首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Phosphorothioate cytosine-guanine oligodeoxynucleotides (CpG PS-ODNs) has been reported to induce Th1 immune responses against coadministered Ags more efficiently than phosphodiester CpG ODNs (CpG PO-ODNs). Here, we demonstrated that PS-ODNs, but not PO-ODNs, have a chemotactic effect on primary macrophages, which is independent of the CpG motif. In addition, the conjugation of a hexameric dG run (dG(6) run) at the 3' terminus reduced the concentration required for the optimal chemotactic activity of PS-ODNs by approximately 10-fold. Endosomal maturation blockers, such as monensin and chloroquine, inhibited the chemotactic effect of PS-ODNs. The inhibition of the activities of p38 mitogen-activated protein (MAP) kinase, and extracellular signal-related kinases (ERKs) as well as phosphoinositide 3-kinase with their specific inhibitors also resulted in suppressing the chemotaxis of primary macrophages induced by PS-ODNs. These results indicate that the PS-ODN-mediated chemotaxis requires the activation of ERKs, p38 MAP kinase, and phosphoinositide 3-kinase as well as endosomal maturation. In addition, the phosphorylations of the p38 MAP kinase, ERKs, and protein kinase B, Akt, were induced by PS-ODN, which were further enhanced by the presence of both a dG(6) run and CpG motifs. Our findings suggest that the chemotactic activity of PS-ODNs may be one of the mechanisms by which PS-ODNs exhibit stronger immunomodulatory activities than PO-ODNs in vivo.  相似文献   

2.
Atopic dermatitis (AD) is a chronic inflammatory skin disease and the pathogenesis of AD is associated with the release of various cytokines/chemokines due to activated Th(2) immune responses. Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG dinucleotide in the context of particular base sequence (CpG motifs) are known to have the immunostimulatory activities in mice and to convert from Th(2) to Th(1) immune responses in AD. We aimed to investigate that CpG ODN, especially phosphodiester form, can stimulate the protective immunity in NC/Nga mice with AD. We isolated BMDCs from NC/Nga mice and then, cultured with GM-CSF and IL-4 for 6 days, and treated for 2 days by either phosphorothioate ODN or phosphodiester ODN. CpG ODN-treated DCs resulted in more production of IL-12. When CpG ODN-treated DCs were intravenously injected into the NC/Nga mice, the NC/Nga mice with CpG ODN-treated DCs showed significant improvement of AD symptoms and decrease of IgE level. Histopathologically, the NC/Nga mice skin with CpG ODN-treated DCs showed the decreased IL-4 and TARC expression comparing with non-injected mice. These results may suggest that phosphodiester CpG ODN-treated DCs might function as a potent adjuvant for AD in a mouse model.  相似文献   

3.
4.
DNA vaccination is an effective approach in inducing the switch of murine immune responses from a Th2 to a Th1 profile of cytokine production that has been related to the activity of unmethylated CpG motifs present in bacterial, but not mammalian, DNA. We report here that some synthetic phosphorothioate, but not phosphodiester, oligodeoxynucleotides (ODNs) were able to induce B cell proliferation and to shift the in vitro differentiation of Dermatophagoides pteronyssinus group 1-specific human CD4+ T cells from atopic donors into Th cell effectors showing a prevalent Th1, instead of Th2, cytokine profile. This latter effect was completely blocked by the neutralization of IL-12 and IFN (alpha and gamma) in bulk culture, suggesting that the Th1-inducing activity of phosphorothioate ODNs was mediated by their ability to stimulate the production of these cytokines by monocytes, dendritic, and NK cells. Cytosine methylation abolished the Th1-inducing activity of ODNs; however, CpG dinucleotide-containing ODNs exhibited the Th1-shifting effect independently of the presence or the absence of CpG motifs (5'-pur-pur-CpG-pyr-pyr-3'). Moreover, the inversion of CpG to GpC resulted only in a partial reduction of this activity, suggesting that the motif responsible for the Th1-skewing effect in humans is at least partially different from that previously defined in mice. These results support the concept that the injection of allergens mixed to, or conjugated with, appropriate ODNs may provide a novel allergen-specific immunotherapeutic regimen for the treatment of allergic disorders.  相似文献   

5.
Toll-like receptor 9 (TLR9), a member of the interleukin-1 (IL-1) family of pathogen-associated molecular pattern receptors, is activated by unmethylated CpG-containing sequences in bacterial DNA or synthetic oligonucleotides (ODNs) in the endosomal compartment. The stimulation of an IL-1 response is thought to require the aggregation of its receptor. By analogy, we postulated that the potency of a TLR9 ligand should depend first on its ability to enter cells and gain access to TLR9 and second on its capacity to form a multimeric complex capable of cross-linking these receptors. Previously, we selected from a random library a series of phosphodiester ODNs with enhanced ability to permeate cells. Here, we studied the structural requirements for these penetrating ODNs to elicit a functional TLR9 response, as assessed by cytokine production from bone marrow-derived mouse mononuclear cells. The presence of a prototypic murine immunostimulatory DNA hexameric sequence (purine-purine-CG-pyrimidine-pyrimidine) in the ODNs was not sufficient for stimulation. In addition, the TLR9-activating ODNs had to have the ability to form aggregates and often to form secondary structures near the core CpG motifs. Multimerization was promoted by the presence of a guanine-rich 3'-terminus. The phosphodiester ODNs with CpG motifs that did not aggregate antagonized the effects of the multimeric TLR9 activators. These findings suggest that an optimal TLR9 agonist needs to contain a spatially distinct multimerization domain and a receptor binding CpG domain. This concept may prove useful for the design of new TLR9-modulating agents.  相似文献   

6.
The outcomes of immune responses are regulated by various parameters including how Ags are handled by APCs. In this study, we describe the intrinsic immunomodulatory characteristics of oligodeoxynucleotides (ODNs) that improve the Ag presentation by APCs. ODNs (20-mer) containing CpG motifs induced strong Th1-skewed responses. In contrast, those without CpG motifs enhanced cytokine production by effector Th cells without particular skewing toward Th1 responses or induced the differentiation of unprimed CD4(+) T cells toward Th2 cells. These functional features were prominently envisaged when ODNs were conjugated to the Ag, and were underlain by the facilitated binding of ODN-conjugated Ag to Ia(+) cells. Despite the functional differences between ODNs with CpG motifs and those without CpG motifs, both ODNs bound to Ia(+) cells with similar affinity and kinetics. Immunoenhancing activities of the ODNs were not sequence-dependent; the characteristics, including the facilitation of Ag capture, enhancement of effector Th cell responses, and induction of Th2 cells, were shared by randomly synthesized ODNs conjugated to Ag. This is the first study suggesting that ODNs, independent of the sequences, enhance immune responses through the promoted capture of ODN-conjugated Ag by APCs.  相似文献   

7.
Bacterial and synthetic DNAs, containing CpG dinucleotides in specific sequence contexts, activate the vertebrate immune system. Unlike phosphorothioate (PS) CpG DNAs, phosphodiester (PO) CpG DNAs require either palindromic sequences and/or poly(dG) sequences at the 3(')-end for activity. Here, we report 'PO-immunomers' having two PO-CpG DNA molecules joined through their 3(')-ends. These PO-imunomers permitted us, for the first time, to assess immunostimulatory properties of PO-CpG DNAs in vitro and in vivo without the need for palindromic and/or poly(dG) sequences. In medium containing 10% fetal bovine serum, PO-immunomers were more resistant than PO-CpG DNAs to nucleases. Compared to PS-CpG DNA in BALB/c and C3H/HeJ mice spleen cell culture assays, PO-immunomers showed increased IL-12 secretion and minimal amounts of IL-6 secretion. PO-immunomers activated NF-kappa B and induced cytokine secretion in J774 cell cultures. In addition, PO-immunomers showed antitumor activity in nude mice bearing human breast (MCF-7) and prostate (DU145) cancer xenografts.  相似文献   

8.
The most effective immunological adjuvants contain microbial products, such as TLR agonists, which bind to conserved pathogen recognition receptors. These activate dendritic cells (DCs) to become highly effective APCs. We assessed whether TLR ligand-treated DCs can enhance the otherwise defective response of aged naive CD4 T cells. In vivo administration of CpG, polyinosinic-polycytidylic acid, and Pam(3)CSK(4) in combination with Ag resulted in the increased expression of costimulatory molecules and MHC class II by DCs, increased serum levels of the inflammatory cytokines IL-6 and RANTES, and increased cognate CD4 T cell responses in young and aged mice. We show that, in vitro, preactivation of DCs by TLR ligands makes them more efficient APCs for aged naive CD4 T cells. After T-DC interaction, there are enhanced production of inflammatory cytokines, particularly IL-6, and greater expansion of the aged T cells, resulting from increased proliferation and greater effector survival with increased levels of Bcl-2. TLR preactivation of both bone marrow-derived and ex vivo DCs improved responses. IL-6 produced by the activated DCs during cognate T cell interaction was necessary for enhanced aged CD4 T cell expansion and survival. These studies suggest that some age-associated immune defects may be overcome by targeted activation of APCs by TLR ligands.  相似文献   

9.
WSX-1 is the alpha subunit of the IL-27R complex expressed by T, B, NK/NKT cells, as well as macrophages and dendritic cells (DCs). Although it has been shown that IL-27 has both stimulatory and inhibitory effects on T cells, little is known on the role of IL-27/WSX-1 on DCs. LPS stimulation of splenic DCs in vivo resulted in prolonged CD80/CD86 expression on WSX-1-deficient DCs over wild-type DCs. Upon LPS stimulation in vitro, WSX-1-deficient DCs expressed Th1-promoting molecules higher than wild-type DCs. In an allogeneic MLR assay, WSX-1-deficient DCs were more potent than wild-type DCs in the induction of proliferation of and IFN-gamma production by responder cell proliferation. When cocultured with purified NK cells, WSX-1-deficient DCs induced higher IFN-gamma production and killing activity of NK cells than wild-type DCs. As such, Ag-pulsed WSX-1-deficient DCs induced Th1-biased strong immune responses over wild-type DCs when transferred in vivo. WSX-1-deficient DCs were hyperreactive to LPS stimulation as compared with wild-type DCs by cytokine production. IL-27 suppressed LPS-induced CD80/86 expression and cytokine production by DCs in vitro. Thus, our study demonstrated that IL-27/WSX-1 signaling potently down-regulates APC function and Th1-promoting function of DCs to modulate overall immune responses.  相似文献   

10.
Dendritic cells (DCs) are professional APCs able to initiate innate and adaptive immune responses against invading pathogens. Different properties such as the efficient Ag processing machinery, the high levels of expression of costimulatory molecules and peptide-MHC complexes, and the production of cytokines contribute in making DCs potent stimulators of naive T cell responses. Recently we have observed that DCs are able to produce IL-2 following bacterial stimulation, and we have demonstrated that this particular cytokine is a key molecule conferring to early bacterial activated DCs unique T cell priming capacity. In the present study we show that many different microbial stimuli, but not inflammatory cytokines, are able to stimulate DCs to produce IL-2, indicating that DCs can distinguish a cytokine-mediated inflammatory process from the actual presence of an infection. The capacity to produce IL-2 following a microbial stimuli encounter is a feature shared by diverse DC subtypes in vivo, such as CD8 alpha(+) and CD8 alpha(-) splenic DCs and epidermal Langerhans cells. When early activated DCs interact with T cells, IL-2 produced by DCs is enriched at the site of cell-cell contact, confirming the importance of DCs-derived IL-2 in T cell activation.  相似文献   

11.
Dendritic cells (DCs) are the only APCs capable of initiating adaptive immune responses. The initiation of immune responses requires that DCs 1) internalize and present Ags; and 2) undergo a differentiation process, called "maturation", which transforms DCs into efficient APCs. DC maturation may be initiated by the engagement of different surface receptors, including certain cytokine receptors (such as TNFR), Toll-like receptors, CD40, and FcRs. The early activation events that link receptor engagement and DC maturation are not well characterized. We found that FcR engagement by immune complexes induced the phosphorylation of Syk, a protein tyrosine kinase acting immediately downstream of FcRs. Syk was dispensable for DC differentiation in vitro and in vivo, but was strictly required for immune complexes internalization and subsequent Ag presentation to T lymphocytes. Importantly, Syk was also required for the induction of DC maturation and IL-12 production after FcR engagement, but not after engagement of other surface receptors, such as TNFR or Toll-like receptors. Therefore, protein tyrosine phosphorylation by Syk represents a novel pathway for the induction of DC maturation.  相似文献   

12.
DNA is a complex macromolecule the immunological properties of which depend on short sequence motifs called CpG motifs or immunostimulatory sequences (ISS). These sequences are mitogenic for B cells and can stimulate macrophage cytokine production. While these sequences do not directly activate T cells, they can augment effects of stimulation via the TCR. Furthermore, ISS can affect T cells because of macrophage production of IL-12 and IFN-alpha/beta. In these studies, we further evaluated the immune effects of DNA on T cells, testing the possibility that certain T cell populations can respond directly to this stimulus. We therefore tested the in vitro responses of thymocytes to a series of phosphodiester (Po) and phosphorothioate (Ps) oligonucleotides (ODNs) varying in sequence. In in vitro cultures, phosphorothioate ODNs (sODNs) containing CpG motifs induced significant proliferation of murine thymocytes, although phosphodiester compounds lacked activity. The magnitude of stimulation varied with sequences flanking the CpG motifs, as both dA and dT sequences enhanced the stimulatory capacity of the CpG motif. Furthermore, CpG sODNs were strong costimulators of anti-CD3-mediated thymocyte activation, increasing proliferation compared to anti-CD3 in the absence of DNA. This activation was only partially inhibited by cyclosporine A and was not dependent on a calcium influx. Together, these results indicate that phosphorothioate oligonucleotides containing CpG motifs can directly induce thymocyte proliferation as well as augment TCR activation. These observations thus extend the range of actions of CpG DNA and suggest additional mechanisms for its function as an immunomodulatory agent or adjuvant.  相似文献   

13.
Optimal Ag targeting and activation of APCs, especially dendritic cells (DCs), are important in vaccine development. In this study, we report the effects of different Toll-like receptor (TLR)-binding compounds to enhance immune responses induced by human APCs, including CD123(+) plasmacytoid DCs (PDCs), CD11c(+) myeloid DCs (MDCs), monocytes, and B cells. PDCs, which express TLR7 and TLR9, responded to imidazoquinolines (imiquimod and R-848) and to CpG oligodeoxynucleotides stimulation, resulting in enhancement in expression of costimulatory molecules and induction of IFN-alpha and IL-12p70. In contrast, MDCs, which express TLR3, TLR4, and TLR7, responded to poly(I:C), LPS, and imidazoquinolines with phenotypic maturation and high production of IL-12 p70 without producing detectable IFN-alpha. Optimally TLR ligand-stimulated PDCs or MDCs exposed to CMV or HIV-1 Ags enhanced autologous CMV- and HIV-1-specific memory T cell responses as measured by effector cytokine production compared with TLR ligand-activated monocytes and B cells or unstimulated PDCs and MDCs. Together, these data show that targeting specific DC subsets using TLR ligands can enhance their ability to activate virus-specific T cells, providing information for the rational design of TLR ligands as adjuvants for vaccines or immune modulating therapy.  相似文献   

14.
Valpha14 NKT cells exhibit various immune regulatory properties in vivo, but their precise mechanisms remain to be solved. In this study, we demonstrate the mechanisms of generation of regulatory dendritic cells (DCs) by stimulation of Valpha14 NKT cells in vivo. After repeated injection of alpha-galactosylceramide (alpha-GalCer) into mice, splenic DCs acquired properties of regulatory DCs in IL-10-dependent fashion, such as nonmatured phenotypes and increased IL-10 but reduced IL-12 production. The unique cytokine profile in these DCs appears to be regulated by ERK1/2 and IkappaB(NS). These DCs also showed an ability to suppress the development of experimental allergic encephalomyelitis by generating IL-10-producing regulatory CD4 T cells in vivo. These findings contribute to explaining how Valpha14 NKT cells regulate the immune responses in vivo.  相似文献   

15.
Nanoparticles are considered to be efficient tools for inducing potent immune responses by an Ag carrier. In this study, we examined the effect of Ag-carrying biodegradable poly(gamma-glutamic acid) (gamma-PGA) nanoparticles (NPs) on the induction of immune responses in mice. The NPs were efficiently taken up by dendritic cells (DCs) and subsequently localized in the lysosomal compartments. gamma-PGA NPs strongly induced cytokine production, up-regulation of costimulatory molecules, and the enhancement of T cell stimulatory capacity in DCs. These maturational changes of DCs involved the MyD88-mediated NF-kappaB signaling pathway. In vivo, gamma-PGA NPs were preferentially internalized by APCs (DCs and macrophages) and induced the production of IL-12p40 and IL-6. The immunization of mice with OVA-carrying NPs induced Ag-specific CTL activity and Ag-specific production of IFN-gamma in splenocytes as well as potent production of Ag-specific IgG1 and IgG2a Abs in serum. Furthermore, immunization with NPs carrying a CD8(+) T cell epitope peptide of Listeria monocytogenes significantly protected the infected mice from death. These results suggest that Ag-carrying gamma-PGA NPs are capable of inducing strong cellular and humoral immune responses and might be potentially useful as effective vaccine adjuvants for the therapy of infectious diseases.  相似文献   

16.
Although trauma-hemorrhage (T-H) induces suppressed splenic dendritic cell (DC) maturation and antigen presentation capacity, it remains unclear whether IL-15 modulates splenic DC functions. The aim of this study therefore was to investigate the effect of IL-15 on splenic DC functions after T-H. Male C3H/HeN mice (6-8 wk old) were randomly assigned to T-H or sham operation. T-H was induced by midline laparotomy and approximately 90 min of hemorrhagic shock (blood pressure 35 mmHg), followed by fluid resuscitation (4x the shed blood volume in the form of Ringer lactate). Two hours later, mice were killed, splenic DCs were isolated, and the effects of exogenous IL-15 on their costimulatory factors, major histocompatibility class II expression, ability to produce cytokines, and antigen presentation were measured. The results indicate that IL-15 production capacity of splenic DCs was reduced following T-H. Ex vivo exposure to IL-15 attenuated the suppressed production of TNF-alpha, IL-6, and IFN-gamma from splenic DCs following T-H. In addition, expression of surface antigen studies demonstrate that exogenous IL-15 attenuated T-H-induced downregulation of the activation of DC. The suppressed splenic DC antigen presentation function following T-H was also attenuated by IL-15 treatment. Moreover, IL-15 enhanced IL-12-induced IFN-gamma production and antigen presentation by splenic DCs. These data suggest that ex vivo treatment with IL-15 following T-H provides beneficial effects on splenic DCs. The depression in IL-15 production by splenic DCs could contribute to the host's enhanced susceptibility to infections following T-H.  相似文献   

17.
The TAM family of receptors (Tyro3, Axl, and Mertk) plays an important role in the negative regulation of response of dendritic cells (DCs) and macrophages to pathogenic stimuli, and mice lacking this receptor family develop spontaneous lupus-like systemic autoimmunity against a variety of tissues, including retina. To study the molecular mechanism underlying the TAM regulation of APC functions and subsequent effects on the induction of an autoimmune response against the eye, we examined CD4 T cell differentiation following retinal self-antigen immunization. CD4 T cells prepared from naive or interphotoreceptor retinoid-binding protein (IRBP)1-20-immunized Axl and Mertk double-knockout (dko) mice reacted to activation using anti-CD3 and anti-CD28 Abs or to bolster by self-antigen in vitro with a predominantly Th1 effector response, as characterized by increased IFN-γ production and higher frequency of IFN-γ-positive CD4 T cells. The Th17 effector response to IRBP immunization was similar in dko mice to that in wild-type controls, as shown by ELISA measurement of IL-17A in the culture medium and flow cytometric analysis of IL-17A-secreting CD4 T cells. Interestingly, APCs or DCs isolated from IRBP-immunized dko mice exhibited a greater ability to drive the Th1 response. The production of two driving cytokines for Th1 differentiation, IL-12 and IL-18, was dramatically increased in dko DCs and macrophages, and LPS stimulation bolstered their production. The preferential development into the Th1 subset in dko mice suggests that the cytokine milieu produced by the mutant mice in vivo or by mutant APCs in vitro selectively creates a differentiation environment favoring the Th1 effector response.  相似文献   

18.
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs are known to stimulate immune responses and are potent adjuvants in higher vertebrates, but so far the effects in fish are poorly described. We here report that CpG ODNs induce IL-1beta expression and production of interferon-like cytokines in rainbow trout head-kidney macrophages, whereas ODNs with an inverted motif (GpC) have a much less stimulatory effect. We further demonstrate that endosomal maturation is essential for CpG signalling, as chloroquine, a compound known to block endosomal acidification, inhibits cytokine expression in the macrophages.  相似文献   

19.
Bruton's tyrosine kinase (Btk) is a critical signaling mediator downstream of the B cell Ag receptor. X-linked agammaglobulinemia is caused by mutations in Btk resulting in multiple defects in B cell development and function, and recurrent bacterial infections. Recent evidence has also supported a role for Btk in TLR signaling. We demonstrate that Btk is activated by TLR4 in primary macrophages and is required for normal TLR-induced IL-10 production in multiple macrophage populations. Btk-deficient bone marrow-derived macrophages secrete decreased levels of IL-10 in response to multiple TLR ligands, compared with wild-type (WT) cells. Similarly, Btk-deficient peritoneal and splenic macrophages secrete decreased IL-10 levels compared with WT cultures. This phenotype correlates with Btk-dependent induction of NF-kappaB and AP-1 DNA binding activity, and altered commensal bacteria populations. Decreased IL-10 production may be responsible for increased IL-6 because blocking IL-10 in WT cultures increased IL-6 production, and supplementation of IL-10 to Btk-deficient cultures decreased IL-6 production. Similarly, injection of IL-10 in vivo with LPS decreases the elevated IL-6 serum levels during endotoxemia in Btk-deficient mice. These data further support a role for Btk in regulating TLR-induced cytokine production from APCs and provide downstream targets for analysis of Btk function.  相似文献   

20.
We evaluated the innate immune response to various synthetic CpG-containing oligodeoxynucleotides (CpG ODNs) by measuring nitric oxide production in the peripheral blood monocytes from turkey poults. The results indicate that the presence of the CpG dinucleotide in ODNs was a prerequisite for activation of turkey monocytes and induction of nitric oxide (NO) synthesis. CpG motifs and sequence structure of the ODNs were also found to influence stimulatory activity greatly. The most potent CpG ODN to induce NO synthesis in turkey monocytes was human-specific CpG ODN M362, followed by CpG ODN 2006 (human), CpG ODN#17 (chicken) and CpG ODN 1826 (mouse). The optimal CpG motif for NO induction was GTCGTT. Phosphorothioate modification of CpG ODNs also significantly increased stimulatory activity. Compared with chicken monocytes, turkey monocytes appeared to be less sensitive to CpG motif variation, whereas chicken monocytes were found to respond more strictly to human-specific CpG ODNs or ODNs that contain GTCGTT motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号