共查询到20条相似文献,搜索用时 0 毫秒
1.
Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer's disease 总被引:2,自引:0,他引:2
Alzheimer's disease (AD) is the most prevalent form of dementia among the elderly and is a complex disorder that involves altered proteolysis, oxidative stress and disruption of ion homeostasis. Animal models have proven useful in studying the impact of mutant AD-related genes on other cellular signaling pathways, such as Ca2+ signaling. Along these lines, disturbances of intracellular Ca2+ ([Ca2+]i) homeostasis are an early event in the pathogenesis of AD. Here, we have employed microfluorimetric measurements of [Ca2+]i to investigate disturbances in Ca2+ homeostasis in primary cortical neurons from a triple transgenic mouse model of Alzheimer's disease (3xTg-AD). Application of caffeine to mutant presenilin-1 knock-in neurons (PS1KI) and 3xTg-AD neurons evoked a peak rise of [Ca2+]i that was significantly greater than those observed in non-transgenic neurons, although all groups had similar decay rates of their Ca2+ transient. This finding suggests that Ca2+ stores are greater in both PS1KI and 3xTg-AD neurons as calculated by the integral of the caffeine-induced Ca2+ transient signal. Western blot analysis failed to identify changes in the levels of several Ca2+ binding proteins (SERCA-2B, calbindin, calsenilin and calreticulin) implicated in the pathogenesis of AD. However, ryanodine receptor expression in both PS1KI and 3xTg-AD cortex was significantly increased. Our results suggest that the enhanced Ca2+ response to caffeine observed in both PS1KI and 3xTg-AD neurons may not be attributable to an alteration of endoplasmic reticulum store size, but to the increased steady-state levels of the ryanodine receptor. 相似文献
2.
PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia 总被引:12,自引:0,他引:12
Padua RA Larghero J Robin M le Pogam C Schlageter MH Muszlak S Fric J West R Rousselot P Phan TH Mudde L Teisserenc H Carpentier AF Kogan S Degos L Pla M Bishop JM Stevenson F Charron D Chomienne C 《Nature medicine》2003,9(11):1413-1417
Despite improved molecular characterization of malignancies and development of targeted therapies, acute leukemia is not curable and few patients survive more than 10 years after diagnosis. Recently, combinations of different therapeutic strategies (based on mechanisms of apoptosis, differentiation and cytotoxicity) have significantly increased survival. To further improve outcome, we studied the potential efficacy of boosting the patient's immune response using specific immunotherapy. In an animal model of acute promyelocytic leukemia, we developed a DNA-based vaccine by fusing the human promyelocytic leukemia-retinoic acid receptor-alpha (PML-RARA) oncogene to tetanus fragment C (FrC) sequences. We show for the first time that a DNA vaccine specifically targeted to an oncoprotein can have a pronounced effect on survival, both alone and when combined with all-trans retinoic acid (ATRA). The survival advantage is concomitant with time-dependent antibody production and an increase in interferon-gamma (IFN-gamma). We also show that ATRA therapy on its own triggers an immune response in this model. When DNA vaccination and conventional ATRA therapy are combined, they induce protective immune responses against leukemia progression in mice and may provide a new approach to improve clinical outcome in human leukemia. 相似文献
3.
4.
Albrecht MT Eyles JE Baillie LW Keane-Myers AM 《FEMS immunology and medical microbiology》2012,65(3):505-509
The efficacy of multi-agent DNA vaccines consisting of a truncated gene encoding Bacillus anthracis lethal factor (LFn) fused to either Yersinia pestis V antigen (V) or Y .?pestis F1 was evaluated. A/J mice were immunized by gene gun and developed predominantly IgG1 responses that were fully protective against a lethal aerosolized B.?anthracis spore challenge but required the presence of an additional DNA vaccine expressing anthrax protective antigen to boost survival against aerosolized Y.?pestis. 相似文献
5.
Mukherjee J Tremblay JM Leysath CE Ofori K Baldwin K Feng X Bedenice D Webb RP Wright PM Smith LA Tzipori S Shoemaker CB 《PloS one》2012,7(1):e29941
Antitoxins are needed that can be produced economically with improved safety and shelf life compared to conventional antisera-based therapeutics. Here we report a practical strategy for development of simple antitoxin therapeutics with substantial advantages over currently available treatments. The therapeutic strategy employs a single recombinant 'targeting agent' that binds a toxin at two unique sites and a 'clearing Ab' that binds two epitopes present on each targeting agent. Co-administration of the targeting agent and the clearing Ab results in decoration of the toxin with up to four Abs to promote accelerated clearance. The therapeutic strategy was applied to two Botulinum neurotoxin (BoNT) serotypes and protected mice from lethality in two different intoxication models with an efficacy equivalent to conventional antitoxin serum. Targeting agents were a single recombinant protein consisting of a heterodimer of two camelid anti-BoNT heavy-chain-only Ab V(H) (VHH) binding domains and two E-tag epitopes. The clearing mAb was an anti-E-tag mAb. By comparing the in vivo efficacy of treatments that employed neutralizing vs. non-neutralizing agents or the presence vs. absence of clearing Ab permitted unprecedented insight into the roles of toxin neutralization and clearance in antitoxin efficacy. Surprisingly, when a post-intoxication treatment model was used, a toxin-neutralizing heterodimer agent fully protected mice from intoxication even in the absence of clearing Ab. Thus a single, easy-to-produce recombinant protein was as efficacious as polyclonal antiserum in a clinically-relevant mouse model of botulism. This strategy should have widespread application in antitoxin development and other therapies in which neutralization and/or accelerated clearance of a serum biomolecule can offer therapeutic benefit. 相似文献
6.
Induction of T cell-mediated immunity using a c-Myb DNA vaccine in a mouse model of colon cancer 总被引:1,自引:0,他引:1
Williams BB Wall M Miao RY Williams B Bertoncello I Kershaw MH Mantamadiotis T Haber M Norris MD Gautam A Darcy PK Ramsay RG 《Cancer immunology, immunotherapy : CII》2008,57(11):1635-1645
Overexpression of the proto-oncogene c-Myb occurs in more than 80% of colorectal cancer (CRC) and is associated with aggressive disease and poor prognosis. To test c-Myb as a therapeutic target in CRC we devised a DNA fusion vaccine to generate an anti-CRC immune response. c-Myb, like many tumor antigens, is weakly immunogenic as it is a "self" antigen and subject to tolerance. To break tolerance, a DNA fusion vaccine was generated comprising wild-type c-Myb cDNA flanked by two potent Th epitopes derived from tetanus toxin. Vaccination was performed targeting a highly aggressive, weakly immunogenic, subcutaneous, syngeneic, colon adenocarcinoma cell line MC38 which highly expresses c-Myb. Prophylactic intravenous vaccination significantly suppressed tumor growth, through the induction of anti-tumor immunity for which the tetanus epitopes were essential. Vaccination generated anti-tumor immunity mediated by both CD4(+) and CD8(+) T cells and increased infiltration of immune effector cells at the tumor site. Importantly, no evidence of autoimmune pathology in endogenous c-Myb expressing tissues was detected as a consequence of breaking tolerance. In summary, these results establish c-Myb as a potential antigen for immune targeting in CRC and serve to provide proof of principle for the continuing development of DNA vaccines targeting c-Myb to bring this approach to the clinic. 相似文献
7.
8.
Hilda Mirbaha Dailu Chen Vishruth Mullapudi Sandi Jo Terpack Charles L. White III Lukasz A. Joachimiak Marc I. Diamond 《The Journal of biological chemistry》2022,298(8)
Tau aggregation into ordered assemblies causes neurodegenerative tauopathies. We previously reported that tau monomer exists in either inert (Mi) or seed-competent (Ms) conformational ensembles and that Ms encodes strains, that is, unique, self-replicating, biologically active assemblies. It is unknown if disease begins with Ms formation followed by fibril assembly or if Ms derives from fibrils and is therefore an epiphenomenon. Here, we studied a tauopathy mouse model (PS19) that expresses full-length mutant human (1N4R) tau (P301S). Insoluble tau seeding activity appeared at 2 months of age and insoluble tau protein assemblies by immunoblot at 3 months. Tau monomer from mice aged 1 to 6 weeks, purified using size-exclusion chromatography, contained soluble seeding activity at 4 weeks, before insoluble material or larger assemblies were observed, with assemblies ranging from n = 1 to 3 tau units. By 5 to 6 weeks, large soluble assemblies had formed. This indicated that the first detectable pathological forms of tau were in fact Ms. We next examined posttranslational modifications of tau monomer from 1 to 6 weeks. We detected no phosphorylation unique to Ms in PS19 or human Alzheimer’s disease brains. We conclude that tauopathy begins with formation of the Ms monomer, whose activity is phosphorylation independent. Ms then self assembles to form oligomers before it forms insoluble fibrils. The conversion of tau monomer from Mi to Ms thus constitutes the first detectable step in the initiation of tauopathy in this mouse model, with obvious implications for the origins of tauopathy in humans. 相似文献
9.
Ainslie L.K. Derrick Roberts Gordon S. Howarth Wan Chin Liaw Simon Moretta Stamatiki Kritas Kerry A. Lymn Roger Yazbeck Cuong Tran Janice M. Fletcher Ross N. Butler Sharon Byers 《Journal of cellular physiology》2009,219(2):259-264
Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder caused by a deficiency in sulphamidase (NS), a lysosomal enzyme required for the degradation of heparan sulphate glycosaminoglycans (gags). The MPS IIIA mouse is a naturally occurring model that accurately reflects the human pathology and disease course. It displays primarily central nervous system pathology accompanied by widespread accumulation of gag in somatic tissues. MPS IIIA mice exhibit greater bodyweight gain than normal littermates and attain a higher mature bodyweight. In this study, gastrointestinal morphology and function was characterised in the IIIA mouse. Stomach and duodenum weight increased in MPS IIIA mice and duodenum length also increased. An increased submucosal thickness was observed in MPS IIIA intestine compared to normal mice and lysosomal storage of gag was observed in this region. Storage was also observed in the lamina propria of the villus tip. All other morphometric measurements including villus height and crypt depth fell within the normal range. The gastric emptying half‐life of solid and liquid meals decreased with age in normal mice whereas the T½ of solid meals did not alter with age in MPS IIA mice such that they were elevated above normal by 38 weeks of age. Sucrase activity was higher than normal in MPS IIIA at all ages tested. These abnormalities in GI structure and function observed in MPS IIIA may contribute to weight gain in this disorder. J. Cell. Physiol. 219: 259–264, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
10.
The gene trap technique is a powerful approach for characterizing and mutating genes in the mouse. We used this method to identify a mouse gene of unknown function and to establish a mutant mouse line. We subsequently identified one gene, denoted Ayu17-449, on mouse chromosome 3 that comprised 14 exons encoding 1920 amino acids with a granin motif in its N-terminal sequence. In adult mice, this gene was highly expressed in the brain, heart, lung, muscle, stomach, and kidney. The insertion of a trap vector into the second intron of this gene resulted in the null mutation. Homozygous mice for these mutation died by 1 day after birth. Mutant mice showed a loss of acidic granules in the proximal convoluted tubules of the kidney. Our data demonstrates that Ayu17-449 is important for mouse survival. 相似文献
11.
《生物化学与生物物理学报:疾病的分子基础》2020,1866(10):165849
Alzheimer's disease (AD) often coexists with other aging-associated diseases including obesity, diabetes, hypertension, and cardiovascular diseases. The early stage of these comorbidities is known as metabolic syndrome (MetS) which is highly prevalent in mid-life. An important cause of MetS is the deficiency of SIRT3, a mitochondrial deacetylase which enhances the functions of critical mitochondrial proteins, including metabolic enzymes, by deacetylation. Deletion of Sirt3 gene has been reported to result in the acceleration of MetS. In a recently published study, we demonstrated in the brain of Sirt3−/− mice, downregulation of metabolic enzymes, insulin resistance and elevation of inflammatory markers including microglial proliferation. These findings suggested a novel pathway that could link SIRT3 deficiency to neuroinflammation, an important cause of Alzheimer's pathogenesis. Therefore, we hypothesized that MetS and amyloid pathology may interact through converging pathways of insulin resistance and neuroinflammation in comorbid AD. To investigate these interactions, we crossed Sirt3−/− mice with APP/PS1 mice and successfully generated APP/PS1/Sirt3−/− mice with amyloid pathology and MetS. In these comorbid AD mice, we observed exacerbation of insulin resistance, glucose intolerance, amyloid plaque deposition, markers of neuroinflammation, including elevated expression of IL-1β, TNF-α and Cox-2 at 8 months of age. There was also increased microglial proliferation and activation. Our observations suggest a novel mechanism by which MetS may interact with amyloid pathology during the cellular phase of AD. Therapeutic targeting of SIRT3 in AD with comorbidities may produce beneficial effects. 相似文献
12.
Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease 总被引:23,自引:0,他引:23
Tanaka M Machida Y Niu S Ikeda T Jana NR Doi H Kurosawa M Nekooki M Nukina N 《Nature medicine》2004,10(2):148-154
Inhibition of polyglutamine-induced protein aggregation could provide treatment options for polyglutamine diseases such as Huntington disease. Here we showed through in vitro screening studies that various disaccharides can inhibit polyglutamine-mediated protein aggregation. We also found that various disaccharides reduced polyglutamine aggregates and increased survival in a cellular model of Huntington disease. Oral administration of trehalose, the most effective of these disaccharides, decreased polyglutamine aggregates in cerebrum and liver, improved motor dysfunction and extended lifespan in a transgenic mouse model of Huntington disease. We suggest that these beneficial effects are the result of trehalose binding to expanded polyglutamines and stabilizing the partially unfolded polyglutamine-containing protein. Lack of toxicity and high solubility, coupled with efficacy upon oral administration, make trehalose promising as a therapeutic drug or lead compound for the treatment of polyglutamine diseases. The saccharide-polyglutamine interaction identified here thus provides a new therapeutic strategy for polyglutamine diseases. 相似文献
13.
Multiple sclerosis (MS) is a debilitating inflammatory disease of the central nervous system (CNS) characterized by local destruction of the insulating myelin surrounding neuronal axons. With more than 200 million MS patients worldwide, the absence of treatments that prevent progression or induce repair poses a major challenge. Anti-inflammatory therapies have met with limited success only in preventing relapses. Previous screening of human serum samples revealed natural IgM antibodies that bind oligodendrocytes and promote both cell signaling and remyelination of CNS lesions in an MS model involving chronic infection of susceptible mice by Theiler's encephalomyelitis virus and in the lysolecithin model of focal demyelination. This intriguing result raises the possibility that molecules with binding specificity for oligodendrocytes or myelin components may promote therapeutic remyelination in MS. Because of the size and complexity of IgM antibodies, it is of interest to identify smaller myelin-specific molecules with the ability to promote remyelination in vivo. Here we show that a 40-nucleotide single-stranded DNA aptamer selected for affinity to murine myelin shows this property. This aptamer binds multiple myelin components in vitro. Peritoneal injection of this aptamer results in distribution to CNS tissues and promotes remyelination of CNS lesions in mice infected by Theiler's virus. Interestingly, the selected DNA aptamer contains guanosine-rich sequences predicted to induce folding involving guanosine quartet structures. Relative to monoclonal antibodies, DNA aptamers are small, stable, and non-immunogenic, suggesting new possibilities for MS treatment. 相似文献
14.
Jelonek K Walaszczyk A Gabryś D Pietrowska M Kanthou C Widłak P 《Acta biochimica Polonica》2011,58(3):397-404
Cardiovascular disease is recognized as an important clinical problem in radiotherapy and radiation protection. However, only few radiobiological models relevant for assessment of cardiotoxic effects of ionizing radiation are available. Here we describe the isolation of mouse primary cardiac endothelial cells, a possible target for cardiotoxic effects of radiation. Cells isolated from hearts of juvenile mice were cultured and irradiated in vitro. In addition, cells isolated from hearts of locally irradiated adult animals (up to 6 days after irradiation) were tested. A dose-dependent formation of histone γH2A.X foci was observed after in vitro irradiation of cultured cells. However, such cells were resistant to radiation-induced apoptosis. Increased levels of actin stress fibres were observed in the cytoplasm of cardiac endothelial cells irradiated in vitro or isolated from irradiated animals. A high dose of 16 Gy did not increase permeability to Dextran in monolayers formed by endothelial cells. Up-regulated expression of Vcam1, Sele and Hsp70i genes was detected after irradiation in vitro and in cells isolated few days after irradiation in vivo. The increased level of actin stress fibres and enhanced expression of stress-response genes in irradiated endothelial cells are potentially involved in cardiotoxic effects of ionizing radiation. 相似文献
15.
Jiayan Guo Hanbing Mei Zhen Sheng Qingyuan Meng Murielle M. Vniant Hong Yin 《Journal of lipid research》2020,61(12):1764
Of the known regulators of atherosclerosis, miRNAs have been demonstrated to play critical roles in lipoprotein homeostasis and plaque formation. Here, we generated a novel animal model of atherosclerosis by knocking in LDLRW483X in C57BL/6 mice, as the W483X mutation in LDLR is considered the most common newly identified pathogenic mutation in Chinese familial hypercholesterolemia (FH) individuals. Using the new in vivo mouse model combined with a well-established atherosclerotic in vitro human cell model, we identified a novel atherosclerosis-related miRNA, miR-23a-3p, by microarray analysis of mouse aortic tissue specimens and human aortic endothelial cells (HAECs). miR-23a-3p was consistently downregulated in both models, which was confirmed by qPCR. Bioinformatics analysis and further validation experiments revealed that the TNFα-induced protein 3 (TNFAIP3) gene was the key target of miR-23a-3p. The miR-23a-3p-related functional pathways were then analyzed in HAECs. Collectively, the present results suggest that miR-23a-3p regulates inflammatory and apoptotic pathways in atherogenesis by targeting TNFAIP3 through the NF-κB and p38/MAPK signaling pathways. 相似文献
16.
17.
Mika Terumitsu-Tsujita Hiroki Kitaura Ikuo Miura Yuji Kiyama Fumiko Goto Yoshiko Muraki Shiho Ominato Norikazu Hara Anna Simankova Norihisa Bizen Kazuhiro Kashiwagi Takuhiro Ito Yasuko Toyoshima Akiyoshi Kakita Toshiya Manabe Shigeharu Wakana Hirohide Takebayashi Hironaka Igarashi 《Journal of neurochemistry》2020,154(1):25-40
18.
Laminin-1 is a novel carrier glycoprotein for the nonsulfated HNK-1 epitope in mouse kidney 总被引:1,自引:0,他引:1
The HNK-1 epitope has a unique structure comprising the sulfated trisaccharide (HSO(3)-3GlcAbeta1-3Galbeta1-4GlcNAc), and two glucuronyltransferases (GlcAT-P and GlcAT-S) are key enzymes for its biosynthesis. However, the different functional roles of these enzymes in its biosynthesis remain unclear. Recently, we reported that a nonsulfated form of this epitope, which is biosynthesized by GlcAT-S but not by GlcAT-P, is expressed on two metalloproteases in mouse kidney. In this study, we found that a novel glycoprotein carrying the nonsulfated HNK-1 epitope in mouse kidney was enriched in the nuclear fraction. The protein was affinity-purified and identified as laminin-1, and we also confirmed the N-linked oligosaccharide structure including nonsulfated HNK-1 epitope derived from laminin-1 by mass spectrometry. Curiously, immunofluorescence staining of kidney sections revealed that laminin-1 appeared not to be colocalized with the nonsulfated HNK-1 epitope. However, proteinase treatment strengthened the signals of both laminin-1 and the nonsulfated HNK-1 epitope, resulting in overlapping of them. These results indicate that the nonsulfated HNK-1 epitope on laminin-1 is usually embedded and masked in the robust basement membrane in tight association with other proteins. To clarify the associated proteins and the functional role of the carbohydrate epitope, we investigated the interaction between laminin-1 and alpha-dystroglycan through their glycans in mouse kidney using the overlay assay technique. We obtained evidence that glucuronic acid as well as sialic acid inhibited this interaction, suggesting that the nonsulfated HNK-1 epitope on laminin-1 may regulate its binding and play a role in maintenance of the proper structure in the kidney basal lamina. 相似文献
19.
Annemieke Geluk Veena Taneja Krista E. van Meijgaarden René R. P. de Vries Chella S. David Tom H. M. Ottenhoff 《Biotherapy》1998,10(3):191-196
Protective immunity against mycobacteria is dependent on antigen/MHC class II specific, CD4+ Th1 cells. HLA-DR3-restricted Th1 cells respond to a subset of mycobacterial antigens, including the immunodominant hsp65,
and recognize a single epitope in hsp65, notably p1-20. Altered peptide ligands (APL) of p1-20 can inhibit p1-20/hsp65-induced
proliferation of DR3-restricted T cells in an allele specific mannerin vitro. In order to develop a preclinical model in which p1-20 APL can be testedin vivo in the context of HLA, we have used murine class II deficient, HLA transgenic (Ab0) mice, in which all CD4+ T cells are restricted by the tg HLA molecule. BCG-immunized DR3.Ab0 and DQ8.Ab0 mice both responded well to hsp65. Furthermore, DR3.Ab0 mice recognized precisely the same p1-20 epitope as DR3-restricted human T cells, whereas DQ8.Ab0 mice responded to a different set of hsp65 peptides. This shows that (i) the same immunodominant protein and peptide epitope
are recognized by T cells from DR3.Ab0 mice and DR3+ humans and (ii) indicates the major role of HLA-polymorphism in controlling the human T cell response to mycobacterial antigens.
Thus, HLA-transgenic, Ab0 mice provide a novel, preclinical model system to analyze APL and vaccines in the context of HLA polymorphism. 相似文献
20.
Advances in antibody-mediated immunity against Mycobacterium tuberculosis: implications for a novel vaccine strategy 总被引:3,自引:0,他引:3
Glatman-Freedman A 《FEMS immunology and medical microbiology》2003,39(1):9-16
Cell-mediated immunity is considered to be the major component of the host response against Mycobacterium tuberculosis, whereas antibody-mediated immunity historically has been considered inconsequential. In recent years, studies from several groups have challenged the traditional dogma and demonstrated that monoclonal antibodies can modify various aspects of mycobacterial infections. This review describes the experimental evidence supporting a role for antibodies in defense against mycobacterial infections and outlines future challenges to the field of antibody-mediated immunity against M. tuberculosis, with particular emphasis on the implications of these findings for a novel vaccine strategy. 相似文献