neurons.  相似文献   

16.
Patients with inflammatory or neuropathic pain experience hypersensitivity to mechanical, thermal and/or chemical stimuli. Given the diverse etiologies and molecular mechanisms of these pain syndromes, an approach to developing successful therapies may be to target ion channels that contribute to the detection of thermal, mechanical and chemical stimuli and promote the sensitization and activation of nociceptors. Transient Receptor Potential (TRP) channels have emerged as a family of evolutionarily conserved ligand-gated ion channels that contribute to the detection of physical stimuli. Six TRPs (TRPV1, TRPV2, TRPV3, TRPV4, TRPM8 and TRPA1) have been shown to be expressed in primary afferent nociceptors, pain sensing neurons, where they act as transducers for thermal, chemical and mechanical stimuli. This short review focuses on their contribution to pain hypersensitivity associated with peripheral inflammatory and neuropathic pain states.  相似文献   

17.
Since cloning and characterizing the first nociceptive ion channel Transient Receptor Potential (TRP) Vanilloid 1 (TRPV1), other TRP channels involved in nociception have been cloned and characterized, which include TRP Vanilloid 2 (TRPV2), TRP Vanilloid 3 (TRPV3), TRP Vanilloid 4 (TRPV4), TRP Ankyrin 1 (TRPA1) and TRP Melastatin 8 (TRPM8), more recently TRP Canonical 1, 5, 6 (TRPC1, 5, 6), TRP Melastatin 2 (TRPM2) and TRP Melastatin 3 (TRPM3). These channels are predominantly expressed in C and Aδ nociceptors and transmit noxious thermal, mechanical and chemical sensitivities. TRP channels are modulated by pro-inflammatory mediators, neuropeptides and cytokines. Significant advances have been made targeting these receptors either by antagonists or agonists to treat painful conditions. In this review, we will discuss TRP channels as targets for next generation analgesics and the side effects that may ensue as a result of blocking/activating these receptors, because they are also involved in physiological functions such as release of vasoactive neuropeptides and regulation of vascular tone, maintenance of the body temperature, gastrointestinal motility, urinary bladder control, etc.  相似文献   

18.
19.
20.
Heterologous channel expression can be used to control activity in select neuronal populations, thus expanding the tools available to modern neuroscience. However, the secondary effects of exogenous channel expression are often left unexplored. We expressed two transient receptor potential (TRP) channel family members, TRPV1 and TRPM8, in cultured hippocampal neurons. We compared functional expression levels and secondary effects of channel expression and activation on neuronal survival and signaling. We found that activation of both channels with appropriate agonist caused large depolarizing currents in voltage-clamped hippocampal neurons, exceeding the amplitude responses to a calibrating 30 mM KCl stimulation. Both TRPV1 and TRPM8 currents were reduced but not eliminated by 4 hr incubation in saturating agonist concentration. In the case of TRPV1, but not TRPM8, prolonged agonist exposure caused strong calcium-dependent toxicity. In addition, TRPV1 expression depressed synaptic transmission dramatically without overt signs of toxicity, possibly due to low-level TRPV1 activation in the absence of exogenous agonist application. Despite evidence of expression at presynaptic sites, in addition to somatodendritic sites, TRPM8 expression alone exhibited no effects on synaptic transmission. Therefore, by a number of criteria, TRPM8 proved the superior choice for control over neuronal membrane potential. This study also highlights the need to explore potential secondary effects of long-term expression and activation of heterologously introduced channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号