首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fronds of clonal seaweeds with extensive holdfasts relative to frond size are known not to self‐thin during growth, even in crowded stands. We tested whether frond self‐thinning would occur for such a seaweed since these traits are more similar to those of unitary seaweeds, which do self‐thin in crowded conditions. We used Sargassum lapazeanum Setch. et N. L. Gardner (Fucales, Phaeophyceae) from the Pacific coast of Mexico, for which we first confirmed its clonal nature by performing a regeneration experiment in culture tanks. During the growth season (winter to late spring), S. lapazeanum stand biomass increased, while frond density and size inequality (Gini coefficient for frond biomass) decreased. These results indicate that self‐thinning occurred at the frond level. We propose a conceptual model for frond dynamics for clonal seaweeds in general. In stands of clonal species with small fronds and relatively extensive holdfasts (particularly when holdfasts are perennial), frond dynamics would be determined mostly by intraclonal regulation, which seems to prevent excessive crowding from occurring. Such species display a positive biomass–density relationship during the growth season. On the contrary, in stands of clonal species with large fronds relative to holdfast size, frond dynamics would be determined mostly by interactions among genets. For such species, self‐thinning may be detected at the frond level in crowded stands, resulting in a negative biomass–density relationship during growth.  相似文献   

2.
Module dynamics in the fucoid alga Turbinaria triquetra (J. Agardh) Kützing were studied on a shallow reef flat in the southern Red Sea. Seasonal patterns in thallus density and size were determined, and the initiation, growth, reproduction, and shedding of modules were studied using a tagging approach. The effects of module density and module/thallus size on module initiation, growth, reproduction, and shedding were analyzed, and the occurrence of intraspecific competition among modules was examined. Seasonal variation occurred mainly at the modular level. There was a restricted period of new module formation in the cooler season, followed by fast growth and reproduction, massive shedding of modules from the end of the cooler season onward, and strongly reduced biomass in summer. There was no evidence of suppressed growth in small modules due to intraspecific competition. Module density and thallus/module size had opposite effects on elongation rates. High module densities enhanced maximum elongation rates (fastest‐growing module per thallus), resulting in longer thalli. On the other hand, elongation rates decreased and tissue loss increased with increasing module length. Reproduction had no clear effect on elongation rates, indicating that there was no direct trade‐off between reproduction and growth. The apparent size‐dependence of reproduction was due to delayed fertility in young modules. Module initiation and shedding were independent of module density. Shedding was also independent of module size and reproductive status. We conclude that seasonal changes in the environment affect module initiation, growth, reproduction, and shedding, whereas density and size‐dependent processes mainly affect growth rates.  相似文献   

3.
Module dynamics of the fucoid alga SARGASSUM SUBREPANDUM (Forssk.) C. Agardh was studied in the southern Red Sea. Seasonal variation in thallus density and size was determined, and the initiation, growth, reproduction, and shedding of modules (primary laterals) were ascertained, using a tagging approach. Possible effects of different size‐related parameters on module initiation, growth, reproduction, and shedding were analyzed in the context of contradicting results for other macroalgae, in comparison with terrestrial plants. Thallus density varied little; most of the seasonal variation occurred at the modular level. A restricted period of new module formation early in the cooler season was followed by fast growth and reproduction. Massive shedding of modules occurred toward the end of the cooler season leading to strongly reduced biomass in summer. There was some evidence that high module numbers inhibited new module formation and enhanced the maximum module elongation rate (fastest‐growing module per thallus). On the other hand, elongation rates generally decreased, and apical tissue losses increased with increasing module length. This response was observed over a wide size range, suggesting grazing losses. There was no evidence of suppressed growth in small modules due to intraspecific competition. Elongation rates remained unaffected by reproductive status, indicating that there was no direct trade‐off between growth and reproduction. Module survivorship was independent of module number and size, but fertile modules were more persistent than vegetative ones. We conclude that module dynamics are determined by seasonal changes in the environment, size‐dependent processes, and interactions among the modules.  相似文献   

4.
Although epiphytism is generally heaviest on older portions of the host thallus and both variation and abundance of epiphytes decrease with proximity to meristematic apices, Neosiphonia harveyi (Bailey) Kim, Choi, Guiry and Saunders was frequently found on upper parts of sargassacean hosts. This study compared density, thallus length and fertility of epiphytic N. harveyi among different regions of Sargassum patens C. Agardh thalli to reveal a unique distribution pattern of this epiphyte. The majority of epiphytic N. harveyi was observed on the upper part of host thalli and was seldom seen near the basal part. Over a 3‐month period, mean epiphyte density was greater on host apices while thallus length and fertility were greater on subapical portions of host thalli, suggesting the colonization by this epiphyte near the apical part of the host. Distribution patterns of this epiphyte were similar among S. patens growing at different depths. Apical portions of S. patens appear to be more suitable substrata for N. harveyi settlement and colonization compared with other portions of the host thallus, regardless of depth.  相似文献   

5.
Thallus mechanical strength, as well as production of secondary metabolites as defensive compounds, of tropical macroalgae is often essential for protection from herbivory. In tropical macroalgae, thallus mechanical strength is negatively correlated with productivity — a trade‐off between productivity and thallus toughness. The tropical fucoids, Turbinaria ornata which has defensive morphological traits against herbivory and Sargassum ilicifolium which is expanding its distribution in Japanese waters, were examined to determine thallus traits related to mechanical strength and productivity and their pair‐wise relationships were also examined. These traits that are directly or indirectly related to the trade‐off between productivity and thallus toughness were compared to data for various other temperate macroalgae by regression analyses. We found two strong positive correlations between thallus mechanical strength and thallus mass or thallus thickness, confirming that higher levels of mechanical strength for tropical fucoids is associated with higher biomass or thallus thickness. Also, negative correlations between thallus toughness and productivity were found indicating structural and physiological trade‐offs. However, the tropical fucoids exhibited relatively high productivity regardless of their higher level of thallus toughness. These traits of the tropical fucoids slightly deviate from the typical conservative strategy with higher thallus toughness and lower productivity as a trade‐off between productivity and thallus toughness.  相似文献   

6.
The life cycle of the large dioecious alga Sargassum horneri (Turner) C. Agardh was completed in unialgal culture by controlling photoperiod in relation to the phase of growth. Embryos isolated from a naturally grown female thallus gave rise to early germlings that rapidly formed blades under both short-day (9 h L) and long-day (15 h L) conditions at 20° C Shoot elongation, which followed early blade formation, occurred under the short-day conditions hut not under the long-day conditions. Functional female and male receptacles developed when thalli 8–14 cm long grown under the short-day conditions were transferred to the long-day conditions; gamete fusion occurred when male and female thalli were grown together. Fertilized oospores gave rise to normal thalli in a manner similar to that for in situ plants. Thus, the life cycle of S. horneri was completed in laboratory culture.  相似文献   

7.
Sargassum muticum (Yendo) Fensholt is an introduced brown seaweed with a very distinctive seasonal growth cycle on European shores. The present study links the dynamics of a population of S. muticum with the seasonal growth cycle of the species and the density-dependent processes operating throughout this cycle. Results indicate that both growth cycle and intraspecific competition influenced the structure and population dynamics. Size inequality increased during the slow growth phase (autumn–winter) of the 2-year study. Mechanisms generating inequality of size could be the existence of asymmetric competition and the inherent differences in growth rates between old (regenerated) and new thalli (recruits). Inequality of size distributions decreased progressively during the last months of the growth phase (spring–summer) and could be related to a process of self-thinning. There was a negative biomass–density relationship (as a measure of biomass accumulation-driven mortality) that confirms the importance of self-thinning as a major demographic factor in the S. muticum population.  相似文献   

8.
Difficulty in species identification of Sargassum (Sargassaceae, Fucales) is partly attributed to the high polymorphism among its individuals and populations. This study aimed at assessing morphological and genetic variations in two varieties, var. hemiphyllum J. Agardh and var. chinense J. Agardh, of Sargassum hemiphyllum (Turner) C. Agardh, a widely distributed species in the northwestern Pacific. We investigated 26 measurable, five numerical, and 33 categorical morphological parameters associated with different branching levels of specimens from each of six localities within its distribution range using cluster analysis (CA) and principal coordinate analysis (PCoA). Leaf size of the primary and secondary branching levels and the vesicle size of the secondary branches of the specimens examined were determined to be the most important morphological parameters that were significantly different among populations. Change in leaf and vesicle length of individuals among the six populations followed a latitudinal gradient, with smaller leaves and vesicles associated with northern populations and larger ones in the southern populations. The possible influence of the gradual change in sea surface temperatures (SSTs) along this gradient in the northwestern Pacific on leaf and vesicle morphologies of this species was suggested. PCR‐RFLP analysis of the RUBISCO spacer in the chloroplast genome revealed two distinct and highly homogenous clades, a China clade and a Japan‐Korea clade, which corresponded to var. chinense and var. hemiphyllum, respectively. The formation of refugia along the “Paleo‐coast” in the East China Sea during glacial periods is suggested to have led to the vicariance of ancestral populations of S. hemiphyllum and thus to have promoted genetic differentiation. The massive freshwater outflow of the Yellow and Yangtze rivers may continue to act as a barrier, prolonging the allopatric distribution of the two varieties.  相似文献   

9.
Monocultures of spring wheat (Triticum aestivum L.) were grown at overcrowded densities (10 000 and 3 000 plants per m^2) under well-watered and water-stressed conditions to investigate the effects of water deficits on self-thinning. The results showed that density reduction in water-stressed populations was delayed compared with that In well-watered populations. Populations grown In well-watered conditions conformed to the -3/2- power law. Compared with the well-watered condition, there was no significant decrease of the self-thinning line under water-stressed conditions In this experiment, although the rate of average shoot blomass accumulatlon decreased. This result Implied that the exponent of the -3/2-power equation Is not as sensitive as the rate of average shoot blomass accumulation to water stress. Further analysis indicated that, In each density treatment, the lines of the height versus shoot blomass relationships did not differ significantly between the two water conditions. However, the Intercepts of the height versus shoot blomass relationships were greater In the higher-density populations (10 000/m^2) than those In the lower-density populations (3 000/m^2). These results showed that water deficit did not change plant geometry In this experiment. That Is to say, shoot competition for light remains constant at a given blomass, although root competition for water becomes more serious In water deficit conditions. Based on these results and previous reports we propose that, to affect the thinning line slope, changes In symmetric competition are not as efficient as changes In asymmetric competition.  相似文献   

10.
Porphyra yezoensis Ueda is an important marine aquaculture crop with single‐layered gametophytic thalli. In this work, the influences of thallus dehydration level, cold‐preservation (freezing) time, and thawing temperature on the photosynthetic recovery of young P. yezoensis thalli were investigated employing an imaging pulse‐amplitude‐modulation (PAM) fluorometer. The results showed that after 40 d of frozen storage when performing thallus thawing under 10°C, the water content of the thalli showed obvious effects on the photosynthetic recovery of the frozen thalli. The thalli with absolute water content (AWC) of 10%–40% manifested obvious superiority compared to the thalli with other AWCs, while the thalli thawed at 20°C showed very high survival rate (93.10%) and no obvious correlation between thallus AWCs and thallus viabilities. These results indicated that inappropriate thallus water content contributed to the cell damage during the freeze‐thaw cycle and that proper thawing temperature is very crucial. Therefore, AWC between 10% and 40% is the suitable thallus water content range for frozen storage, and the thawing process should be as short as possible. However, it is also shown that for short‐term cold storage the Porphyra thallus water content also showed no obvious effect on the photosynthetic recovery of the thalli, and the survival rate was extremely high (100%). These results indicated that freezing time is also a paramount contributor of the cell damage during the freeze‐thaw cycle. Therefore, the frozen nets should be used as soon as time permits.  相似文献   

11.
Questions: Density dependence is thought to restrict exponential growth as well as give rise to size structure in populations. Size hierarchy in trees from tropical dry deciduous forests is studied to ask (1) whether nature of competition is symmetric or asymmetric and (2) what is the self thinning trajectory under a natural gradient of tree density. Location: Western India. Methods: Density was measured as the number of trees in 10‐m radius circular plots (n= 96) and size was measured at DBH. Size variation was evaluated by the Gini coefficient (n= 1239 trees). Results: Size inequality between neighbours decreased with density but in a non‐linear manner. In the backdrop of existing theory this indirectly suggests that competitive interactions may be symmetric over a ‘depletive’ resource such as below‐ground water (rather than a ‘pre‐emptive’ resource such as light), which is very plausible in a semi‐arid environment. The self thinning coefficient derived from the relationship between stem diameter and density (γ~?1/4), is higher than expected from existing models of allometric plant growth (γ=?1/3) which are based on above‐ground interactions alone. Seen in conjunction, these results suggest that above‐ground structures, such as stem size, do not adequately represent the outcome of competitive interactions when below‐ground resources, such as water, may be more important under semi‐arid conditions. Conclusions: The non‐linear relationship between size inequality and density indicates that there exists a density threshold beyond which investment in above‐ground biomass becomes sluggish in semi‐arid, deciduous forests. Since current allometric models do not incorporate below‐ground biomass for trees, these data suggest that a more comprehensive allometric growth model may have higher predictive power and wider applicability.  相似文献   

12.
以位于黄海的青岛太平角自然生长的鼠尾藻为对象,研究其有性繁殖分配动态及相关环境因子.结果表明:鼠尾藻于6月初开始进入有性繁殖期,于7月中旬海水温度22℃左右达到繁殖高峰,7月19日平均繁殖分配(RA)达76.7%,8月末有性繁殖结束.鼠尾藻繁殖分配与平均分枝长度呈显著线性相关(r=0.855,P<0.01).长度在10cm以下的藻体在整个繁殖期内的RA较低,而长度在10cm以上的藻体在成熟高峰期的RA在70.0%以上.析因方差分析表明,潮位和浪冲击度均对鼠尾藻有性繁殖分配有显著影响(潮位:F=175.62,P<0.001,浪冲击度:F=95.35,P<0.01),且二者之间存在交互作用(F=9.14,P<0.05).其对RA的影响大小依次为潮位>浪冲击度>潮位×浪冲击度.  相似文献   

13.
Large, architecturally complex lichen symbioses arose only a few times in evolution, increasing thallus size by orders of magnitude over those from which they evolved. The innovations that enabled symbiotic assemblages to acquire and maintain large sizes are unknown. We mapped morphometric data against an eight‐locus fungal phylogeny across one of the best‐sampled thallus size transition events, the origins of the Placopsis lichen symbiosis, and used a phylogenetic comparative framework to explore the role of nitrogen‐fixing cyanobacteria in size differences. Thallus thickness increased by >150% and fruiting body core volume increased ninefold on average after acquisition of cyanobacteria. Volume of cyanobacteria‐containing structures (cephalodia), once acquired, correlates with thallus thickness in both phylogenetic generalized least squares and phylogenetic generalized linear mixed‐effects analyses. Our results suggest that the availability of nitrogen is an important factor in the formation of large thalli. Cyanobacterial symbiosis appears to have enabled lichens to overcome size constraints in oligotrophic environments such as acidic, rain‐washed rock surfaces. In the case of the Placopsis fungal symbiont, this has led to an adaptive radiation of more than 60 recognized species from related crustose members of the genus Trapelia. Our data suggest that precyanobacterial symbiotic lineages were constrained to forming a narrow range of phenotypes, so‐called cryptic species, leading systematists until now to recognize only six of the 13 species clusters we identified in Trapelia.  相似文献   

14.
Spontaneous formation and development of adventive embryos were observed in cauline leaves of Sargassum macrocarpum in laboratory culture. Semi-spherical swellings, which were 200–250 μm in diameter, arose from the surface of cauline leaves of thalli cultured for 4 months from zygotic embryos. Swellings became cylindrical protuberances and grew into ‘daughter’ thalli with one or two small cauline leaves. These thalli detached from ‘mother’ thalli and attached to the surface of culture vessels by rhizoids produced within 1 week after detachment. Each daughter thallus developed into an individual thallus exhibiting the same morphological processes as zygotic embryos.  相似文献   

15.
The annual variation of major nitrogen pools, phosphorus, carbon, ash, and thallus water content in relation to seasonal environmental changes was studied in two northern Spanish populations of the edible seaweed Palmaria palmata (Linnaeus) Kuntze. Observed patterns were investigated using Spearman rank order correlation coefficients. There were significant relationships between thallus nutrient content and nitrate and orthophosphate seawater concentration, irradiance, temperature, and wave force. The highest levels of total N and P and nitrogenous compounds were observed during autumn and winter because the thallus stored N‐ and P‐rich compounds in response to high nutrient seawater concentration when growth was limited by low light and temperature. Phycoerythrin and other proteins were the main N reserves. Thallus P content was higher in algae from the eutrophic site. During spring, reduced N and P thallus content and increased ash, water, and C content were observed in the growing fronds. N and P seawater concentrations were undetectable during summer when nutrient reserves were low and growth was reduced and eventually suppressed, suggesting nutrient limiting conditions. Palmaria palmata clearly could take advantage of elevated N and P concentrations to create storage reserves in winter to support early summer growth. This storage response reduced the dependence of algal nutrition on the external nutrient supply and supports the use of pulse fertilization to diminish summer nutrient limitation of cultured algae.  相似文献   

16.
Symbioses such as lichens are potentially threatened by drastic environmental changes. We used the lichen Peltigera aphthosa—a symbiosis between a fungus (mycobiont), a green alga (Coccomyxa sp.), and N2‐fixing cyanobacteria (Nostoc sp.)—as a model organism to assess the effects of environmental perturbations in nitrogen (N) or phosphorus (P). Growth, carbon (C) and N stable isotopes, CNP concentrations, and specific markers were analyzed in whole thalli and the partners after 4 months of daily nutrient additions in the field. Thallus N was 40% higher in N‐fertilized thalli, amino acid concentrations were twice as high, while fungal chitin but not ergosterol was lower. Nitrogen also resulted in a thicker algal layer and density, and a higher δ13C abundance in all three partners. Photosynthesis was not affected by either N or P. Thallus growth increased with light dose independent of fertilization regime. We conclude that faster algal growth compared to fungal lead to increased competition for light and CO2 among the Coccomyxa cells, and for C between alga and fungus, resulting in neither photosynthesis nor thallus growth responded to N fertilization. This suggests that the symbiotic lifestyle of lichens may prevent them from utilizing nutrient abundance to increase C assimilation and growth.  相似文献   

17.
Reproductive allocation (the proportion of biomass allocated to reproductive tissue, RA) in Sargassum thunbergii was studied in Yantai, Shandong Peninsula, southern coast of Bohai Bay, China. Annual reproduction initiated in mid-June and peaked in mid-July (90 ± 8% fertile thalli and 75 ± 6% RA mean). Both RA and percentage of fertile thalli exhibited significant temporal variations during reproduction. Sterile thalli were only observed in small length hierarchies at peak reproduction and mean values of RA showed a significantly hierarchical variation, suggesting that the size of thalli played an important role in reproduction and RA were size-dependent. Numerous receptacles were produced along the lateral branches during the reproductive period. A distinct seasonal pattern was observed wherein the presence of lateral branches was followed by the onset of reproduction. RA was positively correlated with the number of lateral branches, as well as the total length of lateral branches. In addition, fertile thalli decayed quickly after peak reproduction. The probability of decay was evidently higher for fertile than for sterile thalli, because all surviving thalli were sterile and short during July–August. So, a trade-off between reproduction and survival may exist at individual levels in S. thunbergii.  相似文献   

18.
Tuckermannopsis pinastri is a lichen species found commonly on rocks and tree branches in boreal and alpine habitats in the northern United States. Members of this species produce three yellow-pigmented phenolic compounds: usnic, pinastric, and vulpinic acids. The objective of our study was to quantify the variation in concentration of the latter two of these compounds in relation to substrate factors, chlorophyll content, and thallus size. Using high-performance liquid chromatography, we analyzed 120 thalli of T. pinastri collected randomly from a single large population located at Spruce Knob, West Virginia. Although individuals were sampled from both tree and rock substrates that differed markedly in light intensity, these environmental factors were not correlated with observed variations in vulpinic or pinastric acid concentrations. Instead, compound concentrations were correlated most closely with thallus size, with small rather than large thalli having the highest concentrations of the two compounds. Small thalli did not have higher concentrations of chlorophylls than large thalli, however, which suggests that the rate of production of secondary compounds by the fungus in T. pinastri is independent of algal biomass. Inasmuch as lichen secondary compounds serve a defensive role against microorganisms and herbivores, our results suggest that small, juvenile thalli are better defended than more mature thalli.  相似文献   

19.
The density (fresh weight/volume) of the detached thalli of four sargassacean species (Myagropsis myagroides, Sargassum horneri, S. patens, S. siliquastrum) was measured weekly to determine their floating period. Thalli of the four species were collected with respect to the difference in their reproductive stage, and their floating abilities at different stages were determined. Floating thallus was ballasted with pre-weighed leads until the final addition of a weight caused sinking. The density and floating period of sargassacean thalli were dependent on the species and the specimens’ reproductive stage. The floating period of thalli detached before maturation was estimated to be between 4 and 14 weeks. However, thalli detached during maturation had a floating period of between 1 and 8 weeks, and those detached after maturation sank within 2 weeks. Sargassum horneri had the lowest density and the longest floating period among the four species investigated and this may explain the high abundance of S. horneri in floating seaweeds observed in the Sea of Japan.  相似文献   

20.
Phenology, or seasonal variation in life cycle events, is poorly described for many macroalgal species. We describe the phenology of a non-native population of Gracilaria vermiculophylla whose thalli are free-living or anchored by decorating polychaetes to tube caps. At a site in South Carolina, USA, we sampled 100 thalli approximately every month from January 2014 to January 2015. We assessed the reproductive state and measured thallus size based on wet weight, thallus length, and thallus surface area from herbarium mounts. Because life cycle stage cannot be assigned using morphology, we implemented a PCR assay to determine the life cycle stage—tetrasporophyte, female gametophyte, or male gametophyte—of each thallus. Tetrasporophytes dominated throughout the year, making up 81%–100% of thalli sampled per month. Reproductive tetrasporophytes varied between 0% and 65% of monthly samples and were most common in warm summer months (July through September) when thalli also tended to be larger. The vast majority of the reproductive thalli were worm-anchored and not fixed to hard substratum via a holdfast. Thus, free-living thalli can be reproductive and potentially seed new non-native populations. Given G. vermiculophylla reproduction seems tied closely to temperature, our work suggests phenology may change with climate-related changes in seawater temperatures. We also highlight the importance of understanding the natural history of macroalgae to better understand the consequence of range expansions on population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号