共查询到20条相似文献,搜索用时 0 毫秒
1.
Bernhard Gerstmayer Michael Hoffmann U. Altenschmidt W. Wels 《Cancer immunology, immunotherapy : CII》1997,45(3-4):156-158
T cells require at least two signals for activation and clonal expansion. The first signal conferring specificity is initiated
by interaction of the T cell receptor with peptide-bearing MHC molecules. The second, costimulatory signal can be provided
by cell-surface molecules on antigen-presenting cells such as B7-1 (CD80) and B7-2 (CD86), which interact with CD28 on T cells.
To direct the costimulatory B7-2 molecule to the surface of tumor cells we have constructed a chimeric fusion protein, which
consists of the extracellular domain of human B7-2 fused to a single-chain antibody domain (scFv) specific for the ErbB2 protein,
a type I growth factor receptor overexpressed in a high percentage of human adenocarcinomas. This B7-2225-scFv(FRP5) molecule, expressed in the yeast Pichia pastoris and purified from culture supernatants, binds to B7 counter-receptors and to ErbB2. B7-2225-scFv(FRP5) localizes specifically to the surface of ErbB2-expressing target cells, thereby providing a costimulatory signal,
which results in enhanced proliferation of syngeneic T cells.
Accepted: 14 October 1997 相似文献
2.
3.
A chimeric respiratory syncytial virus fusion protein functionally replaces the F and HN glycoproteins in recombinant Sendai virus 下载免费PDF全文
Zimmer G Bossow S Kolesnikova L Hinz M Neubert WJ Herrler G 《Journal of virology》2005,79(16):10467-10477
Entry of most paramyxoviruses is accomplished by separate attachment and fusion proteins that function in a cooperative manner. Because of this close interdependence, it was not possible with most paramyxoviruses to replace either of the two protagonists by envelope glycoproteins from related paramyxoviruses. By using reverse genetics of Sendai virus (SeV), we demonstrate that chimeric respiratory syncytial virus (RSV) fusion proteins containing either the cytoplasmic domain of the SeV fusion protein or in addition the transmembrane domain were efficiently incorporated into SeV particles provided the homotypic SeV-F was deleted. In the presence of SeV-F, the chimeric glycoproteins were incorporated with significantly lower efficiency, indicating that determinants in the SeV-F ectodomain exist that contribute to glycoprotein uptake. Recombinant SeV in which the homotypic fusion protein was replaced with chimeric RSV fusion protein replicated in a trypsin-independent manner and was neutralized by antibodies directed to RSV-F. However, replication of this virus also relied on the hemagglutinin-neuraminidase (HN) as pretreatment of cells with neuraminidase significantly reduced the infection rate. Finally, recombinant SeV was generated with chimeric RSV-F as the only envelope glycoprotein. This virus was not neutralized by antibodies to SeV and did not use sialic acids for attachment. It replicated more slowly than hybrid virus containing HN and produced lower virus titers. Thus, on the one hand RSV-F can mediate infection in an autonomous way while on the other hand it accepts support by a heterologous attachment protein. 相似文献
4.
Joseph AP Agarwal G Mahajan S Gelly JC Swapna LS Offmann B Cadet F Bornot A Tyagi M Valadié H Schneider B Etchebest C Srinivasan N De Brevern AG 《Biophysical reviews》2010,2(3):137-147
Protein structures are classically described in terms of secondary structures. Even if the regular secondary structures have relevant physical meaning, their recognition from atomic coordinates has some important limitations such as uncertainties in the assignment of boundaries of helical and β-strand regions. Further, on an average about 50% of all residues are assigned to an irregular state, i.e., the coil. Thus different research teams have focused on abstracting conformation of protein backbone in the localized short stretches. Using different geometric measures, local stretches in protein structures are clustered in a chosen number of states. A prototype representative of the local structures in each cluster is generally defined. These libraries of local structures prototypes are named as "structural alphabets". We have developed a structural alphabet, named Protein Blocks, not only to approximate the protein structure, but also to predict them from sequence. Since its development, we and other teams have explored numerous new research fields using this structural alphabet. We review here some of the most interesting applications. 相似文献
5.
6.
Nonimmunodominant regions are effective as building blocks in a streptococcal fusion protein vaccine
Stålhammar-Carlemalm M Waldemarsson J Johnsson E Areschoug T Lindahl G 《Cell host & microbe》2007,2(6):427-434
Identification of antigens that elicit protective immunity is essential for effective vaccine development. We investigated the related surface proteins of group B Streptococcus, Rib and alpha, as potential vaccine candidates. Paradoxically, nonimmunodominant regions proved to be of particular interest as vaccine components. Mouse antibodies elicited by Rib and alpha were directed almost exclusively against the C-terminal repeats and not against the N-terminal regions. However, a fusion protein derived from the nonimmunodominant N-terminal regions of Rib and alpha was much more immunogenic than one derived from the repeats and was immunogenic even without adjuvant. Moreover, antibodies to the N-terminal fusion protein protected against infection and inhibited bacterial invasion of epithelial cells. Similarly, the N-terminal region of Streptococcus pyogenes M22 protein, which is targeted by opsonic antibodies, is nonimmunodominant. These data indicate that nonimmunodominant regions of bacterial antigens could be valuable for vaccine development. 相似文献
7.
8.
Angiogenin and ribonuclease A share 33% sequence identity but have distinct functions. Angiogenin is a potent inducer of angiogenesis that is only weakly ribonucleolytic, whereas ribonuclease A is a robust ribonuclease that is not angiogenic. A chimera ("ARH-I"), in which angiogenin residues 58-70 are replaced with residues 59-73 of ribonuclease A, has intermediate ribonucleolytic potency and no angiogenic activity. Here we report a crystal structure of ARH-I that reveals the molecular basis for these characteristics. The ribonuclease A-derived (guest) segment adopts a structure largely similar to that in ribonuclease A, and successfully converts this region from a cell-binding site to a purine-binding site. At the same time, its presence causes complex changes in the angiogenin-derived (host) portion that account for much of the increased ribonuclease activity of ARH-I. Guest-host interactions of this type probably occur more generally in protein chimeras, emphasizing the importance of direct structural information for understanding the functional behavior of such molecules. 相似文献
9.
10.
《Gene》1987,61(3):421-427
A fusion was constructed between the cex gene of Cellulomonas fimi, which encodes an exoglucanase, and the cenA gene of the same organism, which encodes an endoglucanase. The cex-cenA fusion was expressed in Escherichia coli to give a fusion protein with both exoglucanase and endoglucanase activities. The fusion protein, unlike the cex and the cenA gene products from E. coli, did not bind to microcrystalline cellulose, presumably because it lacked an intact substrate-binding region. The fusion protein was exported to the periplasm in E. coli. 相似文献
11.
A chimeric mitochondrial precursor protein with internal disulfide bridges blocks import of authentic precursors into mitochondria and allows quantitation of import sites 总被引:12,自引:8,他引:12 下载免费PDF全文
《The Journal of cell biology》1988,107(6):2037-2043
Bovine pancreatic trypsin inhibitor (which contains three intramolecular disulfide bridges) was chemically coupled to the COOH terminus of a purified artificial mitochondrial precursor protein. When the resulting chimeric precursor was presented to energized isolated yeast mitochondria, its trypsin inhibitor moiety prevented the protein from completely entering the organelle; the protein remained stuck across both mitochondrial membranes, with its NH2 terminus in the matrix and its trypsin inhibitor moiety still exposed on the mitochondrial surface. The incompletely imported protein appeared to "jam" mitochondrial protein import sites since it blocked import of three authentic mitochondrial precursor proteins; it did not collapse the potential across the mitochondrial inner membrane. Quantification of the inhibition indicated that each isolated mitochondrial particle contains between 10(2) and 10(3) protein import sites. 相似文献
12.
Mirza AM Aguilar HC Zhu Q Mahon PJ Rota PA Lee B Iorio RM 《The Journal of biological chemistry》2011,286(20):17851-17860
The fusion (F) proteins of Newcastle disease virus (NDV) and Nipah virus (NiV) are both triggered by binding to receptors, mediated in both viruses by a second protein, the attachment protein. However, the hemagglutinin-neuraminidase (HN) attachment protein of NDV recognizes sialic acid receptors, whereas the NiV G attachment protein recognizes ephrinB2/B3 as receptors. Chimeric proteins composed of domains from the two attachment proteins have been evaluated for fusion-promoting activity with each F protein. Chimeras having NiV G-derived globular domains and NDV HN-derived stalks, transmembranes, and cytoplasmic tails are efficiently expressed, bind ephrinB2, and trigger NDV F to promote fusion in Vero cells. Thus, the NDV F protein can be triggered by binding to the NiV receptor, indicating that an aspect of the triggering cascade induced by the binding of HN to sialic acid is conserved in the binding of NiV G to ephrinB2. However, the fusion cascade for triggering NiV F by the G protein and that of triggering NDV F by the chimeras can be distinguished by differential exposure of a receptor-induced conformational epitope. The enhanced exposure of this epitope marks the triggering of NiV F by NiV G but not the triggering of NDV F by the chimeras. Thus, the triggering cascade for NiV G-F fusion may be more complex than that of NDV HN and F. This is consistent with the finding that reciprocal chimeras having NDV HN-derived heads and NiV G-derived stalks, transmembranes, and tails do not trigger either F protein for fusion, despite efficient cell surface expression and receptor binding. 相似文献
13.
A bifunctional protein consisting of MutS, a mismatch binding protein and a beta-galactosidase reporter domain has been constructed. The fusion of beta-galactosidase to the MutS C-terminus was obtained by cloning the Escherichia coli lacZ gene encoding beta-galactosidase into a plasmid vector carrying the Thermus thermophilus mutS gene. Milligram amounts of this huge chimeric protein (217 kDa monomer) were purified from 1l of overexpressing E. coli cells using metal-chelate affinity chromatography. The mismatch binding properties of the fusion protein were confirmed by DNA mobility shift assay in polyacrylamide gels. Binding to biotinylated mismatched DNA immobilized on streptavidin microplates followed by colorimetric reaction with X-gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside), demonstrated both mismatch recognition and beta-galactosidase activity of the chimeric protein. The activity of beta-galactosidase domain of the fusion was similar to that of the native enzyme. A colorimetric assay for beta-galactosidase activity using X-Gal supplemented with NBT (nitro blue tetrazolium) allowed detection of 50 and 500 fmol of the chimeric protein with naked eye in 45 microl volumes after 120 and 15 min incubation, respectively. 相似文献
14.
15.
Using protein engineering, a tripartite fusion protein was constructed consisting of five IgG-binding regions of protein A from Staphylococcus aureus, two IgG-binding regions of protein G from Streptococcus strain G148 and beta-galactosidase from Escherichia coli. The resulting protein lacks the serum albumin binding regions of native protein G. The fusion protein, which is a tetramer of approximately 660 kDa, was designed as a tool for immunological assays taking advantage of its broad spectrum of antibody affinity. The gene was placed under control of two promoters, the PR promoter and the lac UV5 promoter and the expression from the two promoters was studied in a bioreactor. Induction of the PR promoter gave an intracellular product concentration corresponding to 20% of the cell dry weight. By utilizing the properties of beta-galactosidase, the protein was purified by extraction in an aqueous two-phase system. The fusion protein was not proteolytically degraded during the cultivation and purification steps. The biological activity of all three parts of the protein was demonstrated with a competitive ELISA. 相似文献
16.
Several kinds of fusion proteins between human aldolases A and B were prepared by recombinant DNA technology and their enzymic properties were examined. AB chimeras, which have aldolase A at the N-terminal region and aldolase B at the C-terminal region, were scarcely obtained, while BA chimeras were abundant (Kitajima et al., (1990), J. Biol. Chem., 265, 17493-17498). All the BAB chimeras, aldolase A fragments inserted in aldolase B, showed activity assignable to aldolase B type, which imply an essential role of Tyr residue at the C-terminus of aldolase A in the binding of fructose-1,6-bisphosphate (Fru-1,6-P2). BAB chimeras also showed reactivity to effectors such as fructose-2,6-bisphosphate (Fru-2,6-P2) and pyridoxal 5-phosphate (PLP), in a similar manner to aldolase B. BAB108 has a similarity to the BA108 chimera, but acts differently from other BAB chimeras, suggesting that its structure around active site looks like that of aldolase A. 相似文献
17.
Multimerization of a chimeric anti-CD20 single-chain Fv-Fc fusion protein is mediated through variable domain exchange. 总被引:4,自引:0,他引:4
A M Wu G J Tan M A Sherman P Clarke T Olafsen S J Forman A A Raubitschek 《Protein engineering》2001,14(12):1025-1033
A series of single-chain anti-CD20 antibodies was produced by fusing single-chain Fv (scFv) with human IgG1 hinge and Fc regions, designated scFv-Fc. The initial scFv-Fc construct was assembled using an 18 amino acid (aa) linker between the antibody light- and heavy-chain variable regions, with the Cys residue in the upper hinge region (Kabat 233) mutagenized to Ser. Anti-CD20 scFv-Fc retained specific binding to CD20-positive cells and was active in mediating complement-dependent cytolysis. Size-exclusion HPLC analysis revealed that the purified scFv-Fc included multimeric as well as monomeric components. Variant scFv-Fcs were constructed incorporating four different hinges between the scFv and Fc regions, or three different linkers in the scFv domain. All formed multimers, with the highest level of multimerization found in the scFv-Fc with the shortest linker (8 aa). Elimination of an unusual salt bridge between residues L38 and H89 in the V(L)-V(H) domain interface failed to reduce the formation of higher order forms. Structural analysis of the scFv-Fc constructed with 18 or 8 aa linkers by pepsin or papain cleavage suggested the proteins contained a form in which scFv units had cross-paired to form a 'diabody'. Thus, domain exchange or cross-pairing appears to be the basis of the observed multimerization. 相似文献
18.
Liu J Stevens J Matsunami N White RL 《Biochemical and biophysical research communications》2004,313(4):1023-1029
Adenomatous polyposis coli (APC) tumor suppressor protein, together with Axin and glycogen synthase kinase 3beta (GSK-3beta), forms a Wnt-regulated signaling complex that mediates phosphorylation-dependent degradation of cytoplasmic beta-catenin by ubiquitin-dependent proteolysis. Degradation of phosphorylated beta-catenin is initiated by interaction through the WD40-repeat of a F-box protein beta-TrCP, a component of SCF ubiquitin ligase complex. Mutations in APC, Axin, and beta-catenin that prevent down-regulation of cytoplasmic beta-catenin are found in various types of cancers. In the search for efficient treatment and prevention of malignancies associated with increased levels of cytoplasmic beta-catenin, we created chimeric F-box fusion proteins by replacing the WD40-repeat of beta-TrCP with the beta-catenin-binding domains of Tcf4 and E-cadherin. Expression of chimeric F-box fusion proteins successfully promotes degradation of beta-catenin independently of GSK-3beta-mediated phosphorylation. More importantly, this degradation does not require intact APC protein (pAPC). 相似文献
19.
To enable large-scale antibody production, the creation of a stable, high producer cell line is essential. This process often takes longer than 6 months using standard limited dilution techniques and is very labor intensive. The use of a tri-cistronic vector expressing green fluorescent protein (GFP) and both antibody chains, separated by a GT2A peptide sequence, allows expression of all proteins under a single promotor in equimolar ratios. By combining the advantages of 2A peptide cleavage and single cell sorting, a chimeric antibody-antigen fusion protein that contained the variable domains of mouse IgG with a porcine IgA constant domain fused to the FedF antigen could be produced in CHO-K1 cells. After transfection, a strong correlation was found between antibody production and GFP expression (r = 0.69) using image analysis of formed monolayer patches. This enables the rapid selection of GFP-positive clones using automated image analysis for the selection of high producer clones. This vector design allowed the rapid selection of high producer clones within a time-frame of 4 weeks after transfection. The highest producing clone had a specific antibody productivity of 2.32 pg/cell/day. Concentrations of 34 mg/L were obtained using shake-flask batch culture. The produced recombinant antibody showed stable expression, binding and minimal degradation. In the future, this antibody will be assessed for its effectiveness as an oral vaccine antigen. 相似文献
20.