首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The energy demand of running on a treadmill was studied in different groups of trained athletes of both sexes. We have not found any significant differences in the net energy cost (C) during running (expressed in J.kg-1.m-1) between similarly trained groups of men and women. For men and women respectively in adult middle distance runners C = 3.57 +/- 0.15 and 3.65 +/- 0.20, in adult long-distance runners C = 3.63 +/- 0.18 and 3.70 +/- 0.21, in adult canoeists C = 3.82 +/- 0.34 and 3.80 +/- 0.24, in young middle-distance runners C = 3.84 +/- 0.18 and 3.78 +/- 0.26 and in young long-distance runners C = 3.85 +/- 0.12 and 3.80 +/- 0.24. This similarity may be explained by the similar training states of both sexes, resulting from the intense training which did not differ in its relative intensity and frequency between the groups of men and women. A negative relationship was found between the energy cost of running and maximal oxygen uptake (VO2max) expressed relative to body weight (for men r = -0.471, p less than 0.001; for women r = -0.589, p less than 0.001). In contrast, no significant relationship was found in either sex between the energy cost of running and VO2max. We conclude therefore that differences in sports performance between similarly trained men and women are related to differences in VO2max.kg-1. The evaluation of C as an additional characteristic during laboratory tests may help us to ascertain, along with other parameters, not only the effectiveness of the training procedure, but also to evaluate the technique performed.  相似文献   

2.
Energy cost of front-crawl swimming in women   总被引:1,自引:0,他引:1  
The purpose of this study was to examine the relationship between the energy cost of swimming per unit distance (Cs) at different velocities (v) and performance level, body size and swimming technique in women. A total of 58 females swimmers were studied. Three performance levels (A, B, C) were determined, ranging from the slower (A) to the faster (B, C). At level C and at 1.1 m.s-1, Cs,1.1 was reduced by 7% when directly compared to level B. The Cs,1.1 was reduced by 10% when calculated per unit of height (h) and by 37% when calculated per unit of h and hydrostatic lift (HL). For the whole group of swimmers, the equation regression was Cs,1.1 = 0.27 h-2.38 HL - 7.5 (r = 0.53, P less than 0.01). To evaluate the specific influence of arm length two groups of long- and short-armed swimmers were selected among swimmers of similar h and performance. The Cs was significantly higher (P less than 0.05) by 12%, SD 2.2%, for short-armed than for long-armed swimmers. To evaluate the influence of different types of swimming technique, two other groups of similar performance and anthropometric characteristics were selected. The Cs was significantly higher (P less than 0.05) by 12%, SD 4.5% for swimmers using for preference their legs rather than their arms. The Cs of the sprinters was 15.7%, SD 2% higher than that of the long-distance swimmers. For all groups, Cs increased with v on average by 8% to 11% every 0.1 m.s-1. These findings showed that Cs variations of these women were close to those previously demonstrated for men. The Cs depends on performance level, body size, buoyancy, swimming technique and v.  相似文献   

3.
The energy cost of kayaking per unit distance (C(k), kJ x m(-1)) was assessed in eight middle- to high-class athletes (three males and five females; 45-76 kg body mass; 1.50-1.88 m height; 15-32 years of age) at submaximal and maximal speeds. At submaximal speeds, C(k) was measured by dividing the steady-state oxygen consumption (VO(2), l x s(-1)) by the speed (v, m x s(-1)), assuming an energy equivalent of 20.9 kJ x l O(-1)(2). At maximal speeds, C(k) was calculated from the ratio of the total metabolic energy expenditure (E, kJ) to the distance (d, m). E was assumed to be the sum of three terms, as originally proposed by Wilkie (1980): E = AnS + alphaVO(2max) x t-alphaVO(2max) x tau(1-e(-t x tau(-1))), were alpha is the energy equivalent of O(2) (20.9 kJ x l O(2)(-1)), tau is the time constant with which VO(2max) is attained at the onset of exercise at the muscular level, AnS is the amount of energy derived from anaerobic energy utilization, t is the performance time, and VO(2max) is the net maximal VO(2). Individual VO(2max) was obtained from the VO(2) measured during the last minute of the 1000-m or 2000-m maximal run. The average metabolic power output (E, kW) amounted to 141% and 102% of the individual maximal aerobic power (VO(2max)) from the shortest (250 m) to the longest (2000 m) distance, respectively. The average (SD) power provided by oxidative processes increased with the distance covered [from 0.64 (0.14) kW at 250 m to 1.02 (0.31) kW at 2000 m], whereas that provided by anaerobic sources showed the opposite trend. The net C(k) was a continuous power function of the speed over the entire range of velocities from 2.88 to 4.45 m x s(-1): C(k) = 0.02 x v(2.26) (r = 0.937, n = 32).  相似文献   

4.
Legged locomotion requires the determination of a number of parameters such as stride period, stride length, order of leg movements, leg trajectory, etc. How are these parameters determined? It has been reported that the locomotor patterns of many legged animals exhibit common characteristics, which suggests that there exists a basic strategy for legged locomotion. In this study we derive an equation to estimate the cost of transport for legged locomotion and examine a criterion of the minimization of the transport cost as a candidate of the strategy. The obtained optimal locomotor pattern that minimizes the cost suitably represents many characteristics of the pattern observed in legged animals. This suggests that the locomotor pattern of legged animals is well optimized with regard to the energetic cost. The result also suggests that the existence of specific gait patterns and the phase transition between them could be the result due to optimization; they are induced by the change in the distribution of ground reaction forces for each leg during locomotion.  相似文献   

5.
The net energy cost of running per unit of body mass and distance (Cr, ml O2.kg-1.km-1) was determined on ten amateur runners before and immediately after running 15, 32 or 42 km on an indoor track at a constant speed. The Cr was determined on a treadmill at the same speed and each run was performed twice. The average value of Cr, as determined before the runs, amounted to 174.9 ml O2.kg-1.km-1, SD 13.7. After 15 km, Cr was not significantly different, whereas it had increased significantly after 32 or 42 km, the increase ranging from 0.20 to 0.31 ml O2.kg-1.km-1 per km of distance (D). However, Cr before the runs decreased, albeit at a progressively smaller rate, with the number of trials (N), indicating an habituation effect (H) to treadmill running. The effects of D alone were determined assuming that Cr increased linearly with D, whereas H decreased exponentially with increasing N, i.e. Cr = Cr0 + a D + He-bN. The Cr0, the "true" energy cost of running in nonfatigued subjects accustomed to treadmill running, was assumed to be equal to the average value of Cr before the run for N equal to or greater than 7 (171.1 ml O2.kg-1.km-1, SD 12.7; n = 30).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A mathematical model of long-term immune defense against infection was used to estimate the energy involved in the principal processes of immune resistance during periods of health and infection. From these values, an optimal level of energy was determined for immune response depending on infection burden. The present findings suggest that weak but prevalent pathogens lead to latent or chronic infection, whereas more virulent but less prevalent pathogens result in acute infection. This energy-based approach offers insight into the mechanisms of immune system adaptation leading to the development of chronic infectious diseases and immune deficiencies.  相似文献   

7.
We derive the energy rate equation for muscle contraction. Our equation has only two parameters m, the maintenance heat rate and 1/S, the shortening heat coefficient. The impulsive model (previously described in earlier papers) provides a physical basis for parameter 1/S as well as for constants a and b in Hill’s force–velocity equation. We develop new theory and relate the efficiency and the step-size distance to our energy rate equation. Correlation between the efficiency and the step-size distance is established. The various numbers are listed in Table 1: we use data from five different muscles in the literature. In summary, our analysis strongly supports the impulsive model as the correct model of contraction.  相似文献   

8.
The efficiency of muscle contraction   总被引:1,自引:0,他引:1  
When a muscle contracts and shortens against a load, it performs work. The performance of work is fuelled by the expenditure of metabolic energy, more properly quantified as enthalpy (i.e., heat plus work). The ratio of work performed to enthalpy produced provides one measure of efficiency. However, if the primary interest is in the efficiency of the actomyosin cross-bridges, then the metabolic overheads associated with basal metabolism and excitation-contraction coupling, together with those of subsequent metabolic recovery process, must be subtracted from the total heat and work observed. By comparing the cross-bridge work component of the remainder to the Gibbs free energy of hydrolysis of ATP, a measure of thermodynamic efficiency is achieved. We describe and quantify this partitioning process, providing estimates of the efficiencies of selected steps, while discussing the errors that can arise in the process of quantification. The dependence of efficiency on animal species, fibre-type, temperature, and contractile velocity is considered. The effect of contractile velocity on energetics is further examined using a two-state, Huxley-style, mathematical model of cross-bridge cycling that incorporates filament compliance. Simulations suggest only a modest effect of filament compliance on peak efficiency, but progressively larger gains (vis-à-vis the rigid filament case) as contractile velocity approaches Vmax. This effect is attributed primarily to a reduction in the component of energy loss arising from detachment of cross-bridge heads at non-zero strain.  相似文献   

9.
In human locomotion, the metabolic power required (E) to cover a given distance d, in the time t is set by the product of the energy cost of the locomotion (C), i.e. the amount of metabolic energy spent to move over one unit of distance, and the speed (v = d t(-1)): E = Cv = Cdt(-1). Since, for any given d, v is a decreasing function of t and C is either constant or increases with v, it necessarily follows that E is larger the smaller the value of t. Thus, for any given distance and subject, the shortest time will be achieved when E is equal to the individual maximal metabolic power (Emax). In turn, Emax is a decreasing function of t: it depends upon the subject's maximal aerobic power (MAP) and on the maximal amount of energy derived from the full utilisation of anaerobic energy stores (AnS). So, if the relationship between C and (v) in the locomotion at stake and the subject's MAP and AnS are known, his best performance time (BPT) over any given distance can be obtained by solving the equality Emax(t) = E(t). This approach has been applied to estimate individual BPTs in running and cycling. In this paper, the above approach will be used to quantify the role of C, MAP, and AnS in determining BPTs for running, track cycling and swimming. This has been achieved by calculating the changes in BPT obtained when each variable, or a combination thereof, is changed by a given percentage. The results show that in all the three types of locomotion, regardless of the speed, the changes in BPT brought about by changes of C alone account for 45-55% of the changes obtained when all three variables (C, MAP and AnS) are changed by the same amount.  相似文献   

10.
Energy costs and energy sources in karate (wado style) were studied in eight male practitioners (age 23.8 years, mass. 72.3 kg, maximal oxygen consumption (VO2max) 36.8 ml · min–1 · kg–1) performing six katas (formal, organized movement sequences) of increasing duration (from approximately. 10 s to approximately 80 s). Oxygen consumption (VO2) was determined during pre-exercise rest, the exercise period and the first 270 s of recovery in five consecutive expired gas collections. A blood sample for lactate (la) analysis was taken 5 min after the end of exercise. The overall amount of O2 consumed during the exercise and in the following recovery increased linearly with the duration of exercise (t) from approximately 1.51 (for t equal to 10.5 s (SD 1.6)) to approximately 5.81, for t equal to 81.5 s (SD 1.0). The energy release from la production (VO21a ) calculated assuming that an increase of 1 mmol · l–1 la corresponded to a VO2 of 3 mlO2 · kg–1 was negligible for t equal to or less than 20 s and increased to 17.3 ml · kg–1 (la = 5.8 mmol · l–1 above resting values) for t equal approximately to 80 s. The overall energy requirement (VO2eq) as given by the sum of VO2 and VO2la was described by VO2eq = 0.87 + 0.071 · t (n = 64; r 2 = 0.91), where VO2eq is in litres and t in seconds. This equation shows that the metabolic power (VO2eq · t –1) for this karate style is very high: from approximately 9.51 · min–1 for t equal to 10 s to approximately 4.91 · min–1 for t equal to 80 s, i.e. from 3.5 to 1.8 times the subjects' VO2max. The fraction of VO2eq derived from the amount of O2 consumed during the exercise increased from 11% for t equal to 10 s to 41 % for t equal to 80 s whereas VO21a was negligible far t equal to or less than 20 s and increased to 13 % o for t equal to 80 s. The remaining fraction (from 90% for t equal to 10 s to 46% for t equal to 80 s), corresponding to the amount of O2 consumed in the recovery after exercise, is derived from anaerobic alactic sources, i.e. from net splitting of high energy phosphates during the exercise.  相似文献   

11.
繁殖是动物向后代传递和保持遗传信息的方式。因此繁殖的意义是显而易见的,但也需要付出代价。主要代价是能量需求增加。在对小家鼠繁殖能量需求的研究中发现,能量摄入在妊娠期只是稍微增加,而在哺乳期则急剧增加。尽管在妊娠期增加的幅度很小,但这可能反映了消化道和发育的胎儿之间在动物腹中的空间竞争,从而可能使能量摄入受到限制进而影响到繁殖过程。哺乳期间,能量摄入急剧增加,在哺乳后期达到高峰并趋于稳定。对野生鼠的研究也表明,野生鼠妊娠期和哺乳期的能量摄入模式与小家鼠是基本相同的,这样我们在小家鼠研究工作中的发现就具有更普遍的适应意义。对哺乳后期能量摄入的限制机制研究至少已经进行了15 年。能量摄入受消化道消化能力的限制(中心限制假说)或者受乳腺泌乳能力限制(外周限制假说) 的假说,都不能合理地解释一些现有的结果。我们提出了一个新的假说,即能量摄入可能受啮齿动物散热能力的限制(热耗散限制假说)。很久以来,一直认为散热能力是对大型哺乳动物哺乳的一个限制因素,但它在小型啮齿动物中的意义尚不清楚。传统观点认为,啮齿动物哺乳期对褐色脂肪组织产热水平的调节是为了重新分配能量以满足哺乳所需;但现在看来,实际上可能是动物为了避免体温过高而降低其基本的产热水平。我们在这个领域已经有了一些进展,但要利用这些知识来理解即使很简单的生活史权衡等问题也还有很多的工作需要做。  相似文献   

12.
During running, the behaviour of the support leg was studied by modelling the runner using an oscillating system composed of a spring (the leg) and of a mass (the body mass). This model was applied to eight middle-distance runners running on a level treadmill at a velocity corresponding to 90% of their maximal aerobic velocity [mean 5.10 (SD 0.33) m · s−1]. Their energy cost of running (C r ), was determined from the measurement of O2 consumption. The work, the stiffness and the resonant frequency of both legs were computed from measurements performed with a kinematic arm. The C r was significantly related to the stiffness (P < 0.05, r = −0.80) and the absolute difference between the resonant frequency and the step frequency (P < 0.05, r = 0.79) computed for the leg producing the highest positive work. Neither of these significant relationships were obtained when analysing data from the other leg probably because of the work asymmetry observed between legs. It was concluded that the spring-mass model is a good approach further to understand mechanisms underlying the interindividual differences in C r . Accepted: 18 August 1997  相似文献   

13.
These experiments investigated the oxygen consumption and work efficiency of adults and children performing identical movement patterns. Adult men (mean age 24) and male children (mean age 12) performed squatting exercises with and without a pause at the lowest point of the squat. The former were termed no rebound squats and the latter were termed rebound squats. Subjects performed the exercises without load and with loads equal to 5%, 10% and 15% of body mass.The results showed that the children consumed 10% more oxygen per unit total body mass than the adults. The gross efficiency of the adults was significantly greater than that of the children. Net and apparent efficiencies were not significantly different between the age groups. Gross and net efficiencies declined with load. Rebound squats required 13% less oxygen than no rebound squats. The gross, net and apparent efficiency of rebound squats was significantly greater than that of no rebound squats. It is suggested that the greater gross efficiencies of adults is related to their lower basal metabolic rate and that the greater efficiency of rebound exercise is related to the storage of energy in elastic tissues.  相似文献   

14.
15.
Cogeneration is internationally recognized as an important way to save energy and improve environment. At present, the cogeneration scale in China has been ranked at the second place all round the world. China formulated relevant laws, regulations and technology policies to actively encourage and support the development of cogeneration. This article selects 62 Northeast regional Chinese cogeneration enterprises' financial data from 2003 to 2007, and analyzes the impact of the electric power industry deregulation to cogeneration enterprises' performance by using a partial frontier nonparametric. Further more, we study whether the cogeneration enterprises actualize horizontal scope economy by comparing with the thermal power alone or heat production alone enterprises. Results show that the factory network separation and regional market trial reform can promote the cost efficiency of both five major power group cogeneration enterprises and independent cogeneration enterprises. Compared to five group enterprises, the scope economies index of the independent cogeneration enterprises is lower, the unbundling reform and northeast regional market trial reform have a negative impact on cogeneration enterprises to achieve scope economies and improve cost efficiency.  相似文献   

16.
华北平原玉米田能量平衡、水分利用效率和表面阻力分析   总被引:3,自引:2,他引:3  
根据华北平玉米田的观测结果,分析了地表/大气能量转化传输特征。结果表明,在作物生育期内,地表能量平衡过程受下垫面特征影响很大。潜热通量是地表/大气热量交换的主要分量;玉米生长的后期有热平流输入,日平均显热通量转为负值。表面阻力在生育期早期和后期较大,而在中期较小,显示了表面阻力对地表覆盖变化和叶片衰老的响应。农田水分利用效率在生长季呈逐渐增长的趋势。  相似文献   

17.
The energy cost per unit of distance (C s, kilojoules per metre) of the front-crawl, back, breast and butterfly strokes was assessed in 20 elite swimmers. At sub-maximal speeds (v), C s was measured dividing steady-state oxygen consumption (O2) by the speed (v, metres per second). At supra-maximal v, C s was calculated by dividing the total metabolic energy (E, kilojoules) spent in covering 45.7, 91.4 and 182.9 m by the distance. E was obtained as: E = E an+O2max t pO2max(1−e−( t p/)), where E an was the amount of energy (kilojoules) derived from anaerobic sources, O2max litres per second was the maximal oxygen uptake, α (=20.9 kJ · l O2 −1) was the energy equivalent of O2, τ (24 s) was the time constant assumed for the attainment of O2max at muscle level at the onset of exercise, and t p (seconds) was the performance time. The lactic acid component was assumed to increase exponentially with t p to an asymptotic value of 0.418 kJ · kg−1 of body mass for t p ≥ 120 s. The lactic acid component of E an was obtained from the net increase of lactate concentration after exercise (Δ[La]b) assuming that, when Δ[La]b = 1 mmol · l−1 the net amount of metabolic energy released by lactate formation was 0.069 kJ · kg−1. Over the entire range of v, front crawl was the least costly stroke. For example at 1 m · s−1, C s amounted, on average, to 0.70, 0.84, 0.82 and 0.124 kJ · m−1 in front crawl, backstroke, butterfly and breaststroke, respectively; at 1.5 m · s−1, C s was 1.23, 1.47, 1.55 and 1.87 kJ · m−1 in the four strokes, respectively. The C s was a continuous function of the speed in all of the four strokes. It increased exponentially in crawl and backstroke, whereas in butterfly C s attained a minimum at the two lowest v to increase exponentially at higher v. The C s in breaststroke was a linear function of the v, probably because of the considerable amount of energy spent in this stroke for accelerating the body during the pushing phase so as to compensate for the loss of v occurring in the non-propulsive phase. Accepted: 14 April 1998  相似文献   

18.
Total free-living energy expenditure (TEE) was measured in 9 normal weight controls and 5 obese women using the doubly labeled water (DLW) method. Resting energy expenditure (REE) and the thermic effect of food (TEF) were measured by indirect calorimetry and the energy cost of physical activity (PA) calculated by deduction, in order to quantify the components and identify determinants of free-living TEE. Although REE was quantitatively the major component of TEE in both groups, PA best explained the variability, contributing 76% to the variance in free-living TEE. The obese women had elevated values for TEE (12397+/-2565 vs. 8339+/-1787 kJ/d, mean+/-SD; p<0.00S), compared with the control women. PA (5071+/-2385 vs. 2552+/-1452; p<0.0S) and REE (6393+/-678 vs. 5084+/-259; p<0.000S) were also raised in the obese, whereas TEF was not significantly different between the groups, accounting for 7.6% of energy expenditure for the obese and 8% for the control subjects. Body weight was the single best determinant of mean daily free-living TEE across both groups. We conclude that PA and body weight are the main determinants of free-living TEE .  相似文献   

19.
The purpose of this study was to examine the effects of external loading on the energy cost and mechanics of roller ski skating. A group of 13 highly skilled male cross-country skiers roller skied at 19.0 ( SD 0.1) km · h−1 without additional load and with loads of 6% and 12% body mass (m b). Oxygen uptake (O2), knee and ankle joint kinematics, roller-ski electromyogram (EMG) of the vastus lateralis and gastrocnemius lateralis muscles, and roller ski velocity were recorded during the last 40 s of each 4-min period of roller skiing. One-way repeated measures ANOVA revealed that the O2 expressed relative to total mass (m tot), joint kinetics, eccentric-to-concentric ratio of the integrated EMG, velocity changes within a cycle, and cycle rate did not change significantly with load. The subsequent analysis of the effect of load on each resistance opposing motion suggested that the power to sustain changes in translational kinetic energy, potential energy, and overcoming rolling resistance increased proportionately with the load. The lack of a significant change in O2/m tot with external loading was associated with a lack of marked change in external mechanical power relative to m tot. The existence of an EMG signal during the eccentric phase prior to the thrust (concentric phase), as well as the lack of significant delay between the two phases, showed that a stretch-shortening cycle (SSC) occurs in roller ski skating. Taken together, the present results would suggest that external loading up to 12% m b does not increase storage and release of elastic energy of lower limb muscles during SSC in roller ski skating. Accepted: 20 March 1998  相似文献   

20.
Oxygen uptake (VO2) at steady state, heart rate and perceived exertion were determined on nine subjects (six men and three women) while walking (3-7 km.h-1) or running (7-14 km.h-1) on sand or on a firm surface. The women performed the walking tests only. The energy cost of locomotion per unit of distance (C) was then calculated from the ratio of VO2 to speed and expressed in J.kg-1.m-1 assuming an energy equivalent of 20.9 J.ml O2-1. At the highest speeds C was adjusted for the measured lactate contribution (which ranged from approximately 2% to approximately 11% of the total). It was found that, when walking on sand, C increased linearly with speed from 3.1 J.kg-1.m-1 at 3 km.h-1 to 5.5 J.kg-1.m-1 at 7 km.h-1, whereas on a firm surface C attained a minimum of 2.3 J.kg-1.m-1 at 4.5 km.h-1 being greater at lower or higher speeds. On average, when walking at speeds greater than 3 km.h-1, C was about 1.8 times greater on sand than on compact terrain. When running on sand C was approximately independent of the speed, amounting to 5.3 J.kg-1.m-1, i.e. about 1.2 times greater than on compact terrain. These findings could be attributed to a reduced recovery of potential and kinetic energy at each stride when walking on sand (approximately 45% to be compared to approximately 65% on a firm surface) and to a reduced recovery of elastic energy when running on sand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号