首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bak Foong pill (BFP) is a well-known traditional Chinese medicine used for treatment of various gynaecological disorders. In addition, it exerts beneficial effects on other functional systems including the central nervous system. In the present study, we have investigated the possible neuroprotective action of BFP upon the nigrostriatal dopaminergic system by examining its effect on the expression patterns of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the 1-methyl-4-phenyl-1,2,3,6-tetrahyrdropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. MPTP significantly decreased TH and DAT mRNA levels in the striatum and midbrain of both female and male C57BL/6 mice. However, with BFP pre-treatment mice showed a reduced neurotoxicity, with TH and DAT mRNA levels either not affected by MPTP or affected to a lesser extent in the midbrain and striatum when compared to vehicle treated animals. Possible anti-apoptotic activity of BFP was further studied in a dopamine-secreting neuroendocrine cell line, PC12. In this assay, MPTP elevated the expression of a pro-apoptotic gene, Bax, while this expression was reduced by BFP pre-treatment. Flow cytometry results also revealed that the effect of MPTP-induced apoptosis in PC12 cell lines was significantly reduced by BFP. The present results suggest that BFP is able to protect dopaminergic neurons from neurotoxin-induced neuronal injury with anti-apoptotic activity being one of the possible mechanisms.  相似文献   

2.
3.
Although cystic fibrosis transmembrane conductance regulator (CFTR) has been shown to be expressed in the female reproductive tract, its functional role in the uterus is not fully understood. The present study investigated a possible physiological role of CFTR by comparing the effects of 17beta-oestradiol and Bak Foong Pill (BFP), an over-the-counter Chinese medicine used for centuries for the treatment of various gynaecological disorders, on uterus size and the expression of CFTR in the uterus of ovariectomised mice using RT-PCR. Treatment of ovariectomised mice with 17beta-oestradiol (0.2 mg/kg, p.o.) for 12 days caused a significant increase in uterine wet weight compared to vehicle. However, treatment with BFP (3 g/kg, p.o.) for the same period failed to increase uterine wet weight, indicating a lack of direct oestrogen-like activity of BFP. Analysis of CFTR mRNA expression in the harvested uteri using RT-PCR showed that both 17beta-oestradiol and BFP induced an increase in CFTR mRNA expression in mouse uteri compared to levels observed in vehicle-treated animals. These results suggest that CFTR can be upregulated by oestrogen and BFP, however, the effect exerted by BFP does not seem to be mediated by direct oestrogen-like activity. Regulation of CFTR expression by both oestrogen and gynaecological medication BFP indicates an important role of CFTR in reproductive functions.  相似文献   

4.
Oxidative stress has been shown to mediate neuron damage in Parkinson's disease (PD). In the present report, we intend to clarify the intracellular pathways mediating dopaminergic neuron death after oxidative stress production using post-mitotic PC12 cells treated with the neurotoxin 6-hydroxydopamine (6-OHDA). The use of post-mitotic cells is crucial, because one of the suggested intracellular pathways implicated in neuron death relates to the re-entry of neurons (post-mitotic cells) in the cell cycle. We find that 6-OHDA sequentially increases intracellular oxidants, functional cell damage and caspase-3 activation, leading to cell death after 12 h of incubation. Prevention of cell damage by different antioxidants supports the implication of oxidative stress in the observed neurotoxicity. Oxidative stress-dependent phosphorylation of the MAPK JNK and oxidative stress-independent PKB/Akt dephosphorylation are involved in 6-OHDA neurotoxicity. Decrease in p21(WAF1/CIP1) and cyclin-D1 expression, disappearance of the non-phosphorylated band of retinoblastoma protein (pRb), and expression of proliferating cell nuclear antigen, not present in PC12 post-mitotic cells, suggest a re-entry of differentiated cells into cell cycle. Our results indicate that such a re-entry is mediated by oxidative stress and is involved in 6-OHDA-induced cell death. We conclude that at least three intracellular pathways are involved in 6-OHDA-induced cell death in differentiated PC12 cells: JNK activation, cell cycle progression (both oxidative stress-dependent), and Akt dephosphorylation (not related to the increase of oxidants); the three pathways are necessary for the cells to die, since blocking one of them is sufficient to keep the cells alive.  相似文献   

5.
Since contractility of the uterus appears to be the major source of pain during dysmenorrhoea, alleviation of the contractions is believed to be a possible treatment strategy. Bak Foong Pills, a traditional Chinese formulation for use in gynaecological disorders, has long been thought as effective in the treatment of dysmenorrhoeal symptoms. The present study thus aims to investigate whether ethanol extract of Bak Foong Pills (BFP-Ex) or its constituent herbs may have direct effects on alleviating dysmenorrhoeal symptoms by altering uterine tone. This was investigated using isolated uterine preparations and intracellular messenger analysis of adenylate cyclase, via [3H]-adenine assay, and calcium, with fluorometry imaging, in myometrial cultures. BFP-Ex can stimulate uterine relaxation following oxytocin-induced contractions ex-vivo. Attempted inhibition of BFP-Ex's relaxatory response with a nitric oxide inhibitor and adenylate cyclase inhibitor, however, had no significant effect, suggesting that most of BFP-Ex's relaxatory response was not due to increases in NO or cAMP. Further studies on tetramethylpyrazine (TMP), a major active ingredient of BFP-Ex, indicated that TMP could modulate intracellular calcium levels in favour of uteri relaxation. The ability of Bak Foong Pills to alleviate menstrual pain may be due to direct regulation of uterine tone.  相似文献   

6.
The present study examined the effect of Bak Foong Pills (BFP), an over-the-counter traditional Chinese medicine (China registration no. Z980035), on anion secretion and the underlying signaling pathways in normal and cystic fibrosis pancreatic duct cell lines, CAPAN-1 and CFPAC-1, respectively, using the short-circuit current technique. Apical addition of BFP ethanol extract (600 microg/ml) induced a fast transient I(SC) peak that was followed by a slower but more sustained increase in I(SC) in CAPAN-1 cells. However, the response to BFP in CFPAC-1 was predominantly the first transient peak. Apical addition of DIDS (200 microM) inhibited the first peak by more than 60% in both cell lines without significantly affecting the second I(SC) rise. More than 85% of the BFP-induced first transient in both cell lines was inhibited when extra and intracellular Ca(2+) was chelated or emptied by pre-treatment with BAPTA (100 microM) and thapsigargin (10 microM), respectively. Acute addition of PMA (1 microM), a PKC activator, blocked more than 95% of the BFP-induced first peak in both cell lines, consistent with previously reported PKC modulation of Ca(2+)-dependent pancreatic anion secretion. The BFP-induced second I(SC) rise in CAPAN-1 could be inhibited by 73.6% and 71.13% by pretreatment of the cells with MDL-12330A (20 microM), an adenylate cyclase inhibitor and Rp-cAMP (200 microM), a cyclic AMP antagonist, respectively. However, less than 25% of the I(SC) was inhibited by combined treatment with BAPTA and thapsigargin. The second rise was also completely blocked by DPC (2mM) or Glibenclamide (1mM). The results indicate that BFP ethanol extract stimulates pancreatic duct anion secretion in normal and CF cells via different signaling pathways involving both Ca(2+) and cAMP.  相似文献   

7.
Abstract: The neurotoxin 6-hydroxydopamine (6-OHDA) induces apoptosis in the rat phaeochromocytoma cell line PC12. 6-OHDA-induced apoptosis is morphologically indistinguishable from serum deprivation-induced apoptosis. Exposure of PC12 cells to a low concentration of 6-OHDA (25 µ M ) results in apoptosis, whereas an increased concentration (50 µ M ) results in a mixture of apoptosis and necrosis. We investigated the involvement of caspases in the apoptotic death of PC12 cells induced by 6-OHDA, using a general caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), and compared this with serum deprivation-induced apoptosis, which is known to involve caspases. We show that zVAD-fmk (100 µ M ) completely prevented the apoptotic morphology of chromatin condensation induced by exposure to either 6-OHDA (25 and 50 µ M ) or serum deprivation. Furthermore, cell lysates from 6-OHDA-treated cultures showed cleavage of a fluorogenic substrate for caspase-3-like proteases (caspase-2, 3, and 7), acetyl-Asp-Glu-Val-Asp-aminomethylcoumarin, and this was inhibited by zVAD-fmk. However, although zVAD-fmk restored total cell viability to serum-deprived cells or cells exposed to 25 µ M 6-OHDA, the inhibitor did not restore viability to cells exposed to 50 µ M 6-OHDA. These data show the involvement of a caspase-3-like protease in 6-OHDA-induced apoptosis and that caspase inhibition is sufficient to rescue PC12 cells from the apoptotic but not the necrotic component of 6-OHDA neurotoxicity.  相似文献   

8.
DY Lu  CS Chang  WL Yeh  CH Tang  CW Cheung  YM Leung  JF Liu  KL Wong 《Phytomedicine》2012,19(12):1093-1100
Prenyl-phloroglucinol derivatives from hop plants have been shown to have anticancer activities. This study is the first to investigate the anticancer effects of the new phloroglucinol derivative (2,4-bis(4-fluorophenylacetyl)phloroglucinol; BFP). BFP induced cell death and anti-proliferation in three glioma, U251, U87 and C6 cells, but not in primary human astrocytes. BFP-induced concentration-dependently cell death in glioma cells was determined by MTT and SRB assay. Moreover, BFP-induced apoptotic cell death in glioma cells was measured by Hochest 33258 staining and fluorescence-activated cell sorter (FACS) of propidine iodine (PI) analysis. Treatment of U251 human glioma cells with BFP was also found to induce reactive oxygen species (ROS) generation, which was detected by a fluorescence dye used FACS analysis. Treatment of BFP also increased a number of signature endoplasmic reticulum (ER) stress markers glucose-regulated protein (GRP)-78, GRP-94, IRE1, phosphorylation of eukaryotic initiation factor-2α (eIF-2α) and up-regulation of CAAT/enhancer-binding protein homologous protein (CHOP). Moreover, treatment of BFP also increased the down-stream caspase activation, such as pro-caspase-7 and pro-caspase-12 degradation, suggesting the induction of ER stress. Furthermore, BFP also induced caspase-9 and caspase-3 activation as well as up-regulation of cleaved PARP expression. Treatment of antioxidants, or pre-transfection of cells with GRP78 or CHOP siRNA reduced BFP-mediated apoptotic-related protein expression. Taken together, the present study provides evidences to support that ROS generation, GRP78 and CHOP activation are mediating the BFP-induced human glioma cell apoptosis.  相似文献   

9.
Cellular stress may stimulate cell survival pathways or cell death depending on its severity. 6-Hydroxydopamine (6-OHDA) is a neurotoxin that targets dopaminergic neurons that is often used to induce neuronal cell death in models of Parkinson's disease. Here we present evidence that 6-OHDA induces apoptosis in rat PC12 cells that involves release of cytochrome c and Smac/Diablo from mitochondria, caspase-3 activation, cleavage of PARP, and nuclear condensation. 6-OHDA also induced the heat shock response, leading to increased levels of Hsp25 and Hsp70. Increased Hsp25 expression was associated with cell survival. Prior heat shock or overexpression of Hsp27 (human homologue of Hsp25) delayed cytochrome c release, caspase activation, and reduced the level of apoptosis caused by 6-OHDA. We conclude that 6-OHDA induces a variety of responses in cultured PC12 cells ranging from cell survival to apoptosis, and that induction of stress proteins such as Hsp25 may protect cells from undergoing 6-OHDA-induced apoptosis.  相似文献   

10.
Zhu JX  Chan HC 《生理学报》2007,59(4):477-486
中药是我们祖国的宝藏,有着两千多年的历史。它具有维护机体健康、预防、缓解以及治疗疾病等作用。虽然白凤丸被用来治疗妇科疾患已有很久历史,但它目前也被作为天然保健品而广泛使用。越来越多的研究表明白凤丸对机体多系统、多器官功能具有调节作用。本文对白凤丸及其主要活性成分对机体功能的调节,尤其是对胃肠道上皮细胞离子转运功能的影响以及作用机制进行综述。  相似文献   

11.
The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely used to generate an experimental model of Parkinson's disease. It has been reported that reactive oxygen species (ROS), such as the superoxide anion and hydrogen peroxide (H2O2), generated from 6-OHDA are involved in its cytotoxicity; however, the contribution and role of ROS in 6-OHDA-induced cell death have not been fully elucidated. In the present study using PC12 cells, we observed the generation of 50 microM H2O2 from a lethal concentration of 100 microM 6-OHDA within a few minutes, and compared the sole effect of H2O2 with 6-OHDA. Catalase, an H2O2-removing enzyme, completely abolished the cytotoxic effect of H2O2, while a significant but partial protective effect was observed against 6-OHDA. 6-OHDA induced peroxiredoxin oxidation, cytochrome c release, and caspase-3 activation. Catalase exhibited a strong inhibitory effect against the peroxiredoxin oxidation, and cytochrome c release induced by 6-OHDA; however, caspase-3 activation was not effectively inhibited by catalase. On the other hand, 6-OHDA-induced caspase-3 activation was inhibited in the presence of caspase-8, caspase-9, and calpain inhibitors. These results suggest that the H2O2 generated from 6-OHDA plays a pivotal role in 6-OHDA-induced peroxiredoxin oxidation, and cytochrome c release, while H2O2- and cytochrome c-independent caspase activation pathways are involved in 6-OHDA-induced neurotoxicity. These findings may contribute to explain the importance of generated H2O2 and secondary products as a second messenger of 6-OHDA-induced cell death signal linked to Parkinson's disease.  相似文献   

12.
Bacterial lipopolysaccharide (LPS) is an important mediator of inflammation and a potent inducer of endothelial cell damage and apoptosis. In this study, we investigated the protective effects of saikosaponin C (SSc), one of the active ingredients produced by the traditional Chinese herb, Radix Bupleuri, against LPS-induced apoptosis in human umbilical endothelial cells (HUVECs). LPS triggered caspase-3 activation, which was found to be important in LPS-induced HUVEC apoptosis. Inhibition of caspase-3 also inhibited LPS-induced degradation of focal adhesion kinase (FAK), indicating that caspase-3 is important in LPS-mediated FAK degradation as well as in apoptosis in HUVECs. SSc significantly inhibited LPS-induced apoptotic cell death in HUVECs through the selective suppression of caspase-3. SSc was also shown to rescue LPS-induced FAK degradation and other cell adhesion signals. Furthermore, the protective effects of SSc against LPS-induced apoptosis were abolished upon pretreatment with a FAK inhibitor, highlighting the importance of FAK in SSc activity. Taken together, these results show that SSc efficiently inhibited LPS-induced apoptotic cell death via inhibition of caspase-3 activation and caspase-3-mediated-FAK degradation. Therefore, SSc represents a promising therapeutic candidate for the treatment of vascular endothelial cell injury and cellular dysfunction.  相似文献   

13.
BACKGROUND: Previous work has shown that teratogens such as hyperthermia (HS), 4-hydroperoxycyclophosphamide (4CP), and staurosporine (ST) induce cell death in day 9 mouse embryos by activating the mitochondrial apoptotic pathway. Key to the activation of this pathway is the activation of a caspase cascade involving the cleavage-induced activation of an initiator procaspase, caspase-9, and the downstream effector procaspase, caspase-3. For example, procaspase-3, an inactive proenzyme of 32 kDa is cleaved by activated caspase-9 to generate a large subunit of approximately 17 kDa and a small subunit of approximately 10 kDa. In turn, caspase-3 is known to target a variety of cellular proteins for proteolytic cleavage as part of the process by which dying cells are eliminated. Previous work has also shown that neuroepithelial cells are sensitive to teratogen-induced activation of this pathway and subsequent cell death whereas cells of the heart are resistant. Although caspase-3 is a key effector caspase activated by teratogens, two other effector caspases, caspase-6 and caspase-7, are known; however, their role in teratogen-induced cell death is unknown. METHODS: Because cleavage-induced generation of specific subunits is the most specific assay for activation of caspases, we have used antibodies that recognize the procaspase and one of its active subunits and a Western blot approach to assess the activation of caspase-6 and caspase-7 in day 9 mouse embryos (or heads, hearts and trunks isolated from whole embryos) exposed to HS, 4CP, and ST. To probe the relationship between teratogen-induced activation of caspase-9/caspase-3 and the activation of caspase-6/caspase-7, we used a mitochondrial-free embryo lysate with or without the addition of cytochrome c, recombinant active caspase-3, or recombinant active caspase-9. RESULTS: Western blot analyses show that these three teratogens, HS, 4CP, and ST, induce the activation of procaspase-6 (appearance of the 13 kDa subunit, p13) and caspase-7 (appearance of the 19 kDa subunit, p19) in day 9 mouse embryos. In vitro studies showed that both caspase-6 and caspase-7 could be activated by the addition of cytochrome c to a lysate prepared from untreated embryos. In addition, caspase-6 could be activated by the addition of either recombinant caspase-3 or caspase-9 to a lysate prepared from untreated embryos. In contrast, caspase-7 could be activated by addition of recombinant caspase-3 but only minimally by recombinant caspase-9. Like caspase-9/caspase-3, caspase-6 and caspase-7 were not activated in hearts isolated from embryos exposed to these three teratogens. CONCLUSIONS: HS, 4CP and ST induce the cleavage-dependent activation of caspase-6 and caspase-7 in day 9 mouse embryos. Results using DEVD-CHO, a caspase-3 inhibitor, suggest that teratogen-induced activation of caspase-6 is mediated by caspase-3. In addition, our data suggest that caspase-7 is activated primarily by caspase-3; however, we cannot rule out the possibility that this caspase is also activated by caspase-9. Finally, we also show that teratogen-induced activation of caspase-6 and caspase-7 are blocked in the heart, a tissue resistant to teratogen-induced cell death.  相似文献   

14.
Defects in mitochondrial function have been shown to participate in the induction of neuronal cell injury. The aim of the present study was to assess the influence of the mitochondrial membrane permeability transition inhibition against the toxicity of 1-methyl-4-phenylpyridinium (MPP+) and 6-hydroxydopamine (6-OHDA) in relation to the mitochondria-mediated cell death process and role of oxidative stress. Both MPP+ and 6-OHDA induced the nuclear damage, the changes in the mitochondrial membrane permeability, leading to the cytochrome c release and caspase-3 activation, the formation of reactive oxygen species and the depletion of GSH in differentiated PC12 cells. Cyclosporin A (CsA), trifluoperazine and aristolochic acid, inhibitors of mitochondrial permeability transition, significantly attenuated the MPP+-induced mitochondrial damage leading to caspase-3 activation, increased oxidative stress and cell death. In contrast to MPP+, the cytotoxicity of 6-OHDA was not reduced by the addition of the mitochondrial permeability transition inhibitors. The results show that the cytotoxicity of MPP+ may be mediated by the mitochondrial permeability transition formation, which is associated with formation of reactive oxygen species and the depletion of GSH. In contrast, the 6-OHDA-induced cell injury appears to be mediated by increased oxidative stress without intervention of the mitochondrial membrane permeability transition.  相似文献   

15.
Previously, we have found that caspase-1 activity is increased during myoblast differentiation to myotubes. Here we show that caspase-1 activity is required for PC12 differentiation to neuronal-like cells. Caspase-1 is shown to be activated (by immunoblotting and by assessing activity in cell extracts) in the PC12 cells following the initial stage of differentiation. The inhibition of caspase-1 arrests PC12 cells at an intermediate stage of differentiation and prevents neurite outgrowth in these cells; the inhibition is reversed upon the removal of the inhibitor. Calpastatin (calpain endogenous specific inhibitor, and a known caspase substrate) is diminished at the later stages of PC12 cell differentiation, and diminution is prevented by caspase-1 inhibition. The degradation of fodrin (a known caspase and calpain substrate) is found in the advanced stage of differentiation. Caspase-1 has been implicated in the activation of proinflammatory cytokines, and in cell apoptosis. The involvement of caspase-1 in two distinct differentiation processes (myoblast fusion and neuronal differentiation of PC12 cells) indicates a function for this caspase in differentiation processes, and suggests some common mechanisms underlying caspase roles in such processes.  相似文献   

16.
17.
Zhang W  Wang X  Chen T 《Cellular signalling》2012,24(5):1037-1046
Our recent study have shown that resveratrol (RV), a natural plant polyphenol found in red grape skins as well as other food product, induced apoptosis via the downstream factors, caspase-independent AIF and to lesser extent caspase-9, of intrinsic apoptosis pathway in human lung adenocarcinoma (ASTC-a-1) cells. This report is designed to explore the roles of the upstream mediators of the intrinsic pathway, such as Bak/Bax, Bim, Puma and Noxa, during RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1 and A549) cell lines. RV treatment remarkably induced the activation of Bak but not Bax, and silencing Bak but not Bax by shRNA almost completely prevented RV-induced cell death, mitochondrial dysfunction and also largely prevented RV-induced AIF release, demonstrating the preferential engagement of Bak but not Bax during RV-induced apoptosis. In addition, although RV treatment induced a significant degradation of Mcl-1, knockdown of Mcl-1 by shRNA only modestly increased RV-induced Bak activation. Interestingly, silencing Bim but not Puma and Noxa remarkably attenuated RV-induced cell death, loss of mitochondrial membrane potential, and Bak activation, suggesting the important roles of Bim. Collectively, our findings for the first time demonstrate that RV induces apoptosis dominantly via a Bak- but not Bax-mediated AIF-dependent mitochondrial apoptotic signaling pathway in which Bim but not Puma and Noxa may supply the force to trigger Bak activation and subsequent apoptosis in both ASTC-a-1 and A549 cell lines.  相似文献   

18.
Caspase-2 is an initiating caspase required for stress-induced apoptosis in various human cancer cells. Recent studies suggest that it can mediate the death function of tumor suppressor p53 and is activated by a multimeric protein complex, PIDDosome. However, it is not clear how caspase-2 exerts its apoptotic function in cells and whether its enzymatic activity is required for the apoptotic function. In this study, we used both in vitro mitochondrial cytochrome c release assays and cell culture apoptosis analyses to investigate the mechanism by which caspase-2 induces apoptosis. We show that active caspase-2, but neither a catalytically mutated caspase-2 nor active caspase-2 with its inhibitor, can cause cytochrome c release. Caspase-2 failed to induce cytochrome c release from mitochondria with Bid(-/-) background, and the release could be restored by addition of the wild-type Bid protein, but not by Bid with the caspase-2 cleavage site mutated. Caspase-2 was not able to induce cytochrome c release from Bax(-/-)Bak(-/-) mitochondria either. In cultured cells, gene deletion of Bax/Bak or Bid abrogated apoptosis induced by overexpression of caspase-2. Collectively, these results indicate that proteolytic activation of Bid and the subsequent induction of the mitochondrial apoptotic pathway through Bax/Bak is essential for apoptosis triggered by caspase-2.  相似文献   

19.
One of the hallmarks of Parkinson's disease (PD) is pathological structure, termed Lewy body, containing inclusions of ubiquitinated proteins in the dopaminergic neurons in the substantia nigra. The mechanism leading to the formation of these aggregates is unclear, although it has been shown that mutations in alpha-synuclein or in the ubiquitin-related enzyme UCH-L1 might induce such protein aggregation. We, therefore, examined the possible role of 6-hydroxydopamine (6-OHDA), a dopaminergic neurotoxin used in PD experimental models, in causing protein degradation and its association with the ubiquitin system. Using antiubiquitin antibodies we found that exposure of SH-SY5Y neuroblastoma and PC-12 cell lines to 6-OHDA increased the levels of free ubiquitin and ubiquitin-conjugated proteins, in a dose-dependent manner. Furthermore, metabolic labeling with 35S-methionine, demonstrated that 6-OHDA markedly increased protein degradation, as indicated by the secretion of protein metabolites to the medium. Inhibition of the proteasome activity by the specific inhibitor MG132, attenuated the protein degradation induced by 6-OHDA and potentiated its toxicity. Administration of the antioxidant N-acetylcysteine to the 6-OHDA-treated cells, increased cell survival and reduced protein degradation. In conclusion, our findings suggest that 6-OHDA toxicity is associated with protein degradation and ubiquitin–proteasome system activation.  相似文献   

20.
Polyphenol phytoalexin (resveratrol), found in grapes and red wine is a strong chemopreventive agent with promising safety records with human consumption and unique forms of cell death induction in a variety of tumor cells. However, the mechanism of resveratrol-induced apoptosis upstream of mitochondria is still not defined. The results from this study suggest that caspase-2 activation occurs upstream of mitochondria in resveratrol-treated cells. The upstream activation of caspase-2 is not dependent on its antioxidant property or NF-kappaB inhibition. The activated caspase-2 triggers mitochondrial apoptotic events by inducing conformational changes in Bax/Bak with subsequent release of cytochrome c, apoptosis-inducing factor, and endonuclease G. Caspase-8 activation seems to be independent of these events and does not appear to be mediated by classical death receptor processing or downstream caspases. Both caspase-2 and caspase-8 contribute toward the mitochondrial translocation of Bid, since neither caspase-8 inhibition nor caspase-2 inhibition could prevent translocation of Bid DsRed into mitochondria. Caspase-2 inhibitors or antisense silencing of caspase-2 prevented cell death induced by resveratrol and partially prevented processing of downstream caspases, including caspase-9, caspase-3, and caspase-8. Studies using mouse embryonic fibroblasts deficient for both Bax and Bak indicate the contribution of both Bax and Bak in mediating cell death induced by resveratrol and the existence of Bax/Bak-independent cell death possibly through caspase-8- or caspase-2-mediated mitochondria-independent downstream caspase processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号