首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus cereus causes gastrointestinal diseases and local and systemic infections elicited by the depsipeptide cereulide, enterotoxins, phospholipases, cytolysins and proteases. The PlcR‐PapR quorum sensing system activates the expression of several virulence factors, whereas the Spo0A‐AbrB regulatory circuit partially controls the plasmid‐borne cereulide synthetase (ces) operon. Here, we show that CodY, a nutrient‐responsive regulator of Gram‐positive bacteria, has a profound effect on both regulatory systems, which have been assumed to operate independently of each other. Deletion of codY resulted in downregulation of virulence genes belonging to the PlcR regulon and a concomitant upregulation of the ces genes. CodY was found to be a repressor of the ces operon, but did not interact with the promoter regions of PlcR‐dependent virulence genes in vitro, suggesting an indirect regulation of the latter. Furthermore, CodY binds to the promoter of the immune inhibitor metalloprotease InhA1, demonstrating that CodY directly links B. cereus metabolism to virulence. In vivo studies using a Galleria mellonella infection model, showed that the codY mutant was substantially attenuated, highlighting the importance of CodY as a key regulator of pathogenicity. Our results demonstrate that CodY profoundly modulates the virulence of B. cereus, possibly controlling the development of pathogenic traits in suitable host environments.  相似文献   

2.
Francisella tularensis subsp. tularensis is a highly infectious bacterium causing acute disease in mammalian hosts. Mechanisms for the acquisition of iron within the iron-limiting host environment are likely to be critical for survival of this intracellular pathogen. FslE (FTT0025) and FupA (FTT0918) are paralogous proteins that are predicted to form β-barrels in the outer membrane of virulent strain Schu S4 and are unique to Francisella species. Previous studies have implicated both FupA, initially identified as a virulence factor and FslE, encoded by the siderophore biosynthetic operon, in iron acquisition. Using single and double mutants, we demonstrated that these paralogs function in concert to promote growth under iron limitation. We used a (55)Fe transport assay to demonstrate that FslE is involved in siderophore-mediated ferric iron uptake, whereas FupA facilitates high affinity ferrous iron uptake. Optimal replication within J774A.1 macrophage-like cells required at least one of these uptake systems to be functional. In a mouse model of tularemia, the ΔfupA mutant was attenuated, but the ΔfslE ΔfupA mutant was significantly more attenuated, implying that the two systems of iron acquisition function synergistically to promote virulence. These studies highlight the importance of specific iron acquisition functions, particularly that of ferrous iron, for virulence of F. tularensis in the mammalian host.  相似文献   

3.
Bacterial pathogens require multiple iron-specific acquisition systems for survival within the iron-limiting environment of the host. Francisella tularensis is a virulent intracellular pathogen that can replicate in multiple cell-types. To study the interrelationship of iron acquisition capability and virulence potential of this organism, we generated single and double deletion mutants within the ferrous iron (feo) and ferric-siderophore (fsl) uptake systems of the live vaccine strain (LVS). The Feo system was disrupted by a partial deletion of the feoB gene (ΔfeoB′), which led to a growth defect on iron-limited modified Muller Hinton agar plates. 55Fe uptake assays verified that the ΔfeoB′ mutant had lost the capacity for ferrous iron uptake but was still competent for 55Fe-siderophore-mediated ferric iron acquisition. Neither the ΔfeoB′ nor the siderophore-deficient ΔfslA mutant was defective for replication within J774A.1 murine macrophage-like cells, thus demonstrating the ability of LVS to survive using either ferrous or ferric sources of intracellular iron. A LVS ΔfslA ΔfeoB′ mutant defective for both ferrous iron uptake and siderophore production was isolated in the presence of exogenous F. tularensis siderophore. In contrast to the single deletion mutants, the ΔfslA ΔfeoB′ mutant was unable to replicate within J774A.1 cells and was attenuated in virulence following intraperitoneal infection of C57BL/6 mice. These studies demonstrate that the siderophore and feoB-mediated ferrous uptake systems are the only significant iron acquisition systems in LVS and that they operate independently. While one system can compensate for loss of the other, both are required for optimal growth and virulence.  相似文献   

4.
Vibrio vulnificus, a highly virulent marine bacterium, is the causative agent of both serious wound infections and fatal septicemia in many areas of the word. A gene (hlyIII) encoding a hemolysin was cloned and sequenced from V. vulnificus. Nucleotide sequence analysis predicted an open reading frame of 642 bp encoding a 214 amino acid polypeptide that showed 48% sequence identity to the hemolysin III of Bacillus cereus. When HlyIII of V. vulnificus was expressed in Escherichia coli, crude extracts exhibited hemolytic activity similar to that of hemolysin III from Bacillus cereus. A hlyIII isogenic mutant was constructed via insertional inactivation and showed an attenuated virulence compared with the wild-type strain when this mutant was administered intraperitoneally in mice.  相似文献   

5.
Cell–cell communication mediated by diffusible signal factor (DSF) plays an important role in virulence of several Xanthomonas group of plant pathogens. In the bacterial pathogen of rice, Xanthomonas oryzae pv. oryzicola, DSF is required for virulence and in planta growth. In order to understand the role of DSF in promoting in planta growth and virulence, we have characterized the DSF deficient mutant of X. oryzae pv. oryzicola. Mutant analysis by expression analysis, radiolabelled iron uptake studies and growth under low‐iron conditions indicated that DSF positively regulates ferric iron uptake. Further, the DSF deficient mutant of X. oryzae pv. oryzicola exhibited a reduced capacity to use ferric form of iron for growth under low‐iron conditions. Exogenous iron supplementation in the rice leaves rescued the in planta growth deficiency of the DSF deficient mutant. These data suggest that DSF promotes in planta growth of X. oryzae pv. oryzicola by positively regulating functions involved in ferric iron uptake which is important for its virulence. Our results also indicate that requirement of iron uptake strategies to utilize either Fe3+ or Fe2+ form of iron for colonization may vary substantially among closely related members of the Xanthomonas group of plant pathogens.  相似文献   

6.
Xanthomonas campestris pv. campestris causes black rot, a serious disease of crucifers. Xanthomonads encode a siderophore biosynthesis and uptake gene cluster xss (Xanthomonas siderophore synthesis) involved in the production of a vibrioferrin‐type siderophore. However, little is known about the role of the siderophore in the iron uptake and virulence of X. campestris pv. campestris. In this study, we show that X. campestris pv. campestris produces an α‐hydroxycarboxylate‐type siderophore (named xanthoferrin), which is required for growth under low‐iron conditions and for optimum virulence. A mutation in the siderophore synthesis xssA gene causes deficiency in siderophore production and growth under low‐iron conditions. In contrast, the siderophore utilization ΔxsuA mutant is able to produce siderophore, but exhibits a defect in the utilization of the siderophore–iron complex. Our radiolabelled iron uptake studies confirm that the ΔxssA and ΔxsuA mutants exhibit defects in ferric iron (Fe3+) uptake. The ΔxssA mutant is able to utilize and transport the exogenous xanthoferrin–Fe3+ complex; in contrast, the siderophore utilization or uptake mutant ΔxsuA exhibits defects in siderophore uptake. Expression analysis of the xss operon using a chromosomal gusA fusion indicates that the xss operon is expressed during in planta growth and under low‐iron conditions. Furthermore, exogenous iron supplementation in cabbage leaves rescues the in planta growth deficiency of ΔxssA and ΔxsuA mutants. Our study reveals that the siderophore xanthoferrin is an important virulence factor of X. campestris pv. campestris which promotes in planta growth by the sequestration of Fe3+.  相似文献   

7.
Iron acquisition is one of the important virulence characteristics of a pathogen. Microorganisms elaborate different ways of acquiring iron. Siderophore-mediated iron acquisition is common in many microorganisms, while some like Neisseriae directly acquire iron from the host proteins. Microorganisms also elaborate systems for iron acquisition from ferric citrate and xenosiderophores. Such modes of uptake are also seen in mycobacteria. The siderophores produced by mycobacteria are well characterised. Iron-regulated envelope proteins (IREPs) are expressed in both saprophytic and pathogenic mycobacteria. In many bacterial systems, like that of Corynebacterium diphtheriae, low iron conditions favour the expression of virulence factors. The siderophore mycobactin has been recently implicated as a virulence factor in Mycobacterium tuberculosis. The role of the IdeR repressor in controlling the expression of the iron acquisition machinery was studied with the generation of the IdeR mutant. Development of other such mutants will facilitate the study of these mechanisms in greater detail and help to develop new drugs for combating tuberculosis and leprosy. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

8.
Summary The lac genes were inserted with phage Mu(Ap, lac) into the fhuA, fepA, cir and tonB genes which specify components of iron uptake systems. The expression of lac in all these operon fusions was controlled by the availability of iron to the cells, thereby facilitating a quick and simple measurement of the expression of the genes listed above. In an iron rich medium under anaerobic conditions all systems were strongly repressed. fhuA was depressed at higher iron concentration than was fepA or cir, and tonB was repressed only under anaerobic conditions and could be induced by iron limitation.Mutants constitutive for the expression of -galactosidase were selected in a fhuA-lac fusion strain. The outer membrane proteins Cir, FhuA, FecA, 76K and 83K were made constitutively in such mutant strains. Therefore, they were termed fur mutants. In these fur mutant strains, the synthesis of a 19K protein was reduced. Furthermore, it was found that transport of ferric enterochelin and ferrichrome was also constitutive in the fur mutant cells, and that ferric citrate uptake could be induced by only 10 M citrate in the growth medium in contrast to wild-type cells in which at least 100 M citrate was necessary. The fepA gene was concluded to be under an additional control, because it was not fully derepressed by the fur mutation.  相似文献   

9.
The expression of parasporal crystal protein (δ-endotoxin) coding gene(s) ofBacillus thuringlensis var.israelensis and its association, if any, with sporulation was studied in sporogenicBacillus cereus and its asporogenic mutant strains. Five asporogenous mutants ofBacillus cereus blocked at different stages of sporulation, were isolated from a streptomycin-resistant strain, The transconjugants isolated from the plasmid transfer experiments betweenBacillus thuringiensis var.israelensis and streptomycin resistantBacillus cereus and its asporogenous mutants, showed larvicidal activity. The crystal protein gene(s) are, therefore, expressed both in sporulating and in non-sporulating mutant strains ofBacillus cereus suggesting that the expression of crystal protein gene(s), is independent of sporulation specific functions inBacillus cereus. Part of the work was carried out at Biotechnology Programme, Jadavpur University, Calcutta 700 032, India.  相似文献   

10.
Regulation of iron homeostasis in many pathogens is principally mediated by the ferric uptake regulator, Fur. Since acquisition of iron from the host is essential for the intracellular pathogen Listeria monocytogenes, we predicted the existence of Fur-regulated systems that support infection. We examined the contribution of nine Fur-regulated loci to the pathogenicity of L. monocytogenes in a murine model of infection. While mutating the majority of the genes failed to affect virulence, three mutants exhibited a significantly compromised virulence potential. Most striking was the role of the membrane protein we designate FrvA (Fur regulated virulence factor A; encoded by frvA [lmo0641]), which is absolutely required for the systemic phase of infection in mice and also for virulence in an alternative infection model, the Wax Moth Galleria mellonella. Further analysis of the ΔfrvA mutant revealed poor growth in iron deficient media and inhibition of growth by micromolar concentrations of haem or haemoglobin, a phenotype which may contribute to the attenuated growth of this mutant during infection. Uptake studies indicated that the ΔfrvA mutant is unaffected in the uptake of ferric citrate but demonstrates a significant increase in uptake of haem and haemin. The data suggest a potential role for FrvA as a haem exporter that functions, at least in part, to protect the cell against the potential toxicity of free haem.  相似文献   

11.
Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems. Mechanisms of fine-tuning expression of iron-regulated genes, beyond simple iron regulation via ferric uptake regulator, have not been uncovered in this organism. Here, we identify the ninth gene of the sbn operon, sbnI, as encoding a ParB/Spo0J-like protein that is required for expression of genes in the sbn operon from sbnD onward. Expression of sbnD–I is drastically decreased in an sbnI mutant, and the mutant does not synthesize detectable SB during early phases of growth. Thus, SB-mediated iron acquisition is impaired in an sbnI mutant strain. We show that the protein forms dimers and tetramers in solution and binds to DNA within the sbnC coding region. Moreover, we show that SbnI binds heme and that heme-bound SbnI does not bind DNA. Finally, we show that providing exogenous heme to S. aureus growing in an iron-free medium results in delayed synthesis of SB. This is the first study in S. aureus that identifies a DNA-binding regulatory protein that senses heme to control gene expression for siderophore synthesis.  相似文献   

12.

Background  

Three enterotoxins are implicated in diarrhoeal food poisoning due to Bacillus cereus: Haemolysin BL (Hbl), Non-haemolytic enterotoxin (Nhe), and Cytotoxin K (CytK). Toxin gene profiling and assays for detection of toxin-producing stains have been used in attempts to evaluate the enterotoxic potential of B. cereus group strains. B. cereus strain NVH 391/98, isolated from a case of fatal enteritis, was genetically remote from other B. cereus group strains. This strain lacked the genes encoding Hbl and Nhe, but contains CytK-1. The high virulence of this strain is thought to be due to the greater cytotoxic activity of CytK-1 compared to CytK-2, and to a high level of cytK expression. To date, only three strains containing cytK-1 have been identified; B. cereus strains NVH 391/98, NVH 883/00, and INRA AF2.  相似文献   

13.
14.
Four genes, fagA, B, C and D, encoding products with 32-47% identity to proteins involved in bacterial iron uptake systems, were identified immediately downstream of the Corynebacterium pseudotuberculosis phospholipase D gene. beta-Galactosidase assays on a C. pseudotuberculosis strain carrying a fagA-lacZ fusion indicated that the putative fagABC operon was poorly expressed in iron-rich media. However, similar experiments in iron-limited media resulted in an approximately three-fold increase in beta-galactosidase activity, suggesting that this operon is regulated by iron in vitro. Although no defect in iron utilization could be determined for a C. pseudotuberculosis fagB(C) mutant in vitro, this mutant showed reduced virulence compared to wild-type in a goat model of caseous lymphadenitis. Thus, expression of the fag genes in the host appears to contribute to virulence.  相似文献   

15.
Aims: To determine the contribution of potential modes of action of a Bacillus cereus aquaculture biological control agent in inhibition of the fish pathogen, Aeromonas hydrophila. Methods and Results: When B. cereus was tested in plate well inhibition studies, no production of antimicrobial compounds was detected. Bacillus cereus had a high growth rate (0·96 h?1), whereas Aer. hydrophila concentration decreased by c. 70% in co‐culture experiments. In nutrient limitation studies, B. cereus had a significantly higher growth rate when cultured under glucose (P < 0·05) and iron (P < 0·01) limitation in comparison with Aer. hydrophila. Bacillus cereus glucose (0·30 g l?1 h?1) and iron (0·60 mg l?1 h?1) uptake rates were also significantly higher (P < 0·01) than the Aer. hydrophila glucose (0·14 g l?1 h?1) and iron (0·43 mg l?1 h?1) uptake rates. Iron uptake was facilitated by siderophore production shown in time profile studies where relative siderophore production was c. 60% through the late exponential and sporulation phases. Conclusions: Competitive exclusion by higher growth rate, competition for organic carbon and iron, facilitated by siderophore production, could be identified as mechanisms of pathogen growth inhibition by B. cereus. Significance and Impact of the Study: This study is the first elucidation of the mechanism of action of our novel B. cereus biological agent in growth attenuation of pathogenic Aer. hydrophila. This study enhances the application knowledge and attractiveness for adoption of B. cereus NRRL 100132 for exploitation in aquaculture.  相似文献   

16.
Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the function of the fur gene in Xanthomonas vesicatoria (Xv), we generated a fur mutant strain, fur-m, by site-directed mutagenesis. Whereas siderophore production increased in the Xv fur mutant, extracellular polysaccharide production, biofilm formation, swimming ability and quorum sensing signals were all significantly decreased. The fur mutant also had significantly reduced virulence in tomato leaves. The above-mentioned phenotypes significantly recovered when the Xv fur mutation allele was complemented with a wild-type fur gene. Thus, Fur either negatively or positively regulates multiple important physiological functions in Xv.  相似文献   

17.
The toxigenic potential of Bacillus species isolated from the traditional fermented condiment okpehe was determined; this is aimed at selection of non-toxigenic bacilli as starter cultures to bring about production of safe product. B. subtilis and B. cereus strains isolated from okpehe were evaluated for their possible possession of virulence characteristics. Fifty isolates were screened for their ability to produce diarrhoea enterotoxin by reversed passive latex agglutination (BCET-RPLA) test kit; the result showed that 40% of the B. cereus strains were toxigenic. The ability of the selected isolates to compete in situ and in vitro toxin production during the fermentation was also determined. The enterotoxin was not detected using BCET-RPLA kit in the spontaneously fermented samples of okpehe, but the toxin was detected in the okpehe samples fermented using B. cereus enterotoxin producer in mixed starter culture fermentation. The PCR amplification of virulence genes revealed that Bacillus cereus and B. licheniformis, a strain from the B. subtilis group, contained DNA sequences encoding the haemolysin BL (hblD) enterotoxin complex. The growth ability of B. cereus strains to high population during the fermentation and the presence of detectable diarroheagenic genes in B. cereus and B. licheniformis showed that strains carrying virulence characteristics cannot be totally ruled out in traditionally fermented okpehe.  相似文献   

18.
In host-pathogen interactions, the struggle for iron may have major consequences on the outcome of the disease. To overcome the low solubility and bio-availability of iron, bacteria have evolved multiple systems to acquire iron from various sources such as heme, hemoglobin and ferritin. The molecular basis of iron acquisition from heme and hemoglobin have been extensively studied; however, very little is known about iron acquisition from host ferritin, a 24-mer nanocage protein able to store thousands of iron atoms within its cavity. In the human opportunistic pathogen Bacillus cereus, a surface protein named IlsA (Iron-regulated leucine rich surface protein type A) binds heme, hemoglobin and ferritin in vitro and is involved in virulence. Here, we demonstrate that IlsA acts as a ferritin receptor causing ferritin aggregation on the bacterial surface. Isothermal titration calorimetry data indicate that IlsA binds several types of ferritins through direct interaction with the shell subunits. UV-vis kinetic data show a significant enhancement of iron release from ferritin in the presence of IlsA indicating for the first time that a bacterial protein might alter the stability of the ferritin iron core. Disruption of the siderophore bacillibactin production drastically reduces the ability of B. cereus to utilize ferritin for growth and results in attenuated bacterial virulence in insects. We propose a new model of iron acquisition in B. cereus that involves the binding of IlsA to host ferritin followed by siderophore assisted iron uptake. Our results highlight a possible interplay between a surface protein and a siderophore and provide new insights into host adaptation of B. cereus and general bacterial pathogenesis.  相似文献   

19.
20.
The human opportunistic pathogen Bacillus cereus belongs to the B. cereus group that includes bacteria with a broad host spectrum. The ability of these bacteria to colonize diverse hosts is reliant on the presence of adaptation factors. Previously, an IVET strategy led to the identification of a novel B. cereus protein (IlsA, Iron-regulated leucine rich surface protein), which is specifically expressed in the insect host or under iron restrictive conditions in vitro. Here, we show that IlsA is localized on the surface of B. cereus and hence has the potential to interact with host proteins. We report that B. cereus uses hemoglobin, heme and ferritin, but not transferrin and lactoferrin. In addition, affinity tests revealed that IlsA interacts with both hemoglobin and ferritin. Furthermore, IlsA directly binds heme probably through the NEAT domain. Inactivation of ilsA drastically decreases the ability of B. cereus to grow in the presence of hemoglobin, heme and ferritin, indicating that IlsA is essential for iron acquisition from these iron sources. In addition, the ilsA mutant displays a reduction in growth and virulence in an insect model. Hence, our results indicate that IlsA is a key factor within a new iron acquisition system, playing an important role in the general virulence strategy adapted by B. cereus to colonize susceptible hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号