首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study reports the development of an on-chip enzyme-mediated primer extension process based on a microfluidic device with microbeads array for single-nucleotide discrimination using quantum dots as labels. The functionalized microbeads were independently introduced into the arrayed chambers using the loading chip slab. A single channel was used to generate weir structures to confine the microbeads and make the beads array accessible by microfluidics. The applied allele-specific primer extension method employed a nucleotide-degrading enzyme (apyrase) to achieve specific single-nucleotide detection. Based on the apyrase-mediated allele-specific primer extension with quantum dots as labels, on-chip single-nucleotide discrimination was demonstrated with high discrimination specificity and sensitivity (0.5 pM, signal/noise > 3) using synthesized target DNA. The chip-based signal enhancement for single-nucleotide discrimination resulted in 200 times higher sensitivity than that of an off-chip test. This microfluidic device successfully achieved simultaneous detection of two disease-associated single-nucleotide polymorphism sites using polymerase chain reaction products as target. This apyrase-mediated microfluidic primer extension approach combines the rapid binding kinetics of homogeneous assays of suspended microbeads array, the liquid handling capability of microfluidics, and the fluorescence detection sensitivity of quantum dots to provide a platform for single-base analysis with small reagent consumption, short assay time, and parallel detection.  相似文献   

2.
We have microfabricated a flow-through biochip for the analysis of single base mutations in genomic DNA using two different materials: (1) a polycarbonate (PC) chip for performing a primary polymerase chain reaction (PCR) followed by an allele-specific ligation detection reaction (LDR) and (2) a poly(methyl methacrylate) (PMMA) chip for the detection of the LDR products using a universal array platform. The operation of the device was demonstrated by detecting low-abundant DNA mutations in gene fragments (K-ras) that carry point mutations with high diagnostic value for colorectal cancers. The PC microchip was used for sequential PCR/LDR in a continuous-flow format, in which the following three steps were carried out: (1) exponential amplification of gene fragments from genomic DNA; (2) mixing of the resultant PCR product with a LDR mixture via a Y-shaped passive micromixer and (3) ligation of two primers only when the particular mutation was present in the genomic DNA. A PMMA chip was employed as the microarray device, where zip code sequences (24-mer), which were complementary to sequences present on the discriminating primer, were micro-printed into fluidic channels embossed into the PMMA substrate. We successfully demonstrate the ability to detect one mutant DNA in 80 normal sequences with the integrated microfluidic device. The PCR/LDR/hybridization assay using the microchips performed the entire assay at a relatively fast processing speed: 18.7 min for PCR, 8.1 min for LDR, 5 min for hybridization, 10 min for washing and 2.6 min for fluorescence scanning (total processing time=ca. 50 min) with an order of magnitude reduction in reagents compared to bench-top formats.  相似文献   

3.
BACKGROUND: Alterations in the p53 tumor suppressor gene constitute one of the most frequent genetic events associated with the development of human cancers. Determination of an individual's p53 status may be of value in early diagnosis, prediction of response to treatment, and for the detection of minimal residual cancer. Recent studies have also revealed that specific mutations affecting the p53 gene are associated with a poor outcome. The majority of tumor biopsies that are sent for study in the laboratory contain neoplastic cells intermingled with stroma, such that the detection of alterations in the p53 gene requires a tumor enrichment technique and/or highly sensitive mutation detection technologies. Thus, it is desirable that a clinically useful assay for detecting point mutations in the p53 gene function in the presence of significant quantities of wild-type sequence and identify the critical sequence aberrations. MATERIALS AND METHODS: We utilized molecular beacons in a real-time allele-specific PCR format to obtain reference data on samples of quantitatively known p53 mutation status. These data have been statistically analyzed and the results used to detect p53 mutations, indicating the presence of occult tumor. RESULTS: We describe validation of a simple, rapid, sensitive, and quantitative ARMS assay for identifying the levels of 80 point mutations within the p53 gene that, when mutated, constitute at least 1% of the total p53 sequences. CONCLUSIONS: The assay successfully identifies rare p53 gene mutations in clinical samples and overcomes many of the limitations of current technologies.  相似文献   

4.
This report describes a new genotyping method capable of detecting low-abundant point mutations in a homogeneous, separation-free format. The method is based on integration of oligonucleotide ligation with a semiconductor quantum dot (QD)-mediated two-color fluorescence coincidence detection scheme. Surface-functionalized QDs are used to capture fluorophore-labeled ligation products, forming QD-oligonucleotide nanoassemblies. The presence of such nanoassemblies and thereby the genotype of the sample is determined by detecting the simultaneous emissions of QDs and fluorophores that occurs whenever a single nanoassembly flows through the femtoliter measurement volume of a confocal fluorescence detection system. The ability of this method to detect single events enables analysis of target signals with a multiple-parameter (intensities and count rates of the digitized target signals) approach to enhance assay sensitivity and specificity. We demonstrate that this new method is capable of detecting zeptomoles of targets and achieve an allele discrimination selectivity factor >105.  相似文献   

5.
6.
A novel microfluidic device with microbeads array was developed and sensitive genotyping of human papillomavirus was demonstrated using a multiple-enzyme labeled oligonucleotide-Au nanoparticle bioconjugate as the detection tool. This method utilizes microbeads as sensing platform that was functionalized with the capture probes and modified electron rich proteins, and uses the horseradish peroxidase (HRP)-functionalized gold nanoparticles as label with a secondary DNA probe. The functionalized microbeads were independently introduced into the arrayed chambers using the loading chip slab. A single channel was used to generate weir structures to confine the microbeads and make the beads array accessible by microfluidics. Through "sandwich" hybridization, the enzyme-functionalized Au nanoparticles labels were brought close to the surface of microbeads. The oxidation of biotin-tyramine by hydrogen peroxide resulted in the deposition of multiple biotin moieties onto the surface of beads. This deposition is markedly increased in the presence of immobilized electron rich proteins. Streptavidin-labeled quantum dots were then allowed to bind to the deposited biotin moieties and displayed the signal. Enhanced detection sensitivity was achieved where the large surface area of Au nanoparticle carriers increased the amount HRP bound per sandwiched hybridization. The on-chip genotyping method could discriminate as low as 1fmol/L (10zmol/chip, SNR>3) synthesized HPV oligonucleotides DNA. The chip-based signal enhancement of the amplified assay resulted in 1000 times higher sensitivity than that of off-chip test. In addition, this on-chip format could discriminate and genotype 10copies/μL HPV genomic DNA using the PCR products. These results demonstrated that this on-chip approach can achieve highly sensitive detection and genotyping of target DNA and can be further developed for detection of disease-related biomolecules at the lowest level at their earliest incidence.  相似文献   

7.
Piezoelectric sensing is here applied to point mutation detection in human DNA. The mutation investigated is in the TP53 gene, which results inactivated in most cancer types. TP53 gene maps on chromosome 17 (17p13.1). It contains 11 exons and codifies for the relative protein, involved in cell proliferation. The TP53 gene has a wide mutation spectrum that is related to different tumours. In particular, those occurring in the structurally important L2 and L3 zinc-binding domains, have been linked to patient prognosis and more strongly to radiotherapy and chemotherapy resistance in several major cancers. For this reason, the identification of these mutations represents an important clinical target and biosensors could represent good candidate for fast mutation screening. In this paper, a DNA-based piezoelectric biosensor for the detection of the TP53 gene mutation at codon 248 is reported. A biotinylated probe was immobilised on the sensor surface via dextran-streptavidin modified surfaces. The sensor was optimised using synthetic oligonucleotides. Finally, the sensor system was successfully applied to polymerase chain reaction (PCR)-amplified real samples of DNA extracted from two cell lines, one normal (wild-type) and one mutated, carrying the mutation at codon 248 of the TP53 gene. The results obtained demonstrate that the DNA-based piezoelectric biosensor is able to detect the point mutations in PCR-amplified samples showing the potentialities of this approach for routine analysis.  相似文献   

8.
We have developed a simple ultraviolet (UV)-photomodification protocol using poly(methyl methacrylate) and polycarbonate to produce functional scaffolds consisting of carboxylic groups that allow covalent attachment of amine-terminated oligonucleotide probes to these surface groups through carbodiimide coupling. Use of the photomodification procedure coupled to microfluidics allowed for the rapid generation of medium-density DNA microarrays. The method reported herein involves the use of poly(dimethylsiloxane) microchannels reversibly sealed to photomodified poly(methyl methacrylate) surfaces to serve as stencils for patterning the oligonucleotide probes. After array construction, the poly(dimethylsiloxane) stencil is rotated 90 degrees to allow interrogation of the array using microfluidics. The photomodification process for array fabrication involves only three steps: (1) broadband UV exposure of the polymer surface, (2) carbodiimide coupling of amine-terminated oligonucleotide probes to the surface (via an amide bond), and (3) washing of the surface. The density of probes attached to this activated surface was found to be approximately 41pmolcm(-2), near the steric-saturation limit for short oligonucleotide probes. We demonstrate the use of this procedure for screening multiple KRAS2 mutations possessing high diagnostic value for colorectal cancers. A ligase detection reaction/universal array assay was carried out using parallel detection of two different low-abundant DNA point mutations in KRAS2 oncogenes with the allelic composition evaluated at one locus. Four zip code probes immobilized onto the poly(methyl methacrylate) surface directed allele-specific ligation products containing mutations in the KRAS2 gene (12.2D, 12.2A, 12.2V, and 13.4D) to the appropriate address of a universal array with minimal amounts of cross-hybridization or misligation.  相似文献   

9.
Role of Stat3 in regulating p53 expression and function   总被引:20,自引:0,他引:20       下载免费PDF全文
  相似文献   

10.
In this study, analysis of structural changes of the p53 gene in colorectal tumors revealed point mutations detected in 8 of 14 carcinomas and 2 of 2 adenomas. Of these 10 cases with point mutations, eight had one or more missense mutations, one had a nonsense mutation, and the remaining one had, interestingly, an intronic point mutation with subsequent activation of a cryptic splice donor site in the flanking exon. This report contains the first identification of an intronic point mutation of the p53 gene in a colorectal cancer case.  相似文献   

11.
Inactivation of the p53 gene is one of the most frequent genetic alterations in carcinogenesis. We studied gene mutations, the mRNA expression of p53, and the accumulation of p53 protein in chemical hepatocarcinogenesis in rats. Samples consisting of 44 precancerous foci and 18 cancerous foci were collected by laser capture microdissection (LCM), and analyzed for mutations in rat p53 gene exons 5-8 by PCR-single-strand conformational polymorphism (PCR-SSCP). We found that 25 PCR-SSCP bands of exons 6/7 and 8 were altered in 22/62 (35.4%) LCM samples. Direct p53 gene sequencing showed that 20/62 (9 precancer, 11 cancer) (32.3%) LCM samples exhibited 34 point mutations. Ten LCM samples exhibited double or triple mutations in exons 6/7 and 8 simultaneously. A quantitative analysis of p53 mRNA showed that p53 mRNA peaked at an early stage (week 6) in the precancerous lesion, 20 times that of adjacent normal tissue, and returned to normal by week 23. Similar to precancer, p53 mRNA in cancer was five times as high as that of adjacent normal tissue at week 12, and was closer to normal at week 23. When p53 mRNA declined from a high to low, positive immunostaining for the p53 protein began to be seen in precancerous and cancerous foci, suggesting that the p53 protein had accumulated in these foci. Results show that p53 gene mutation is present in initial chemical hepatocarcinogenesis and p53 mRNA concentration is clearly elevated before gene mutation. Once the p53 gene has mutated, mRNA concentration progressively declines, suggesting that mutation leads to inactivation of the p53 gene.  相似文献   

12.
Kim S  Ulz ME  Nguyen T  Li CM  Sato T  Tycko B  Ju J 《Genomics》2004,83(5):924-931
A mass spectrometry (MS) based multiplex genotyping method using solid phase capturable (SPC) dideoxynucleotides and single base extension (SBE), named the SPC-SBE, has been developed for mutation detection. We report here the simultaneous genotyping of 30 potential point mutation sites in exons 5, 7, and 8 of the human p53 gene in one tube using the SPC-SBE method. The 30 mutation sites, including the most frequently mutated p53 codons, were chosen to explore the high multiplexing scope of the SPC-SBE method. Thirty primers specific to each potential mutation site were designed to yield SBE products with sufficient mass differences. This was achieved by tuning the mass of some primers using modified nucleotides. Genomic DNA was amplified by multiplex PCR to produce amplicons of the three p53 exons. The 30 primers were combined with the PCR products and biotinylated dideoxynucleotides for SBE to generate 3'-biotinylated extension DNA products. These products were then captured by streptavidin-coated magnetic beads, while the unextended primers and other components in the reaction were washed away. The pure extension DNA products were subsequently released from the solid phase and analyzed with MS. We simultaneously genotyped 30 potential mutation sites in the p53 gene from Wilms' tumor, head and neck tumor, and colorectal tumor. Both homozygous and heterozygous genotypes were accurately determined with digital resolution. This is the highest level of multiplex genotyping reported thus far using MS, indicating that the approach might be applicable to screening a repertoire of genotypes in candidate genes as potential disease markers.  相似文献   

13.
The aim of this study was to investigate the feasibility of combining PCR and ligase detection reaction (LDR) with a novel nano-gold-based universal array for the detection of low abundance point mutations from fetal DNA in maternal plasma samples. The sequence with the target point mutation was first amplified by PCR and then used as a template for LDR in which the upstream specific primer contains a tag sequence at the 5′-end. After hybridization to the probes of a universal array containing anti-tag sequences, the ligated products were bound to streptavidin-labeled nano-gold particles and the hybridization signals were amplified by silver staining. The PCR/LDR/universal array was first tested for sensitivity with nano-gold-based detection, and then this system was applied to detect the low abundance specific mutation IVS2 654(C→T) of the β-globin gene in a model using maternal plasma samples. The nano-gold-based method unambiguously identified a single mutation at a sensitivity of 1:1000. This approach was applied to detect the paternally inherited IVS2 654(C→T) mutation from thirty maternal plasma samples. The results were consistent with those obtained by PCR/reverse dot blot of amniotic fluid cell DNA. The PCR/LDR/nano-gold-based universal array is able to detect low-abundance point mutations with high sensitivity.  相似文献   

14.
T Crook  K H Vousden 《The EMBO journal》1992,11(11):3935-3940
Primary human papillomavirus (HPV) positive anogenital cancers normally develop without somatic mutation within the p53 gene. In this study, however, we have identified p53 point mutations in metastases arising from HPV positive cervical carcinomas, suggesting that acquisition of p53 mutation may play a role in the progression of some HPV associated primary cancers. p53 mutants identified in anogenital cancers exhibit a dominant transforming phenotype and increased resistance to HPV16 E6 directed degradation. The association of p53 mutation with metastases may explain the poor prognosis reported for HPV negative primary cancers, many of which already contain mutant p53. A high proportion of p53 mutations detected in both primary and metastatic cancers are GC-->TA transversions, strongly suggesting a role for external carcinogens in the development of these cancers.  相似文献   

15.
Timing and role of p53 gene mutation in the recurrence of glioma   总被引:5,自引:0,他引:5  
Recently a 17p deletion and p53 gene mutations were reported in human gliomas, but the relationship of the timing of p53 gene mutation and oncogenesis of glioma is still obscure. We examined eight pairs of primary and recurrent gliomas. Four of eight had a histological malignant transformation. In the group with malignant transformation, three out of four pairs had a mutation in the p53 gene only in recurrence. None of the mutations in either primary or recurrent glioma was detected in the group with no histological change. All point mutations occurred within the evolutionarily conserved regions. This suggests that the p53 mutations occurred during the progression and were important in the malignant transformation in the some kinds of gliomas.  相似文献   

16.
Defects in vital genes occur in a high percentage of human diseases, including cancer. Defects could be due to the accumulation of mutations in the genes leading to the production of faulty proteins. Although the biological significance of such mutant proteins still remains in question, recent experiments have demonstrated that genes overproducing faulty proteins are often associated with tumor cell growth. Thep53tumor suppressor gene is the most frequently mutated gene yet identified in human cancer. It is mutated in wide variety of human cancers. Missense mutations are common for thep53gene and are essential for the transforming ability of the oncogene. The wild-typep53gene may directly suppress cell growth or indirectly activate genes that are involved in growth suppression. Thus inactivation of wild-typep53by point mutation may contribute to transformation. Therefore, identification of such mutations have potential clinical implications. Recently, polymerase chain reaction-based advanced molecular techniques had a profound impact on the detection and identification of such mutations. These techniques are sensitive and quantitative tools for the study of the pathogenesis of neoplastic diseases at the single-cell level.  相似文献   

17.
The development of simple, accurate, rapid and cost-effective technologies for mutation detection is crucial to the early diagnosis and prevention of numerous genetic diseases, pharmacogenetics, and drug resistance. Proofreading PCR (PR-PCR) was developed for mutation detection in 1998 but is rarely applied due to its low efficiency in allele discrimination. Here we developed a modified PR-PCR method using a ddNTP-blocked primer and a mixture of DNA polymerases with and without the 3''-5'' proofreading function. The ddNTP-blocked primer exhibited the best blocking efficiency to avoid nonspecific primer extension while the mixture of a tiny amount of high-fidelity DNA polymerase with a routine amount of Taq DNA polymerase provided the best discrimination and amplification effects. The modified PR-PCR method is quite capable of detecting various mutation types, including point mutations and insertions/deletions (indels), and allows discrimination amplification when the mismatch is located within the last eight nucleotides from the 3''-end of the ddNTP-blocked primer. The modified PR-PCR has a sensitivity of 1-5 × 102 copies and a selectivity of 5 × 10-5 mutant among 107 copies of wild-type DNA. It showed a 100% accuracy rate in the detection of P72R germ-line mutation in the TP53 gene among 60 clinical blood samples, and a high potential to detect rifampin-resistant mutations at low frequency in Mycobacterium tuberculosis using an adaptor and a fusion-blocked primer. These results suggest that the modified PR-PCR technique is effective in detection of various mutations or polymorphisms as a simple, sensitive and promising approach.  相似文献   

18.
19.
Alteration of the p53 tumor suppressor gene is the most common genetic abnormality in human cancer. In breast cancer, depending on the stage of disease and method of detection, mutation rates of 25-60% have been observed. Multiple mutations of p53 gene in the same tumor however, are rarely reported. In this study we explored the frequency of multiple mutations of p53 gene in mammary carcinoma in a cohort of south Florida patients. Three hundred eighty-four cases of primary breast cancer diagnosed between 1984 and 1986 at the University of Miami, Jackson Medical Center were subjects of this study. Sequence analysis of exons 5 through 8 of p53 was performed on cloned PCR-amplified DNA of formalin-fixed, paraffin-embedded tumors. Two hundred thirty-four of 384 breast cancers (61%) had p53 mutation. Of those, 36 tumors showed more than one mutation; 31 tumors had two mutations, three showed three, one tumor had five mutations, and one case carried six mutations. The majority of mutations were missense (43) followed by silent (35); and most occurred within a single exon. Our study suggests that multiple mutations of p53 suppressor gene in breast cancer are more common than currently believed.  相似文献   

20.
用等长探针检测基因的点突变,不同GC含量探针的碱基错分辨率很难均一。尝试利用探针近似等Tm的原则设计、制备了检测抑癌基因p53外显子7中密码子245、248、249单碱基突变及缺失的寡核苷酸芯片。实验得到较好的碱基错配分辨率,检测不同位点的碱基错配分辨率较为一致,芯片检测结果与测序结果一致。实验结果为制备检测p53常见热点突变的寡核酸芯片奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号