首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Here, we describe the first system for genetic transformation of Thalassiosira pseudonana (Hustedt) Hasle et Heimdal, the only diatom for which a complete genome sequence is presently available. This method is based on microparticle bombardment followed by selection of transformants using the antibiotic nourseothricin. It exhibits the highest transformation efficiency compared with transformation systems for other diatom species. To achieve the high transformation efficiency, it is important to allow recovery of the bombarded T. pseudonana cells in non‐selective suspension culture before spreading on nourseothricin containing agar plates. It is demonstrated that T. pseudonana is readily susceptible to co‐transformation allowing for the simultaneous introduction of a non‐selective gene together with the selection marker gene. Both introduced genes are stably inherited even in the absence of the antibiotic selection pressure. We have developed two T. pseudonana‐specific expression vectors that can drive constitutive expression (vector pTpfcp) and inducible expression (vector pTpNR) of introduced genes. In combination with the available genome data the T. pseudonana transformation system is expected to provide a powerful tool for functional genomics in diatoms.  相似文献   

4.
5.
6.
The complete assimilatory nitrate reductase (NR) gene from the pennate diatom Phaeodactylum triconutum Bohlin was sequenced from cDNA and compared with NR sequences from fungi, green algae, vascular plants, and the recently sequenced genome of the centric diatom Thalassiosira pseudonana Hasle and Heimdal CCMP1335. In all the major eukaryotic nitrate reductase (Euk‐NR) functional domains, diatom NR gene sequences are generally 50%–60% identical to plant and alga sequences at the amino acid level. In the less conserved N‐terminal, hinge 1, and hinge 2 regions, homology to other NR sequences is weak, generally<30%. Two PCR primer sets capable of amplifying Euk‐NR from plants, algae, and diatoms were designed. One primer set was used to amplify a 750‐base pair (bp) NR fragment from the cDNA of five additional diatom strains. The PCR amplicon spans part of the well‐conserved dimer interface region, the more variable hinge 1 region, and part of the conserved cytochrome b heme binding region. The second primer set, targeted to the dimer region, was used to amplify an approximately 400‐bp fragment of the NR gene from DNA samples collected in Monterey Bay, California and in central New Jersey inner continental shelf (LEO‐15 site) waters. Only diatom‐like NR sequences were recovered from Monterey Bay samples, whereas LEO‐15 samples yielded NR sequences from a range of photosynthetic eukaryotes. The prospect of using DNA‐ and RNA‐based methods to target the NR genes of diatoms specifically is a promising approach for future physiological and ecological experiments.  相似文献   

7.
8.
A functional gene microarray was developed and used to investigate phytoplankton community composition and gene expression in the English Channel. Genes encoding the CO2‐fixation enzyme RUBISCO (rbcL) and the nitrate assimilation enzyme nitrate reductase (NR) representing several major groups of phytoplankton were included as oligonucleotide probes on the “phytoarray.” Five major groups of eukaryotic phytoplankton that possess the Type 1D rbcL gene were detected, both in terms of presence (DNA) and activity (rbcL gene expression). Changes in relative signal intensity among the Type 1D rbcL probes indicated a shift from diatom dominance in the spring bloom to dominance by haptophytes and flagellates later in the summer. Because of the limitations of a smaller database, NR probes detected fewer groups, but due to the greater diversity among known NR sequences, NR probes provided higher phylogenetic resolution than did rbcL probes and identified two uncultivated diatom phylotypes as the most abundant (DNA) and active (NR gene expression) in field samples. Unidentified chlorophytes and the diatom Phaeodactylum tricornutum Bohlin were detected at both the DNA and cDNA (gene expression) levels. The reproducibility of the array was evaluated in several ways, and future directions for further improvement of probe development and sensitivity are outlined. The phytoarray provides a relatively high‐resolution, high‐throughput approach to assessing phytoplankton community composition in marine environments.  相似文献   

9.
10.
The availability and composition of dissolved nitrogen in ocean waters are factors that influence species composition in natural phytoplankton communities. The same factors affect the ratio of organic to inorganic carbon incorporation in calcifying species, such as the coccolithophore Emiliania huxleyi (Lohman) W. W. Hay et H. Mohler. E. huxleyi has been shown to thrive on various nitrogen sources, including dissolved organic nitrogen. Nevertheless, assimilation of dissolved nitrogen under nitrogen‐replete and ‐limited conditions is not well understood in this ecologically important species. In this study, the complete amino acid sequences for three functional genes involved in nitrogen metabolism in E. huxleyi were identified: a putative formamidase, a glutamine synthetase (GSII family), and assimilatory nitrate reductase. Expression patterns of the three enzymes in cells grown on inorganic as well as organic nitrogen sources indicated reduced expression levels of nitrate reductase when cells were grown on NH4+ and a reduced expression level of the putative formamidase when growth was on NO3?. The data reported here suggest the presence of a nitrogen preference hierarchy in E. huxleyi. In addition, the gene encoding for a phosphate repressible phosphate permease was more highly expressed in cells growing on formamide than in cells growing on inorganic nitrogen sources. This finding suggests a coupling between phosphate and nitrogen metabolism, which might give this species a competitive advantage in nutrient‐depleted environments. The potential of using expression of genes investigated here as indicators of specific nitrogen‐metabolism strategies of E. huxleyi in natural populations of phytoplankton is discussed.  相似文献   

11.
An obligate requirement for selenium is demonstrated in axenic culture of the coastal marine diatom Thalassiosira pseudonana (clone 3H) (Hust.) Hasle and Heimdal grown in artificial seawater medium. Selenium deficiency was characterized by a reduction in growth rate and eventually by a cessation of cell division. The addition of 10−10 M Na2SeO3 to nutrient enriched artificial seawater resulted in excellent growth of T. pseudonana and only a slight inhibition of growth occurred at Na2SeO3 concentrations of 10−3 and 10−2 M. By contrast, Na2SeO4 failed to support growth of T. pseudonana when supplied at concentrations less than 10−7 M and the growth rate at this concentration was only one quarter of the maximum growth rate. The addition of 10−3 and 10−2 M Na2SeO4 to the culture medium was toxic and cell growth was completely inhibited. Eleven trace elements were tested for their ability to replace the selenium requirement by this alga find all were without effect. In selenium-deficient and selenium-starved cultures of T. pseudonana cell volume increased as much as 10-fold as a result of an increase in cell length (along the pervalvar axis) but cell width was constant. It is concluded that selenium is an indispensable element for the growth of T. pseudonana and it should be included as a nutrient enrichment to artificial seawater medium when culturing this alga.  相似文献   

12.
An obligate requirement for selenium is demonstrated in axenic culture of the coastal marine diatom Thalassiosira pseudonana (clone 3H) (Hust.) Hasle and Heimdal grown in artificial seawater medium. Selenium deficiency was characterized by a reduction in growth rate and eventually by a cessation of cell division. The addition of 10−10 M Na2eO3 to nutrient enriched artifical seawater resulted in excellent growth of T. pseudonana and only a slight inhibition of growth occurred at Na2SeO3 concentrations of 10−3 and 10-2 M. By contrast, Na2SeO4 failed to support growth of T. pseudonana when supplied at concentrations less than 10−7 M and the growth rate at this concentration was only one quarter of the maximum growth rate. The addition of 10−3 and 10−2 M Na2SeO4 to the culture medium was toxic and cell growth was completely inhibited. Eleven trace elements were tested for their ability to replace the selenium requirement by this alga and all were without effect. In selenium-deficient and selenium-starved cultures of T. pseudonana cell volume increased as much as 10-fold as a result of an increase in cell length (along the pervalvar axis) but cell width was constant. It is concluded that selenium is an indispensable element for the growth of T. pseudonana and it should be included as a nutrient enrichment to artificial seawater medium when culturing this alga.  相似文献   

13.
Glutamine synthftase (GS) activity was investigated in a nitratt limited continuous culture of the marine diatom Chaeloccros afTinis (Lauder) Hustedt before and after the perturbation of the culture medium with 10 μM of 15 N labelled nitrate. Parallel studies were carried out on nitrate reductase(NR). nitrate uptake and assimilation, and Ievels of cellular nitrogen containing compounds with the objective to determine the validity of the GS assay as a measure of nitrate utilization. Activities in N-deficient cells, grown at steady state, correlated well with uptake and assimilation rates. In N-sufftcient celts, however, during the nitrate pertirbation period, they accounted only for about 10% of the two latter rates, when ambient nitrate concentrations were high (0. 7-10 μ). It is proposed that under these growth conditions an alternative pathway via glutamate dehydrogenase (GDH) was operative. At low ambient nitrate concentrations (0.1-0.7 μM), GS activities, uptake and assimilation rates again balanced rather well. Thus, the data support the view that GDH activity is associated with high levels and GS with low levels of external or internal nitrogen.  相似文献   

14.
Although activity of the enzyme nitrate reductase (NR) can potentially be used to predict the rate of nitrate incorporation in field assemblages of marine phytoplankton, application of this index has met with little success because the relationship between the two rates is not well established under steady-state conditions. To provide a basis for using NR activity measurements, the relationships among NR activity, growth rate, cell composition, and nitrate incorporation rate were examined in cultures of Thalassiosira pseudonana (Hustedt)Hasle and Heimdal, growing a) under steady-state light limitation, b) during transitions between low and high irradiance (15 or 90 μmol quanta.m?2.s?1), and c) under steady-state nitrate limitation. Using a modified assay for NR involving additions of bovine serum albumin to stabilize enzyme activity, NR activity in light-limited cultures was positively and quantitatively related to calculated rates of nitrate incorporation, even in cultures that were apparently starved of selenium. During transitions in irradiance, growth rates acclimated to new conditions within 1 day; through the transition, the relationship between NR activity and nitrate incorporation rate remained quantitative. In nitrate-limited chemostat cultures, NR activity was positively correlated with growth rate and with nitrate incorporation rates, but the relationship was not quantitative. NR activity exceeded nitrate incorporation rates at lower growth rates (<25% of nutrient-replete growth rates), but chemostats operating at such low dilution rates may not represent ecologically relevant conditions for marine diatoms. The strong relationship between NR activity and nitrate incorporation provides support for the idea that NR is rate-limiting for nitrate incorporation or is closely coupled to the rate-limiting step. In an effort to determine a suitable variable for scaling NR activity, relationships between different cell components and growth rate were examined. These relationships differed depending on the limiting factor. For example, under light limitation, cell volume and cell carbon content increased significantly with increased growth rate, while under nitrate limitation cell volume and carbon content decreased as growth rates increased. Despite the differences found between cell composition and growth rate under light and nitrate limitation, the relationships between NR activity scaled to different compositional variables and growth rate did not differ between the limitations. In field situations where cell numbers are not easily determined, scaling NR activity to particulate nitrogen content may be the best alternative. These results establish a strong basis for pursuing NR activity measurements as indices of nitrate incorporation in the field.  相似文献   

15.
The relationships between the growth rate of the marine diatom Thalassiosira pseudonana (Hustedt) and irradiance, daylength, and temperature were determined in nutrient-sufficient semicontinuous cultures. The initial slopes of the growth versus total daily irradiance curves were not affected by temperature or daylength. Growth versus irradiance was best modeled as a hyperbolic function at short daylengths and better modeled as an exponential function at longer daylengths. The maximum or light-saturated growth rates at each daylength were modeled as a hyperbolic function of daylength. This model was extended in a novel manner to include temperature dependence providing a framework that can be used to interpret other experimental data on growth rate versus daylength. The resulting model should be useful in global models of phytoplankton growth. Carbon, nitrogen, and chl a quotas were influenced by daylength, irradiance, and temperature. Both C and N quotas were positive exponential functions of irradiance, whereas N and chl a quotas were significantly greater for cells grown at the lower temperature. The ratio chl a :C quota (chl a :Qc) was a strong negative exponential function of total daily irradiance. Cells grown at 10° C had significantly greater chl a :Qc ratios than those grown at 18° C, and daylength also had a significant positive influence on chl a :Qc. The apparent effect of daylength on chl a :Qc was removed by standardizing chl a :Qc to growth rate (μ), resulting in a temperature-dependent relationship between chl a :Qc·μ−1 and irradiance that accounted for 95% of the variation in the data.  相似文献   

16.
17.
The toxicity of Cu to Thalassiosira weissflogii (Grunow) was investigated, focusing on the internal soluble pool of silicic acid. Silicic acid uptake and growth rates were found to be functions of both the cupric ion activity and the concentration of silicic acid in the growth medium. The soluble pool of Si per cell depended on the balance between the uptake rate and the division rate. The soluble pool in non-dividing cultures reflected simply the uptake rate (and inhibition by copper of the uptake rate), but in dividing cultures the soluble pools had complex patterns with time depending on uptake rates and timing of division. Intracellular soluble pools of silicic acid are a good indicator for the relative inhibition of uptake and growth processes.  相似文献   

18.
Evidence has accumulated during the last decade showing that many established diatom morpho‐species actually consist of several semicryptic or truly cryptic species. As these species are difficult or even impossible to differentiate by microscopic analysis, there is virtually no information on how they behave in natural environments. In this study, we developed a quantitative real‐time PCR (qPCR) assay using TaqMan probes® targeted to the internal transcribed spacer 1 (ITS1) to assess the spatial distribution and seasonal dynamics of an important component of the microphytobenthos of intertidal sediments. Navicula phyllepta Kützing is a brackish‐marine morpho‐species with a cosmopolitan distribution. Axenic clones of this species were isolated from natural assemblages of benthic diatoms at different intertidal stations in the Westerschelde estuary (The Netherlands). At least two distinct semicryptic species of N. phyllepta were present, as shown by differences in the quantity of DNA per cell, the ITS1 sequences and the copy number of ITS per cell. DNA and chl a concentrations extracted from sediment surface samples were closely correlated, showing that the DNA used for subsequent analysis mostly belonged to the microalgal community. The results of real‐time qPCR from sites throughout the estuary and over several seasons agreed well with microscopic counts. Additionally, the seasonal pattern of the two forms of N. phyllepta showed an overlapping, but unique distribution along the estuary.  相似文献   

19.
20.
The elemental composition and the cell cycle stages of the marine diatom Thalassiosira pseudonana Hasle and Heimdal were studied in continuous cultures over a range of different light‐ (E), nitrogen‐ (N), and phosphorus‐ (P) limited growth rates. In all growth conditions investigated, the decrease in the growth rate was linked with a higher relative contribution of the G2+M phase. The other phases of the cell cycle, G1 and S, showed different patterns, depending on the type of limitation. All experiments showed a highly significant increase in the amount of biogenic silica per cell and per cell surface with decreasing growth rates. At low growth rates, the G2+M elongation allowed an increase of the silicification of the cells. This pattern could be explained by the major uptake of silicon during the G2+M phase and by the independence of this process on the requirements of the other elements. This was illustrated by the elemental ratios Si/C and Si/N that increased from 2‐ to 6‐fold, depending of the type of limitation, whereas the C/N ratio decreased by 10% (E limitation) or increased by 50% (P limitation). The variations of the ratios clearly demonstrate the uncoupling of the Si metabolism compared with the C and N metabolisms. This uncoupling enabled us to explain that in any of the growth condition investigated, the silicification of the cells increased at low growth rates, whereas carbon and nitrogen cellular content are differently regulated, depending of the growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号