首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of 1,4-14C-succinate and 2,3-14C-succinate and the activity of succinic semialdehyde dehydrogenase (EC 1.2.1.16) were studied in germinating seeds of castor oil plants (Ricinus communis L.). Succinate metabolism involved succinate dehydrogenase and was sensitive to metabolites of the γ-aminobutyric acid shunt. Considerable accumulation of the label in amino acids reflected the progression of transamination reactions. Succinic semialdehyde dehydrogenase was purified from the endosperm of castor oil plants. Kinetic characteristics of the enzyme were evaluated. Our study indicates that the mobilization of respiratory substrates during germination of castor oil plants is related to active transamination of ketoacids in the Krebs cycle and involves the γ-aminobutyric acid shunt.  相似文献   

2.
K B Busch  H Fromm 《Plant physiology》1999,121(2):589-597
Succinic semialdehyde dehydrogenase (SSADH) is one of three enzymes constituting the gamma-aminobutyric acid shunt. We have cloned the cDNA for SSADH from Arabidopsis, which we designated SSADH1. SSADH1 cDNA encodes a protein of 528 amino acids (56 kD) with high similarity to SSADH from Escherichia coli and human (>59% identity). A sequence similar to a mitochondrial protease cleavage site is present 33 amino acids from the N terminus, indicating that the mature mitochondrial protein may contain 495 amino acids (53 kD). The native recombinant enzyme and the plant mitochondrial protein have a tetrameric molecular mass of 197 kD. Fractionation of plant mitochondria revealed its localization in the matrix. The purified recombinant enzyme showed maximal activity at pH 9.0 to 9.5, was specific for succinic semialdehyde (K(0.5) = 15 microM), and exclusively used NAD+ as a cofactor (Km = 130 +/- 77 microM). NADH was a competitive inhibitor with respect to NAD+ (Ki = 122 +/- 86 microM). AMP, ADP, and ATP inhibited the activity of SSADH (Ki = 2.5-8 mM). The mechanism of inhibition was competitive for AMP, noncompetitive for ATP, and mixed competitive for ADP with respect to NAD+. Plant SSADH may be responsive to mitochondrial energy charge and reducing potential in controlling metabolism of gamma-aminobutyric acid.  相似文献   

3.
We have isolated mutants of Escherichia coli K-12 CS101B that have lost the ability to utilize gamma-aminobutyrate as a source of nitrogen. One class of mutants, which were not affected in the utilization of other nitrogen sources (proline, arginine, glycine), included many isolates with lesions in gamma-aminobutyrate transport or in its transamination and one mutant completely devoid of succinic semialdehyde dehydrogenase activity and exhibiting low gamma-aminobutyrate transport and transamination. gamma-Aminobutyrate-utilizing revertants of the latter recovered full transport and transamination capacities but remained dehydrogenaseless. Another class of mutants showed pleiotropic defects in nitrogen metabolism. One such mutant was lacking glutamate synthase activity. The genes specifying the synthesis of gamma-aminobutyrate permease, gabP, gamma-aminobutyrate transaminase, gabT, and succinic semialdehyde dehydrogenase, gabD, and the control gene, gabC, that coordinately regulates their expression all form a cluster on the E. coli chromosome, linked to the srl and recA loci (at 57.5 min). The mutations with pleiotropic effects on the metabolism of nitrogenous compounds are not linked to the gab cluster.  相似文献   

4.
Enzymatic preparation of radiolabeled succinic semialdehyde   总被引:1,自引:0,他引:1  
[U-14C]Succinic semialdehyde was prepared with yields of 30-40% by oxidation of purified [U-14C]4-aminobutyric acid with commercially available bovine plasma monoamine oxidase. [U-14C]Succinic semialdehyde was purified by cation-exchange chromatography and quantified as the oxime and methoxime derivatives using liquid partition chromatography on silicic acid. The availability of [U-14C]succinic semialdehyde permits the reliable assay of succinic semialdehyde dehydrogenase in crude cell extracts of lymphocytes isolated from human blood, cultured human lymphoblasts, and other tissues where 4-aminobutyric acid metabolism is known to occur.  相似文献   

5.
Methodological aspects of the histochemical technique for the demonstration of succinate semialdehyde dehydrogenase activity (EC 1.2.1.24) (indicative of the degradative step of gamma-aminobutyric acid catabolism) have been analysed in rat Purkinje neurons, where gamma-aminobutyric acid has been shown to be a neurotransmitter, and in hepatocytes, where it is metabolized. During a histochemical incubation for the enzyme, artefacts of succinate dehydrogenase activity and the 'nothing dehydrogenase' reaction are produced. Inhibition of these artefacts by the addition of two inhibitors, malonate and p-hydroxybenzaldehyde, revealed specific reaction products. Formazan granules, which can be ascribed only to specific succinate semialdehyde dehydrogenase activity, are obtained by adding malonate to the incubation medium in order to inhibit both succinate dehydrogenase activity and nothing dehydrogenase. The formation of these granules is completely inhibited by p-hydroxybenzaldehyde, an inhibitor of succinate semialdehyde dehydrogenase activity. Different levels of succinate semialdehyde dehydrogenase activity were noted in Purkinje neurons. This activity was also found in hepatocytes, mostly in the portal area, but with a lesser degree of intensity and specificity. Indeed, non-specific formazan granules were still produced, because of the 'nothing dehydrogenase' reaction, even in the presence of malonate. Thus, a malonate-insensitive 'nothing dehydrogenase' reaction seems to be present in neural and hepatic tissues.  相似文献   

6.
Quorum sensing (QS) signal decay in Agrobacterium tumefaciens occurs in response to starvation or host signals. We have demonstrated that the gamma-aminobutyric acid (GABA) shunt metabolite links stress response to QS signal decay. Mutation of the aldH gene encoding a succinic semialdehyde dehydrogenase (SSADH) that converts succinic semialdehyde (SSA) to succinic acid results in early expression of the signal degrading enzyme, AttM. Exogenous addition of SSA or its precursor GABA induces AttM expression and abolishes Ti plasmid conjugative transfer. SSA acts by binding to the repressor AttJ that regulates the attKLM operon. attK encodes another SSADH. The stress alarmone ppGpp and SSA modulates separately the expression of the two SSADH enzymes, which might control the intracellular SSA level and hence to switch on/off the QS signal decay system in response to environmental changes. These findings document for the first time a sophisticated signalling mechanism of the widely conserved GABA degradation pathway in prokaryotes.  相似文献   

7.
Proteomics is increasingly being used to understand enzyme expression and regulatory mechanisms involved in the accumulation of storage reserves in crops with sequenced genomes. During the past six years, considerable progress has been made to characterize proteomes of both mature and developing seeds, particularly oilseeds - plants which accumulate principally oil and protein as storage reserves. This review summarizes the emerging proteomics data, with emphasis on seed filling in soy, rapeseed, castor and Arabidopsis as each of these oilseeds were analyzed using very similar proteomic strategies. These parallel studies provide a comprehensive view of source-sink relationships, specifically sucrose assimilation into organic acid intermediates for de novo amino acid and fatty acid synthesis. We map these biochemical processes for seed maturation and illustrate the differences and similarities among the four oilseeds. For example, while the four oilseeds appear capable of producing cytosolic phosphoenolpyruvate as the principal carbon intermediate, soybean and castor also express malic enzymes and malate dehydrogenase, together capable of producing malate that has been previously proposed to be the major intermediate for fatty acid synthesis in castor. We discuss these and other differences in the context of intermediary metabolism for developing oilseeds.  相似文献   

8.
Two forms of succinic semialdehyde dehydrogenase have been isolated in Klebsiella pneumoniae M5a1. The two enzymes could be separated by filtration on Sephacryl S-300 and their apparent molecular weights were approx. 275,000 and 300,000. The large enzyme is specific for NADP. The smaller enzyme, which is induced by growth on 3-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid, 3,4-dihydroxyphenylacetic acid and gamma-aminobutyrate, has been purified to 96% homogeneity by affinity chromatography. The NAD-linked succinic semialdehyde dehydrogenase was able to use NADP as cofactor. Its induction is coordinated with 3- and 4-hydroxylase, the enzymes which initiate degradation of 3- and 4-hydroxyphenylacetic acid. The NAD-linked form is also induced by exogenous succinic semialdehyde. The large enzyme is specific for NADP and has been isolated from a defective mutant which lacked the activity of the NAD-linked succinic semialdehyde dehydrogenase. Activity and stability conditions and true K m values for substrates and cosubstrates of the two enzymes were determined. Some aspects of the induction of the NAD-linked enzyme participating in the metabolism of 4-hydroxyphenylacetic and gamma-aminobutyrate were studied.  相似文献   

9.
Leucine was oxidized by rat adipose tissue at a rate which was not limited by the activity of branched chain amino acid transaminase since high concentrations (10 mM) of [1-14C]leucine and its transamination product, alpha-keto[1-14C]isocaproate, were oxidized at similar rates. Despite the apparent abundance of transaminase activity, however, [1-14C]valine was oxidized at only 10 to 25% of the rate of its transamination product, alpha-keto[1-14C]isovalerate. The net rate at which [1-14C] valine was transaminated by intact tissues was estimated as the sum of the rates of 14CO2 production and alpha-ketoiso[1-14C]valerate release into the medium. Transamination did not limit the rate of valine oxidation since valine was transaminated 3 times as fast as it was oxidized. The rate of valine transamination increased 18-fold when its concentration was raised 100-fold, but the fraction of [1-14C]valine oxidized to 14CO2 remained constant over the range of incubation conditions studied. The oxidation/transamination ratio for leucine was also constant and exceeded the oxidation/transamination ratio for valine unless valine oxidation was stimulated, either by the addition of glucose or leucine. Stimulation of valine oxidation did not increase its transamination but reduced the rate at which alpha-ketoisovalerate was released from the tissue. The faster oxidation of alpha-ketoisocaproate than of alpha-ketoisovalerate may be due to the activation of branched chain alpha-keto acid dehydrogenase by alpha-ketoisocaproate, but the alpha-keto acid oxidation rates do not fully account for the faster transamination of leucine than of valine.  相似文献   

10.
Regulation of valine catabolism in Pseudomonas putida   总被引:2,自引:10,他引:2       下载免费PDF全文
The activities of six enzymes which take part in the oxidation of valine by Pseudomonas putida were measured under various conditions of growth. The formation of four of the six enzymes was induced by growth on d- or l-valine: d-amino acid dehydrogenase, branched-chain keto acid dehydrogenase, 3-hydroxyisobutyrate dehydrogenase, and methylmalonate semialdehyde dehydrogenase. Branched-chain amino acid transaminase and isobutyryl-CoA dehydrogenase were synthesized constitutively. d-Amino acid dehydrogenase and branched-chain keto acid dehydrogenase were induced during growth on valine, leucine, and isoleucine, and these enzymes were assumed to be common to the metabolism of all three branched-chain amino acids. The segment of the pathway required for oxidation of isobutyrate was induced by growth on isobutyrate or 3-hydroxyisobutyrate without formation of the preceding enzymes. d-Amino acid dehydrogenase was induced by growth on l-alanine without formation of other enzymes required for the catabolism of valine. d-Valine was a more effective inducer of d-amino acid dehydrogenase than was l-valine. Therefore, the valine catabolic pathway was induced in three separate segments: (i) d-amino acid dehydrogenase, (ii) branched-chain keto acid dehydrogenase, and (iii) 3-hydroxyisobutyrate dehydrogenase plus methylmalonate semialdehyde dehydrogenase. In a study of the kinetics of formation of the inducible enzymes, it was found that 3-hydroxyisobutyrate and methylmalonate semialdehyde dehydrogenases were coordinately induced. Induction of enzymes of the valine catabolic pathway was studied in a mutant that had lost the ability to grow on all three branched-chain amino acids. Strain PpM2106 had lowered levels of branched-chain amino acid transaminase and completely lacked branched-chain keto acid dehydrogenase when grown in medium which contained valine. Addition of 2-ketoisovalerate, 2-ketoisocaproate, or 2-keto-3-methylvalerate to the growth medium of strain PpM2106 resulted in induction of normal levels of branched-chain keto acid dehydrogenase; therefore, the branched-chain keto acids were the actual inducers of branched-chain keto acid dehydrogenase.  相似文献   

11.
Rates of transamination and decarboxylation of [1-14C]leucine at a physiological concentration (0.1 mM) were measured in the perfused rat heart. In hearts from fasted rats, metabolic flux through the branched-chain 2-oxo acid dehydrogenase reaction was low initially, but increased gradually during the perfusion period. The increase in 14CO2 production was accompanied by an increase in the amount of active branched-chain 2-oxo acid dehydrogenase complex present in the tissue. In hearts from rats fed ad libitum, extractable branched-chain dehydrogenase activity was low initially, but increased rapidly during perfusion, and high rates of decarboxylation were attained within the first 10 min. Infusion of glucagon, adrenaline, isoprenaline, or adrenaline in the presence of phentolamine all produced rapid, transient, inhibition (40-50%) of the formation of 4-methyl-2-oxo[1-14C]pentanoate and 14CO2 within 1-2 min, but the specific radioactivity of 4-methyl-2-oxo[14C]pentanoate released into the perfusate remained constant. Glucagon and adrenaline infusion also resulted in transient decreases (16-24%) in the amount of active branched-chain 2-oxo acid dehydrogenase. In hearts from fasted animals, infusion for 10 min of adrenaline, phenylephrine, or adrenaline in the presence of propranolol, but not infusion of glucagon or isoprenaline, stimulated the rate of 14CO2 production 3-fold, and increased 2-fold the extractable branched-chain 2-oxo acid dehydrogenase activity. These results demonstrate that stimulation of glucagon or beta-adrenergic receptors in the perfused rat heart causes a transient inhibition of branched-chain amino acid metabolism, whereas alpha-adrenergic stimulation causes a slower, more sustained, enhancement of branched-chain amino acid metabolism. Both effects reflect interconversion of the branched-chain 2-oxo acid dehydrogenase complex between active and inactive forms. Also, these studies suggest that the concentration of branched-chain 2-oxo acid available for decarboxylation can be regulated by adrenaline and glucagon.  相似文献   

12.
Metabolism of alpha-Ketoglutarate by Roots of Woody Plants   总被引:1,自引:1,他引:0       下载免费PDF全文
The uptake and metabolism of α-ketoglutarate-5-14C by peach, apple, and privet root tissues were studied over various time intervals. As much as 80% of the absorbed 14C appeared as 14CO2 in 320 minutes in peach roots. Apple and privet roots were less effective in this conversion with the bulk of the 14C found in the organic acid fraction. This indicates differences in organic acid metabolism among species of woody plants.

The 14C accumulated in malate earlier and in larger quantities than in citrate. Both glutamate and aspartate were labeled in 10 minutes and glutamate was labeled as early as 3 minutes. The labeling pattern does not clearly distinguish between the synthesis of glutamate by glutamic dehydrogenase or by transamination with oxaloacetate.

The rapid metabolism of α-ketoglutarate to glutamate by the 3 species studied indicates the presence of enzyme systems important in amino acid synthesis in the roots of woody plants.

  相似文献   

13.
Metabolism of branched-chain amino and 2-oxo acids was studied in the isolated perfused kidney. Significant amounts of 2-oxo acids were released by perfused kidney with all concentrations of amino acids tested (0.1-1.0 mM each), despite the high activity of branched-chain 2-oxo acid dehydrogenase in kidney. As perfusate valine concentration was increased from 0.2 to 1.0 mM, [1-14C]valine transamination (2-oxo acid oxidized + released) increased roughly linearly; [1-14C]valine oxidation, however, increased exponentially. Increasing perfusate concentration of 3-methyl-2-oxo[1-14C]butanoate from 0 to 1.0 mM resulted in a linear increase in the rate of its oxidation and a rise in perfusate valine concentration; at the same time significant decreases occurred in perfusate isoleucine and leucine concentrations, with corresponding increases in rates of release of their respective 2-oxo acids. Comparison of rates of oxidation of [1-14C]valine and 3-methyl-2-oxo[1-14C]butanoate suggests that 2-oxo acid arising from [1-14C]valine transamination has freer access to the 2-oxo acid dehydrogenase than has the 2-oxo acid from the perfusate. The observations indicate that, when branched-chain amino and 2-oxo acids are present in perfusate at near-physiological concentrations, rates of transamination of the amino and 2-oxo acids by isolated perfused kidney are greater than rates of oxidation.  相似文献   

14.
A traditional 2‐oxoglutarate dehydrogenase complex is missing in the cyanobacterial tricarboxylic acid cycle. To determine pathways that convert 2‐oxoglutarate into succinate in the cyanobacterium Synechocystis sp. PCC 6803, a series of mutant strains, Δsll1981, Δslr0370, Δslr1022 and combinations thereof, deficient in 2‐oxoglutarate decarboxylase (Sll1981), succinate semialdehyde dehydrogenase (Slr0370), and/or in γ‐aminobutyrate metabolism (Slr1022) were constructed. Like in Pseudomonas aeruginosa, N‐acetylornithine aminotransferase, encoded by slr1022, was shown to also function as γ‐aminobutyrate aminotransferase, catalysing γ‐aminobutyrate conversion to succinic semialdehyde. As succinic semialdehyde dehydrogenase converts succinic semialdehyde to succinate, an intact γ‐aminobutyrate shunt is present in Synechocystis. The Δsll1981 strain, lacking 2‐oxoglutarate decarboxylase, exhibited a succinate level that was 60% of that in wild type. However, the succinate level in the Δslr1022 and Δslr0370 strains and the Δsll1981/Δslr1022 and Δsll1981/Δslr0370 double mutants was reduced to 20–40% of that in wild type, suggesting that the γ‐aminobutyrate shunt has a larger impact on metabolite flux to succinate than the pathway via 2‐oxoglutarate decarboxylase. 13C‐stable isotope analysis indicated that the γ‐aminobutyrate shunt catalysed conversion of glutamate to succinate. Independent of the 2‐oxoglutarate decarboxylase bypass, the γ‐aminobutyrate shunt is a major contributor to flux from 2‐oxoglutarate and glutamate to succinate in Synechocystis sp. PCC 6803.  相似文献   

15.
A complete tricarboxylic acid (TCA) cycle is generally considered necessary for energy production from the dicarboxylic acid substrates malate, succinate, and fumarate. However, a Bradyrhizobium japonicum sucA mutant that is missing alpha-ketoglutarate dehydrogenase is able to grow on malate as its sole source of carbon. This mutant also fixes nitrogen in symbiosis with soybean, where dicarboxylic acids are its principal carbon substrate. Using a flow chamber system to make direct measurements of oxygen consumption and ammonium excretion, we confirmed that bacteroids formed by the sucA mutant displayed wild-type rates of respiration and nitrogen fixation. Despite the absence of alpha-ketoglutarate dehydrogenase activity, whole cells of the mutant were able to decarboxylate alpha-[U-(14)C]ketoglutarate and [U-(14)C]glutamate at rates similar to those of wild-type B. japonicum, indicating that there was an alternative route for alpha-ketoglutarate catabolism. Because cell extracts from B. japonicum decarboxylated [U-(14)C]glutamate very slowly, the gamma-aminobutyrate shunt is unlikely to be the pathway responsible for alpha-ketoglutarate catabolism in the mutant. In contrast, cell extracts from both the wild type and mutant showed a coenzyme A (CoA)-independent alpha-ketoglutarate decarboxylation activity. This activity was independent of pyridine nucleotides and was stimulated by thiamine PP(i). Thin-layer chromatography showed that the product of alpha-ketoglutarate decarboxylation was succinic semialdehyde. The CoA-independent alpha-ketoglutarate decarboxylase, along with succinate semialdehyde dehydrogenase, may form an alternative pathway for alpha-ketoglutarate catabolism, and this pathway may enhance TCA cycle function during symbiotic nitrogen fixation.  相似文献   

16.
Aldehyde dehydrogenases (ALDHs) have been well established in all three domains of life and were shown to play essential roles, e.g., in intermediary metabolism and detoxification. In the genome of Sulfolobus solfataricus, five paralogs of the aldehyde dehydrogenases superfamily were identified, however, so far only the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) and α-ketoglutaric semialdehyde dehydrogenase (α-KGSADH) have been characterized. Detailed biochemical analyses of the remaining three ALDHs revealed the presence of two succinic semialdehyde dehydrogenase (SSADH) isoenzymes catalyzing the NAD(P)+-dependent oxidation of succinic semialdehyde. Whereas SSO1629 (SSADH-I) is specific for NAD+, SSO1842 (SSADH-II) exhibits dual cosubstrate specificity (NAD(P)+). Physiological significant activity for both SSO-SSADHs was only detected with succinic semialdehyde and α-ketoglutarate semialdehyde. Bioinformatic reconstructions suggest a major function of both enzymes in γ-aminobutyrate, polyamine as well as nitrogen metabolism and they might additionally also function in pentose metabolism. Phylogenetic studies indicated a close relationship of SSO-SSALDHs to GAPNs and also a convergent evolution with the SSADHs from E. coli. Furthermore, for SSO1218, methylmalonate semialdehyde dehydrogenase (MSDH) activity was demonstrated. The enzyme catalyzes the NAD+- and CoA-dependent oxidation of methylmalonate semialdehyde, malonate semialdehyde as well as propionaldehyde (PA). For MSDH, a major function in the degradation of branched chain amino acids is proposed which is supported by the high sequence homology with characterized MSDHs from bacteria. This is the first report of MSDH as well as SSADH isoenzymes in Archaea.  相似文献   

17.

Background

The γ-aminubutyrate (GABA) shunt bypasses two steps of the tricarboxylic acid cycle, and is present in both prokaryotes and eukaryotes. In plants, the pathway is composed of the calcium/calmodulin-regulated cytosolic enzyme glutamate decarboxylase (GAD), the mitochondrial enzymes GABA transaminase (GABA-T; POP2) and succinic semialdehyde dehydrogenase (SSADH). We have previously shown that compromising the function of the GABA-shunt, by disrupting the SSADH gene of Arabidopsis, causes enhanced accumulation of reactive oxygen intermediates (ROIs) and cell death in response to light and heat stress. However, to date, genetic investigations of the relationships between enzymes of the GABA shunt have not been reported.

Principal Findings

To elucidate the role of succinic semialdehyde (SSA), γ-hydroxybutyrate (GHB) and GABA in the accumulation of ROIs, we combined two genetic approaches to suppress the severe phenotype of ssadh mutants. Analysis of double pop2 ssadh mutants revealed that pop2 is epistatic to ssadh. Moreover, we isolated EMS-generated mutants suppressing the phenotype of ssadh revealing two new pop2 alleles. By measuring thermoluminescence at high temperature, the peroxide contents of ssadh and pop2 mutants were evaluated, showing that only ssadh plants accumulate peroxides. In addition, pop2 ssadh seedlings are more sensitive to exogenous SSA or GHB relative to wild type, because GHB and/or SSA accumulate in these plants.

Significance

We conclude that the lack of supply of succinate and NADH to the TCA cycle is not responsible for the oxidative stress and growth retardations of ssadh mutants. Rather, we suggest that the accumulation of SSA, GHB, or both, produced downstream of the GABA-T transamination step, is toxic to the plants, resulting in high ROI levels and impaired development.  相似文献   

18.
The methyl ester of succinic semialdehyde (SSA) was examined as a substrate for succinate semialdehyde dehydrogenase (SSADH) from rat brain. It was found that the ester can be oxidized by the enzyme. Values of Km for SSA-Me were higher than for those for SSA, and for this substrate the enzyme showed a substrate-dependent inhibition. This finding suggests that the carboxylate group of SSA is not essential in the process of inhibition of SSADH by the substrate. Cyclopropyl analogues of SSA, cis- and trans-1-formyl-cyclopropan-2-carboxylic acids, were also individually tested as substrates of SSADH. Only the trans isomer was found to be oxidized to the corresponding dicarboxylic acid; it inhibited the enzyme in the same range of concentrations as SSA. The above data suggest that, as for gamma-aminobutyric acid, SSA is present in an unfolded, transoid conformation at the active site of SSADH.  相似文献   

19.
Ricinoleic acid (12-hydroxy-octadeca-9-enoic acid) is a major unusual fatty acid in castor oil. This hydroxy fatty acid is useful in industrial materials. This unusual fatty acid accumulates in triacylglycerol (TAG) in the seeds of the castor bean (Ricinus communis L.), even though it is synthesized in phospholipids, which indicates that the castor plant has an editing enzyme, which functions as a phospholipid:diacylglycerol acyltransferase (PDAT) that is specific to ricinoleic acid. Transgenic plants containing fatty acid Δ12-hydroxylase encoded by the castor bean FAH12 gene produce a limited amount of hydroxy fatty acid, a maximum of around 17% of TAGs present in Arabidopsis seeds, and this unusual fatty acid remains in phospholipids of cell membranes in seeds. Identification of ricinoleate-specific PDAT from castor bean and manipulation of the phospholipid editing system in transgenic plants will enhance accumulation of the hydroxy fatty acid in transgenic seeds. The castor plant has three PDAT genes; PDAT1-1 and PDAT2 are homologs of PDAT, which are commonly found in plants; however, PDAT1-2 is newly grouped as a castor bean-specific gene. PDAT1-2 is expressed in developing seeds and localized in the endoplasmic reticulum, similar to FAH12, indicating its involvement in conversion of ricinoleic acid into TAG. PDAT1-2 significantly enhances accumulation of total hydroxy fatty acid up to 25%, with a significant increase in castor-like oil, 2-OH TAG, in seeds of transgenic Arabidopsis, which is an identification of the key gene for oilseed engineering in production of unusual fatty acids.  相似文献   

20.
The study of free amino acid content in Yarrowia lipolytica cells grown on ethanol under thiamine deficiency showed that glutamate, alanine, and γ-aminobutyric acid (γ-ABA) occurred in the highest concentrations among the present 17 free amino acids. The culture liquid contained no amino acids. Analysis of the enzymes of oxidative metabolism in the yeast grown under these conditions showed that the cell-free homogenate contained substantial activity of glutamate decarboxylase, γ-ABA transaminase, and succinyl semialdehyde dehydrogenase. This result indicated the formation of succinate from glutamate in a reaction catalyzed by 4-aminobutyrate aminotransferase (γ-aminobutyrate bypass) under severe thiamine deficiency. These studies lead to the conclusion that cultivation of the yeast Y. lipolytica on ethanol under thiamine deficiency causes adaptive stress-induced metabolic changes. Increase of ammonium nitrogen consumption and excretion of α-ketoglutaric acid are indicative of physiological changes, the functioning of the γ-aminobutyrate bypass and high activity of malate dehydrogenase are manifestations of metabolic changes, and increased activities of the transamination reactions reflect the changes in nitrogen metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号