首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anaerobic fungusPiromyces sp. strain E2 appeared restricted in nitrogen utilization. Growth was only supported by ammonium as source of nitrogen. Glutamine also resulted in growth, but this was due to release of ammonia rather than to uptake and utilization of the amino acid. The fungus was not able to grow on other amino acids, albumin, urea, allantoin, or nitrate. Assimilation of ammonium is very likely to be mediated by NADP-linked glutamate dehydrogenase (NADP-GDH) and glutamine synthetase (GS). One transaminating activity, glutamate-oxaloacetate transaminase (GOT), was demonstrated. Glutamate synthase (GOGAT), NAD-dependent glutamate dehydrogenase (NAD-GDH), and the transaminating activity glutamate-pyruvate transaminase (GPT) were not detected in cell-free extracts ofPiromyces sp. strain E2. Specific enzyme activities of both NADP-GDH and GS increased four-to sixfold under nitrogen-limiting conditions.Abbreviations GDH Glutamate dehydrogenase - GOGAT Glutamate synthase - GOT Glutamate-oxaloacetate transaminase - GPT Glutamate-pyruvate transaminase - GS Glutamine synthetase  相似文献   

2.
Growth Hormones and Propagation of Cymbidium in vitro   总被引:2,自引:0,他引:2  
Protocorms of Cymbidium (Orchidaceae) were grown on solid or liquid medium with macro-nutrients according to Wimber (van Raalte 1967) and iron, micro-nutrients and vitamins according to Nitsch (1968) the medium also contained 2% sucrose. The effects of 1) the auxins; indol-3yl-acetic acid (IAA), α-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D); 2) the cytokinins; 6-furfurylaminopurine (kinetin) and benzyladenine (BA) and 3) the gibberellin; gibberellic acid (GA) were examined alone or in combinations. IAA had no effect alone. NAA resulted in optimal fresh weight at 10 μM and the protocorms were vigorous, but lighter green than usual. 2,4-D caused a high weight increase at 1 μM, but the protocorms were abnormal. Higher concentrations of NAA and 2,4-D inhibited chlorophyll synthesis. On solid medium kinetin (100 μM) induced a growth of many small shoots, but had no effect on the fresh weight. In liquid medium, kinetin promoted a callus formation and fresh weight increase. BA had effects similar to kinetin, but at lower concentrations. GA alone promoted shoot and leaf growth. Combinations of kinetin and NAA resulted in a maximal fresh weight increase at kinetin concentrations one tenth of the NAA concentrations. The optimal growth and the best development occurred at 10 μM NAA and 1 μM kinetin. NAA and kinetin together could limit the shoot and leaf growth induced by GA.  相似文献   

3.
Abstract: It has been proposed that hyperammonemia may be associated with valproate therapy. As astrocytes are the primary site of ammonia detoxification in brain, the effects of valproate on glutamate and glutamine metabolism in astrocytes were studied. It is well established that, because of compartmentation of glutamine synthetase, astrocytes are the site of synthesis of glutamine from glutamate and ammonia. The reverse reaction is catalyzed by the ubiquitous enzyme glutaminase, which is present in both neurons and astrocytes. In astrocytes exposed to 1.2 mM valproate, glutaminase activity increased 80% by day 2 and remained elevated at day 4; glutamine synthetase activity was decreased 30%. Direct addition of valproate to assay tubes with enzyme extracts from untreated astrocytes had significant effects only at concentrations of 10 and 20 mM, When astrocytes were exposed for 4 days to 0.3, 0.6, or 1.2 mM valproate and subsequently incubated with l -[U-14C]glutamate, label incorporation into [14C]glutamine was decreased by 11, 25, and 48%, respectively, and is consistent with a reduction in glutamine synthetase activity. Label incorporation from l -[U-14C]glutamate into [14C]aspartate also decreased with increasing concentrations of valproate. Following a 4-day exposure to 0.6 mM valproate, the glutamine levels increased 40% and the glutamate levels 100%. These effects were not directly proportional to valproate concentration, because exposure to 1.2 mM valproate resulted in a 15% decrease in glutamine levels and a 25% increase in glutamate levels compared with control cultures. Intracellular aspartate was inversely proportional to all concentrations of extracellular valproate, decreasing 60% with exposure to 1.2 mM valproate. These results indicate that valproate increases glutaminase activity, decreases glutamine synthetase activity, and alters Krebs-cycle activity in astrocytes, suggesting a possible mechanism for hyperammonemia in brain during valproate therapy.  相似文献   

4.
Alanine dehydrogenase in Arthrobacter fluorescens exhibited an allosteric behaviour and two K m values for ammonium were estimated. In batch cultures at different ammonium concentrations and in continuous culture following an NH4 + pulse, the level of ADH activity seems to be regulated by the ammonium concentration, high activities being observed when extracellular ammonium was in excess. The response to the growth rate of an ammonium-limited chemostat culture of A. fluorescens seems to indicate that alanine dehydrogenase and glutamine synthetase activities were inversely related. High activities of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase have been found in crude extract of ammonium-limited cultures. From the results obtained in batch cultures grown at different glucose concentrations and in carbon-limited chemostat culture it appeared that the limitation by glucose influenced alanine dehydrogenase activity negatively. No glutamate dehydrogenase activity and no glutamate synthase activity could be detected with either NADH or NADPH as coenzymes.Abbreviations ADH alanine dehydrogenase - GS glutamine synthetase - GDH glutamate dehydrogenase - GOGAT glutamine oxoglutarate aminotransferase - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase  相似文献   

5.
With the aims (1) to test whether the different natural occurrence of twoPlantago species in grasslands is explained by a different preference of the species for nitrate or ammonium; (2) to test whether the different occurrence is explained by differences in the flexibility of the species towards changes in the nitrogen form; (3) to find suitable parameters as a tool to study ammonium and nitrate utilization of these species at the natural sites in grasslands, plants ofPlantago lanceolata andP. major ssp.major were grown with an abundant supply of nitrate, ammonium or nitrate+ammonium as the nitrogen source (0.5 mM). The combination of ammonium and nitrate gave a slightly higher final plant weight than nitrate or ammonium alone. Ammonium lowered the shoot to root ratio inP. major. Uptake of nitrate per g root was faster than that of ammonium, but from the mixed source ammonium and nitrate were taken up at the same rate. In vivo nitrate reductase activity (NRA) was present in both shoot and roots of plants receiving nitrate. When ammonium was applied in addition to nitrate, NRA of the shoot was not affected, but in the root the activity decreased. Thus, a larger proportion of total NRA was present in the shoot than with nitrate alone. In vitro glutamate dehydrogenase activity (GDHA) was enhanced by ammonium, both in the shoot and in the roots.In vitro glutamine synthetase activity (GSA) was highest in roots of plants receiving ammonium. Both GDHA and GSA were higher inP. lanceolata than inP. major. The concentration of ammonium in the roots increased with ammonium, but it did not accumulate in the shoot. The concentration of amino acids in the roots was also enhanced by ammonium. Protein concentration was not affected by the form of nitrogen. Nitrate accumulated in both the shoot and the roots of nitrate grown plants. When nitrate in the solution was replaced by ammonium, the nitrate concentration in the roots decreased rapidly. It also decreased in the shoot, but slowly. It is concluded that the nitrogen metabolism of the twoPlantago species shows a similar response to a change in the form of the nitrogen source, and that differences in natural occurrence of these species are not related to a differential adaptation of nitrogen metabolism towards the nitrogen form. Suitable parameters for establishing the nitrogen source in the field are thein vivo NRA, nitrate concentrations in tissues and xylem exudate, and the fraction of total reduced nitrogen in the roots that is in the soluble form, and to some extent thein vitro GDHA and GSA of the roots. Grassland Species Research Group. Publ. no 118.  相似文献   

6.
In vivo 15N and 14N nuclear magnetic resonance spectroscopy was used to investigate the assimilation of nitrate and ammonium in seedlings of Norway spruce (Picea abies [L.] Karst.). The main objective was to study accumulation of free NH+4 and examine to what extent the nitrogen source affects the composition of the free amino acid pools in roots, stems and needles. NH+4 concentrations in plants growing in the presence of 0.5–50 mM ammonium were quantified using 14N NMR. The NH+4 values in tissues ranged from 6 to 46 μmol (g fresh weight)?1. with highest concentrations in roots and needles. The tissue NH+4 peaked at 5.0 mM NH+4 in the medium. and failed to increase when NH+4 in the medium was increased to 50 mM, indicating metabolic control of the concentration of this cation in tissues. The 14N NMR spectra were used to estimate pH of the NH+4 storage pools. Based on the pH sensitivity of the quintet of 14NH+4 resonance, we suggest that the pH of the ammonium storage compartments in the roots and stems should be 3.7–3.8, and in needles 3.4–3.5, representing extremely low pH values of the tissue. 15N from nitrate or ammonium was first incorporated into the amide group of glutamine and then into α-amino groups, confirming that the glutamine synthetase/ glutamate synthase cycle is the major route of nitrogen assimilation into amino acids and thus plays a role in lowering the levels of NH+4 in the cytoplasm. NH+4 can also be assimilated in roots in plants growing in darkness. The main 15N-labelled amino acids were glutamine. arginine and alanine. Almost no 15N signals from needles were observed. Double labelling (δN + w, wN) of arginine is consistent with the operation of the ornithine cycle, and enrichment indicates that this cycle is a major sink of newly assimilated nitrogen. Nitrogen assimilation in roots in the presence of added methionine sulphoximine and glutamate indicated the catabolic action of glutamate dehydrogenase. The 15N NMR spectra of plants grown on 15N-urea showed a marked increase in the labelling of ammonium and glutamine. indicating high urease activity. Amino acids were also quantified using high pressure liquid chromatography. Arginine was found to be an important transport form of nitrogen in the stem.  相似文献   

7.
Summary Woody plants growing in cerrado and forest communities of south-east Brasil were found to have low levels of nitrate reductase activity in their leaves suggesting that nitrate ions are not an important nitrogen source in these communities. Only in the leaves of species growing in areas of disturbance, such as gaps and forest margins, were high levels of nitrate reductase present. When pot-grown plants were supplied with nitrate, leaves and roots of almost all species responded by inducing increased levels of nitrate reductase. Pioneer or colonizing species exhibited highest levels of nitrate reductase and high shoot: root nitrate reductase activities. Glutamine synthetase, glutamate synthase and glutamate dehydrogenase were present in leaves and roots of the species examined.15N-labelled nitrate and ammonium were used to compare the assimilatory characteristics of two species:Enterolobium contortisiliquum, with a high capacity to reduce nitrate, andCalophyllum brasiliense, of low capacity. The rate of nitrate assimilation in the former was five times that of the latter. Both species had similar rates of ammonium assimilation. Results for eight species of contrasting habitats showed that leaf nitrogen content increased in parallel with xylem sap nitrogen concentrations, suggesting that the ability of the root system to acquire, assimilate or export nitrate determines shoot nitrogen status. These results emphasise the importance of nitrogen transport and metabolism in roots as determinants of whole plant nitrogen status.  相似文献   

8.
Abstract Effect of ammonium on in vivo activity of nitrate reductase in roots, shoots and leaves of maize (Zea mays L.) seedlings was studied in relation to light/dark conditions and EDTA supply. Supply of 5 mM (NH4)2SO4 increased the steady state level of enzyme only in leaves and in light, while it had no effect in roots and shoots and in the dark. The substrate induction of enzyme was also little affected by 1 to 10 mM (NH4)2SO4 in roots and shoots. In the leaves the activity in the dark was either inhibited (minus EDTA) or stimulated (plus EDTA) by 5 to 10 mM (NH4)2SO4. The activity was stimulated in the light also in the presence of EDTA at higher concentrations of ammonium. When different concentrations of ammonium were supplied without any exogenous nitrate in the light, the enzyme activity increased at low concentration and was either inhibited or unaffected at higher concentrations depending upon the tissue used. Supply of EDTA with ammonium modified its effect to some extent. It is suggested that the effect of ammonium on nitrate reductase activity depends upon the tissue used and the effective concentration of the ammonium.  相似文献   

9.
Coumarin induced root formation and stimulated fresh weight production in hypocotyl explants of Glycine max L. cultured in vitro. All stimulatory effects caused by coumarin were induced within a relatively narrow range of concentrations between 1–500 μM, yielding optimum dose response curves. When coumarin was combined with kinetin fresh weight increased considerably, at optimum concentrations to a level almost as high as that obtained with NAA (10 μM) and kinetin (10 μM). Root formation was almost completely inhibited when kinetin was added in combination with coumarin. NAA + coumarin had small stimulatory effects on fresh weight. but were inhibitory in root formation. The frequency of rooting per explant, texture and pigmentation were also affected by different treatments.  相似文献   

10.
Glutamine synthetase (L-glutamate : ammonia ligase, EC 6.3.1.2) fromPhaseolus aureus (mung bean) seedlings was purified to homogeneity by ammonium sulphate fractionation, DEAE-cellulose chromatography, Sephadex G-200 gel filtration and affinity chromatography on histidine-Sepharose. The enzyme had a molecular weight of 775,000 ± 25,000. The enzyme consisted of identical subunits with an approximate subunit molecular weight of 50,000. Hyperbolic saturation curves were obtained with the substrates, glutamate, ATP and hydroxylamine. Antibody, raised in the rabbit, against mung bean glutamine synthetase, completely inhibited the activity of the enzyme. Preincubation of the enzyme with glutamate and ATP, prior to the addition of the antibody, partially protected the enzyme against inhibition. TheK m values of this enzyme-antibody complex and the native enzyme were identical (glutamate, 2.5mM; ATP, 1 mM; hydroxylamine, 0.5 mM). The Km values of the partially inhibited enzyme (the enzyme pretreated with antibody prior to the addition of substrates) were 2-fold higher than those of the native enzyme. These results suggested that the substrate-induced conformational changes in the enzyme were responsible for the protection against inhibition of the enzyme activity by the antibody.  相似文献   

11.
Summary The enzymes involved in ammonia assimilation by Rhizobium meliloti 4l and their role in the regulation of nitrogen metabolism were studied. Glutamine synthetase (GS) and glutamate synthase (GOGAT) were present at relatively high levels in cells grown in media containing either low or high concentrations of ammonia. NADP-linked glutamate dehydrogenase could not be detected.GOGAT and GS mutants were isolated and characterised. A mutant lacking GOGAT activity did not grow even on high concentrations of ammonia, it was a glutamate auxotroph and was effective in symbiotic nitrogen fixation. The GS and assimilatory nitrate reductase activities of this mutant were not repressible by ammonia but still repressible by casamino acids. A mutant with low GS activity required glutamine for optimal growth. It was ineffective and its nitrate reductase was not inducible.These findings indicate that ammonia is assimilated via the GS/GOGAT pathway in free-living R. meliloti and bacterial GOGAT is not important in symbiosis. Furthermore, GS is suggested to be a controlling element in the nitrogen metabolism of R. meliloti.  相似文献   

12.
The specific activity of glutamine synthetase (L-glutamate: ammonia ligase, EC 6.3.1.2) in surface grownAspergillus niger was increased 3–5 fold when grown on L-glutamate or potassium nitrate, compared to the activity obtained on ammonium chloride. The levels of glutamine synthetase was regulated by the availability of nitrogen source like NH 4 + , and further, the enzyme is repressed by increasing concentrations of NH 4 + . In contrast to other micro-organisms, theAspergillus niger enzyme was neither specifically inactivated by NH 4 + or L-glutamine nor regulated by covalent modification. Glutamine synthetase fromAspergillus niger was purified to homogenity. The native enzyme is octameric with a molecular weight of 385,000±25,000. The enzyme also catalyses Mn2+ or Mg2+-dependent synthetase and Mn2+-dependent transferase activity. Aspergillusniger glutamine synthetase was completely inactivated by two mol of phenyl-glyoxal and one mol of N-ethylmaleimide with second order rate constants of 3.8 M-1 min-1 and 760 M-1 min-1 respectively. Ligands like Mg. ATP, Mg. ADP, Mg. AMP, L-glutamate NH 4 + , Mn2+ protected the enzyme against inactivation. The pattern of inactivation and protection afforded by different ligands against N-ethylamaleimide and phenylglyoxal was remarkably similar. These results suggest that metal ATP complex acts as a substrate and interacts with an arginine ressidue at the active site. Further, the metal ion and the free nucleotide probably interact at other sites on the enzyme affecting the catalytic activity.  相似文献   

13.
Glutamine synthetase (GS) showed highest expression and activity in bud (youngest topmost leaf) of Camellia sinensis, lower in older leaves, while lowest activity in stem and roots. GS expression and activity was increased by ammonium and nitrate and also by cadmium and salt stress but decreased by copper, aluminum, drought, cold and heat stress.  相似文献   

14.
Glutamine synthetase (l -glutamate: ammonia ligase, ADP-forming, EC 6.3.1.2) in bark tissue of the apple (Malus domestica Borkh. cv. Golden Delicious) was partially purified and characterized. The Mn2+- and Mg2+-dependent activities were maximal at pH 7.2 and 7.5, respectively. The enzyme was almost completely inactivated within two weeks at 0°C. Both Mg2+ and β-mercaptoethanol were effective in stabilizing the enzyme during storage. The enzyme was protected from thermal inactivation at 60°C by the addition of Mg2+ and ATP. One-tenth mM phenylmercuric acetate inhibited the Mg2+-dependent activity by 50%. Equimolar dithiothreitol protected the enzyme from this inactivation. The Km values of the enzyme were 0.27, 7.35, and 0.69 mM for ATP, glutamate, and NH2OH, respectively. The constant for NH+4 was an order of magnitude higher in the presence of Mn2+ than Mg2+. When the amino acids were externally added to the reaction mixtures, the measurement of Pi exhibited a higher degree of enzyme inhibition than the measurement of γ-glutamyl monohydroxamate (GHA). Ten mM histidine inhibited the Mg2+- and Mn2+-dependent activities by 26 and 45% respectively. Twenty mM aspartate (d,l -form) inhibited the enzyme 30% in the presence of either Mg2+ or Mn2+. Aspartate (Mg2+-dependent) and histidine (Mn2+-dependent) inhibited the enzyme competitively with respect to glutamate, the estimated inhibition constants being 17.6 and 1.6 mM, respectively. At 10 mM, amino acids such as tryptophan, arginine, alanine and citrulline inhibited enzyme activity from 1 to 18%. Glutamine stimulated the Mg2+-dependent activity 25% at 25 mM when GHA was measured. Glutamine above 32 mM inhibited the enzyme.  相似文献   

15.
In higher plants, ammonium is assimilated into amino acids through the glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle. This metabolic cycle is distributed in different cellular compartments in conifer seedlings: glutamine synthesis occurs in the cytosol and glutamate synthesis within the chloroplast. A method for preparing intact chloroplasts of pine cotyledons is presented with the aim of identifying a glutamine–glutamate translocator. Glutamine–glutamate exchange has been studied using the double silicone layer system, suggesting the existence of a translocator that imports glutamine into the chloroplast and exports glutamate to the cytoplasm. The translocator identified is specific for glutamine and glutamate, and the kinetic constants for both substrates indicate that it is unsaturated at intracellular concentrations. Thus, the experimental evidence obtained supports the model of the GS/GOGAT cycle in developing pine seedlings that accounts for the stoichiometric balance of metabolites. As a result, the efficient assimilation of free ammonia produced by photorespiration, nitrate reduction, storage protein mobilisation, phenylpropanoid pathway or S‐adenosylmethionine synthesis is guaranteed.  相似文献   

16.
The physiology of ammonia assimilation enzymes was examined inBacillus sp. FE-1, a thermophilic marine bacterium. Glutamine synthetase (GS) and glutamate synthase (GOGAT) activities varied with the nitrogen source present in the medium, ranging as much as 10-fold for the former and 2.5-fold for the latter. Glutamate dehydrogenase (GDH) was detected but, under the growth conditions studied, levels were not affected by the nitrogen source. Anaerobic growth in the presence of nitrate yielded enzyme levels that were not significantly different from those measured under aerobic growth. Partially purified GS exhibited a temperature optimum between 65° and 75°C. The enzyme's Mn2+-dependent reverse transferase activity was stimulated by K2SO4 and demonstrated some tolerance to NaCl. Hyperbolic kinetics were observed for ammonium, with an apparentK M of 1.0mm.  相似文献   

17.
Summary Nitrate assimilation in the first trifoliate leaf of vegetative soybean plants (Glycine max L. Merr, cv Hodgson) was studied in relation to nodulation. Nodulated and non-nodulated plants were grown in a nitrate medium (4 mM). As a control nodulated plants were grown in a nutrient medium without combined nitrogen. This study included measurements of the acetylene reduction activity of the whole plant and of thein vitro nitrate reductase, glutamine synthetase and glutamate dehydrogenase activities in the first leaf and of the nitrate concentration. Nitrate accumulation and nitrate reductase activity were depressed in nodulated plants; root growth was decreased in the presence of nitrate. The relationships between nitrate assimilation and nodulation are discussed.  相似文献   

18.
Fifteen genotypes of faba bean (Vicia faba L.) were inoculated with salt-tolerant Rhizobium leguminosarum biovar. viciae strain GRA 19 in solution culture with 0 (control) and 75 mM NaCl added immediately after transplanting. Genotypes varied in their tolerance of high levels of NaCl. Physiological parameters (dry weight of shoot and root, number and dry weight of nodules) were not affected by salinity in lines VF46, VF64 and VF112. Faba bean line VF60 was sensitive to salt stress. Host tolearance appeared to be a major requisite for nodulation and N2 fixation under salt stress. Tolerant line VF112 sustained nitrogen fixation under saline conditions. Activity of the ammonium assimilation enzymes glutamine synthetase and glutamate synthase, and soluble protein content, were reduced by salinity in all genotypes tested. Evidence presented here suggests a need to select faba bean genotypes that are tolerant to salt stress.Abbreviations ARA acetylene reduction activity - NADH-GOGAT NADH-dependent glutamate synthase - GS glutamine synthetase  相似文献   

19.
A L-methionine-D,L-sulfoximine-resistant mutant of the cyanobacterium Anabaena variabilis, strain SA1, excreted the ammonium ion generated from N2 reduction. In order to determine the biochemical basis for the NH4 +-excretion phenotype, glutamine synthetase (GS) was purified from both the parent strain SA0 and from the mutant. GS from strain SA0 (SA0-GS) had a pH optimum of 7.5, while the pH optimum for GS from strain SA1 (SA1-GS) was 6.8. SA1-GS required Mn+2 for optimum activity, while SA0-GS was Mg+2 dependent. SA0-GS had the following apparent K m values at pH 7.5: glutamate, 1.7 mM; NH4 +, 0.015 mM; ATP, 0.13 mM. The apparent K m for substrates was significantly higher for SA1-GS at its optimum pH (glutamate, 9.2 mM; NH4 +, 12.4 mM; ATP, 0.17 mM). The amino acids alanine, aspartate, cystine, glycine, and serine inhibited SA1-GS less severely than the SA0-GS. The nucleotide sequences of glnA (encoding glutamine synthetase) from strains SA0 and SA1 were identical except for a single nucleotide substitution that resulted in a Y183C mutation in SA1-GS. The kinetic properties of SA1-GS isolated from E. coli or Klebsiella oxytoca glnA mutants carrying the A. variabilis SA1 glnA gene were also similar to SA1-GS isolated from A. variabilis strain SA1. These results show that the NH4 +-excretion phenotype of A. variabilis strain SA1 is a direct consequence of structural changes in SA1-GS induced by the Y183C mutation, which elevated the K m values for NH4 + and glutamate, and thus limited the assimilation of NH4 + generated by N2 reduction. These properties and the altered divalent cation-mediated stability of A. variabilis SA1-GS demonstrate the importance of Y183 for NH4 + binding and metal ion coordination. Received: 3 July 2002 / Accepted: 29 July 2002  相似文献   

20.
The Km for ammonia for glutamine synthetase and glutamate dehydrogenase was measured in enzyme extracts from Skeletonema costatum (Grev.) Cleve. At similar physiological pH and temperature the half-saturation constant for glutamine synthetase was 29 μM, whereas for GDH it was 28mM. On the basis of relative enzymic activity, as well as substrate affinity, it is suggested that glutamine synthetase is the enzyme primarily responsible for the incorporation of ammonium into the amino acid pool, when extracellular nitrogen is at ecological concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号