共查询到20条相似文献,搜索用时 15 毫秒
2.
3.
TNFR2 signaling modulates immunity after allogeneic hematopoietic cell transplantation 总被引:1,自引:0,他引:1
Tumor necrosis factor-α (TNF-α) signaling through TNF receptor 2 (TNFR2) plays a complex immune regulatory role in allogeneic hematopoietic cell transplantation (HCT). TNF-α is rapidly released in the circulation after the conditioning regimen with chemotherapy and/or radiotherapy. It activates the function of donor alloreactive T cells and donor Natural Killer cells and promotes graft versus tumor effects. However, donor alloreactive T cells also attack host tissues and cause graft versus host disease (GVHD), a life-threatening complication of HCT. Indeed, anti-TNF-α therapy has been used to treat steroid-refractory GVHD. Recent studies have highlighted another role for TNFR2 signaling, as it enhances the function of immune cells with suppressive properties, in particular CD4+Foxp3+ regulatory T cells (Tregs). Various clinical trials are employing Treg-based treatments to prevent or treat GVHD. The present review will discuss the effects of TNFR2 signaling in the setting of allogeneic HCT, the implications for the use of anti-TNF-α therapy to treat GVHD and the clinical perspectives of strategies that specifically target this pathway. 相似文献
4.
Mesaros A Koralov SB Rother E Wunderlich FT Ernst MB Barsh GS Rajewsky K Brüning JC 《Cell metabolism》2008,7(3):236-248
5.
The Stat family in cytokine signaling 总被引:46,自引:0,他引:46
Ihle JN 《Current opinion in cell biology》2001,13(2):211-217
6.
7.
Lingbing Zhang Dongdong Feng Lynda X. Yu Kangla Tsung Jeffrey A. Norton 《Cancer immunology, immunotherapy : CII》2013,62(6):1061-1071
Efficacy of cancer chemotherapy is generally believed to be the result of direct drug killing of tumor cells. However, increased tumor cell killing does not always lead to improved efficacy. Herein, we demonstrate that the status of antitumor immunity at the time of chemotherapy treatment is a critical factor affecting the therapeutic outcome in that tumor-bearing mice that possess preexisting antitumor immunity respond to chemotherapy much better than those that do not. Enhancing antitumor immunity before or at the time of chemotherapy-induced antigen release increases subsequent response to chemotherapy significantly. By in vitro and in vivo measurements of antitumor immunity, we found a close correlation between the intensity of antitumor immunity activated by chemotherapy and the efficacy of treatment. Immune intervention with interleukin-12 during the early phase of chemotherapy-induced immune activation greatly amplifies the antitumor response, often resulting in complete tumor eradication not only at the chemo-treated local site, but also systemically. These findings provide additional evidence for an immune-mediated antitumor response to chemotherapy. Further, our results show that timely immune modification of chemotherapy-activated antitumor immunity can result in enhanced antitumor-immune response and complete tumor eradication. 相似文献
8.
Sunitinib, a small-molecule multi-targeted tyrosine kinase inhibitor, has been applied in phase II clinical trial as second-line treatment for advanced gastric cancer. In this study, we determined the effect of Sunitinib on the multidrug resistance in gastric cancer cells selected by vincristine. Our results showed that Sunitinib significantly enhanced the cytotoxicity of adriamycin, vincristine, etoposide, 5-Fluorouracil, and cisplatin in multidrug-resistant gastric cancer cells (SGC7901/VCR). Sunitinib significantly increased the intracellular accumulation and retention of rhodamine 123 in the SGC7901/VCR cells. However, Sunitinib, at a concentration that reverses MDR, had no significant effect on P-gp protein or mRNA expression levels. In addition, the present study revealed that Sunitinib inhibited Stat3 and down-regulated Bcl-2 in SGC7901/VCR cells, which might also contribute to the reversal of MDR. In conclusion, Sunitinib reverses multidrug resistance in gastric cancer cells by inhibiting P-gp transporter function and modulating Stat3 and Bcl-2. Further study with Sunitinib may be helpful for developing combination therapeutic strategy or circumventing gastric cancer MDR to other conventional anti-cancer drugs. 相似文献
9.
Stat6 signaling promotes protective immunity against Trichinella spiralis through a mast cell- and T cell-dependent mechanism 总被引:9,自引:0,他引:9
Urban JF Schopf L Morris SC Orekhova T Madden KB Betts CJ Gamble HR Byrd C Donaldson D Else K Finkelman FD 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(4):2046-2052
Studies in mice infected with the gastrointestinal nematode parasite Nippostrongylus brasiliensis demonstrated that IL-4/IL-13 activation of Stat6 suppresses development of intestinal mastocytosis and does not contribute to IL-4/IL-13 production, but is still essential for parasite expulsion. Because expulsion of another gastrointestinal nematode, Trichinella spiralis, unlike N. brasiliensis expulsion, is mast cell dependent, these observations suggested that T. spiralis expulsion would be Stat6 independent. Instead, we find that Stat6 activation by IL-4/IL-13 is required in T. spiralis-infected mice for the mast cell responses that induce worm expulsion and for the cytokine responses that induce intestinal mastocytosis. Furthermore, although IL-4 induces N. brasiliensis expulsion in the absence of B cells, T cells, and mast cells, mast cells and T cells are required for IL-4 induction of T. spiralis expulsion. Thus, Stat6 signaling is required for host protection against N. brasiliensis and T. spiralis but contributes to expulsion of these two worms by different mechanisms. The induction of multiple effector mechanisms by Stat6 signaling provides a way for a cytokine response induced by most gastrointestinal nematode parasites to protect against most of these parasites, even though different effector mechanisms are required for protection against different nematodes. 相似文献
10.
Penichet ML Dela Cruz JS Challita-Eid PM Rosenblatt JD Morrison SL 《Cancer immunology, immunotherapy : CII》2001,49(12):649-662
In the present study we describe a novel murine tumor model in which the highly malignant murine B cell lymphoma 38C13 has
been transduced with the cDNA encoding human tumor-associated antigen HER2/neu. This new cell line (38C13-HER2/neu) showed stable surface expression but not secretion of human HER2/neu. It also maintained expression of the idiotype (Id) of the surface immunoglobulin of 38C13, which serves as another tumor-associated
antigen. Surprisingly, spontaneous tumor regression was observed following s.c. but not i.v. injection of 38C13-HER2/neu cells in immunocompetent syngeneic mice. Regression was more frequently observed with larger tumor cell challenges and was
mediated through immunological mechanisms because it was not observed in syngeneic immunodeficient mice. Mice that showed
complete tumor regression were immune to challenge with the parental cell line 38C13 and V1, a variant of 38C13 that does
not express the Id. Immunity could be transferred with sera, suggesting that an antibody response mediated rejection and immunity.
Continuously growing s.c. tumors as well as metastatic tumors obtained after the i.v. injection of 38C13-HER2/neu maintained expression of human HER2/neu, which can serve as a target for active immunotherapy. As spontaneous tumor regression has not been observed in other human
murine models expressing human HER2/neu, our results illustrate the enormous differences that can exist among different murine tumors expressing the same antigen.
The present model provides a useful tool for the study of the mechanisms of protective immunity to B cell lymphoma and for
the evaluation of different therapeutic approaches based on the stimulation or suppression of the immune response.
Received: 2 August 2000 / Accepted: 20 September 2000 相似文献
11.
Shigeo Koido Masaki Ito Yukiko Sagawa Masato Okamoto Kazumi Hayashi Eijiro Nagasaki Shin Kan Hideo Komita Yuko Kamata Sadamu Homma 《Cancer immunology, immunotherapy : CII》2014,63(5):459-468
Vaccination of BALB/c mice with dendritic cells (DCs) loaded with the lysate of induced vascular progenitor (iVP) cells derived from murine-induced pluripotent stem (iPS) cells significantly suppressed the tumor of CMS-4 fibrosarcomas and prolonged the survival of CMS-4-inoculated mice. This prophylactic antitumor activity was more potent than that of immunization with DCs loaded with iPS cells or CMS-4 tumor cells. Tumors developed slowly in mice vaccinated with DCs loaded with iVP cells (DC/iVP) and exhibited a limited vascular bed. Immunohistochemistry and a tomato-lectin perfusion study demonstrated that the tumors that developed in the iVP-immunized mice showed a marked decrease in tumor vasculature. Immunization with DC/iVP induced a potent suppressive effect on vascular-rich CMS-4 tumors, a weaker effect on BNL tumors with moderate vasculature, and nearly no effect on C26 tumors with poor vasculature. Treatment of DC/iVP-immunized mice with a monoclonal antibody against CD4 or CD8, but not anti-asialo GM1, inhibited the antitumor activity. CD8+ T cells from DC/iVP-vaccinated mice showed significant cytotoxic activity against murine endothelial cells and CMS-4 cells, whereas CD8+ T cells from DC/iPS-vaccinated mice did not. DNA microarray analysis showed that the products of 29 vasculature-associated genes shared between genes upregulated by differentiation from iPS cells into iVP cells and genes shared by iVP cells and isolated Flk-1+ vascular cells in CMS-4 tumor tissue might be possible targets in the immune response. These results suggest that iVP cells from iPS cells could be used as a cancer vaccine targeting tumor vascular cells and tumor cells. 相似文献
12.
13.
14.
Zoya Alteber Meir Azulay Gal Cafri Ezra Vadai Esther Tzehoval Lea Eisenbach 《Cancer immunology, immunotherapy : CII》2014,63(4):369-380
Cryoablation is a low-invasive surgical procedure for management of malignant tumors. Tissue destruction is obtained by repeated deep freezing and thawing and results in coagulative necrosis and in apoptosis. This procedure induces the release of tumor-associated antigens and proinflammatory factors into the microenvironment. Local administration of immature dendritic cells (DCs) potentiates the immune response induced by cryoablation. To further augment the induction of long-lasting antitumor immunity, we investigated the clinical value of combining cryoimmunotherapy consisting of cryoablation and inoculation of immature DCs with administration of the immune adjuvant, CpG oligodeoxynucleotides. Injection of the murine Lewis lung carcinoma, D122-luc-5.5 that expresses the luciferase gene, results in spontaneous metastases, which can be easily monitored in vivo. The local tumor was treated by the combined treatment. The clinical outcome was assessed by monitoring tumor growth, metastasis in distant organs, overall survival, and protection from tumor recurrence. The nature of the induced T cell responses was analyzed. Combined cryoimmunotherapy results in reduced tumor growth, low metastasis and significantly prolonged survival. Moreover, this treatment induces antitumor memory that protected mice from rechallenge. The underlying suggested mechanisms are the generation of tumor-specific type 1 T cell responses, subsequent induction of cytotoxic T lymphocytes, and generation of systemic memory. Our data highlight the combined cryoimmunotherapy as a novel antitumor vaccine with promising preclinical results. Adjustment of this technique into practice will provide the therapeutic benefits of both, ablation of the primary tumor and induction of robust antitumor and antimetastatic immunity. 相似文献
15.
Hongli Zhou Yuting Lu Hang Wei Yixin Chen Yanin Limpanon Paron Dekumyoy Ping Huang Peiyao Shi Zhiyue Lv 《PLoS neglected tropical diseases》2022,16(5)
Angiostrongylus cantonensis (AC) is well-documented that parasitizes the host brain and causes eosinophilic meningitis. The migration route of AC in permissive hosts is well demonstrated, while in nonpermissive hosts, it remains to be fully defined. In the present study, we exploited live imaging technology, morphological and pathological configuration analysis, and molecular biological technologies to explore the migration route of AC and the accompanying tissue damage in nonpermissive and permissive hosts. Our data indicated that, in nonpermissive host mouse, AC larvae migrated from intestinal wall to liver at 2 hours post-infection (hpi), from liver to lung at 4 hpi and then from lung to brain at 8 hpi. AC larval migration caused fatal lung injury (pneumonia) during acute and early infection phases, along with significant activation of Stat3/IL-6 signaling. In addition, AC induce sustained interstitial pneumonia in mouse and rat and pulmonary fibrosis only in rat during late infection phase. Moreover, during the early and late infection phases, Th2 cytokine expression and Stat3 and IL-6 signaling were persistently enhanced and myeloid macrophage cells were notably enriched in host lung, and administration of Stat3 and IL-6 inhibitors (C188-9 and LMT-28) attenuated AC infection-induced acute pneumonia in mice. Overall, we are the first to provide direct and systemic laboratory evidence of AC migration route in a nonpermissive host and report that infection with a high dose of AC larvae could result in acute and fatal pneumonia through Stat3/IL-6 signaling in mice. These findings may present a feasible to rational strategy to minimize the pathogenesis induced by AC. 相似文献
16.
Zhao L Hart S Cheng J Melenhorst JJ Bierie B Ernst M Stewart C Schaper F Heinrich PC Ullrich A Robinson GW Hennighausen L 《The Journal of biological chemistry》2004,279(42):44093-44100
The interleukin-6 (IL6) family of cytokines signals through the common receptor subunit gp130, and subsequently activates Stat3, MAPK, and PI3K. Stat3 controls cell death and tissue remodeling in the mouse mammary gland during involution, which is partially induced by IL6 and LIF. However, it is not clear whether Stat3 activation is mediated solely through the gp130 pathway or also through other receptors. This question was explored in mice carrying two distinct mutations in the gp130 gene; one that resulted in the complete ablation of gp130 and one that led to the loss of Stat3 binding sites (gp130Delta/Delta). Deletion of gp130 specifically from mammary epithelium resulted in a complete loss of Stat3 activity and resistance to tissue remodeling comparable to that seen in the absence of Stat3. A less profound delay of mammary tissue remodeling was observed in gp130Delta/Delta mice. Stat3 tyrosine and serine phosphorylation was still detected in these mice suggesting that Stat3 activation could be the result of gp130 interfacing with other receptors. Experiments in primary mammary epithelial cells and transfected COS-7 cells revealed a p44/42 MAPK and EGFR-dependent Stat3 activation. Moreover, the gp130-dependent EGFR activation was independent of EGF ligands, suggesting a cytoplasmic interaction and cross-talk between these two receptors. These experiments establish that two distinct Stat3 signaling pathways emanating from gp130 are utilized in mammary tissue. 相似文献
17.
Xuewei Yan Chao Yao Cheng Fang Min Han Chenyuan Gong Dan Hu Weiming Shen Lixin Wang Suyun Li Shiguo Zhu 《International journal of biological sciences》2022,18(2):585
Background: Natural killer (NK) cell-based immunotherapy is clinically limited due to insufficient tumor infiltration in solid tumors. We have previously found that the natural product rocaglamide (RocA) can enhance NK cell-mediated killing of non-small cell lung cancer (NSCLC) cells by inhibiting autophagy, and autophagic inhibition has been shown to increase NK cell tumor infiltration in melanoma. Therefore, we hypothesized that RocA could increase NK cell infiltration in NSCLC by autophagy inhibition.Methods: Flow cytometry, RNA-sequencing, real-time PCR, Western blotting analysis, and xenograft tumor model were utilized to assess the infiltration of NK cells and the underlying mechanism.Results: RocA significantly increased the infiltration of NK cells and the expressions of CCL5 and CXCL10 in NSCLC cells, which could not be reversed by the inhibitions of autophagy/ULK1, JNK and NF-κB. However, such up-regulation could be suppressed by the inhibitions of TKB1 and STING. Furthermore, RocA dramatically activated the cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) signaling pathway, and the inhibition/depletion of STING ablated the up-regulation of CCL5 and CXCL10, NK cell infiltration, and tumor regression induced by RocA. Besides, RocA damaged mitochondrial DNA (mtDNA) and promoted the cytoplasmic release of mtDNA. The mPTP inhibitor cyclosporin A could reverse RocA-induced cytoplasmic release of mtDNA.Conclusions: RocA could promote NK cell infiltration by activating cGAS-STING signaling via targeting mtDNA, but not by inhibiting autophagy. Taken together, our current findings suggested that RocA was a potent cGAS-STING agonist and had a promising potential in cancer immunotherapy, especially in NK cell-based immunotherapy. 相似文献
18.
Burdelya L Kujawski M Niu G Zhong B Wang T Zhang S Kortylewski M Shain K Kay H Djeu J Dalton W Pardoll D Wei S Yu H 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(7):3925-3931
Infiltration of immune effector cells in tumors is critical for antitumor immune responses. However, what regulates immune cell infiltration of tumors remains to be identified. Stat3 is constitutively activated with high frequency in diverse cancers, promoting tumor cell growth and survival. Blocking Stat3 signaling in tumors in vivo results in tumor growth inhibition that involves killing of nontransfected tumor cells and infiltration of immune effector cells, suggesting that Stat3 activity in tumor cells might affect immune cell recruitment. However, dying tumor cells can also attract immune cells. In this study, we show in isogenic murine melanomas that natural Stat3 activity is associated with tumor growth and reduction of T cell infiltration. Blocking Stat3 signaling in the melanoma cells containing high Stat3 activity results in expression of multiple chemoattractants, leading to increased migration of lymphocytes, NK cells, neutrophils, and macrophages. In addition, blocking Stat3 triggers tumor cells to produce soluble factors capable of activating macrophage production of NO in vitro and in vivo. TNF-alpha and IFN-beta, which are secreted by Stat3-inhibited tumor cells, are able to activate macrophage NO production, whereas neutralizing TNF-alpha in the tumor supernatant from Stat3-blocked tumor cells abrogates nitrite production. Moreover, interrupting Stat3 signaling in tumor cells leads to macrophage-mediated, nitrite-dependent cytostatic activity against nontransduced tumor cells. These results suggest that tumor Stat3 activity affects recruitment of diverse immune effectors and it can be manipulated to activate the effector phase of innate immune responses. 相似文献
19.
20.
Hongbin Yan Rhonda KuoLee Hongyu Qiu Girishchandra B. Patel 《Biochemical and biophysical research communications》2009,387(3):581-584
3′,5′-Cyclic diguanylic acid (cdiGMP) is emerging as a universal bacterial second messenger in regulating bacterial growth on surfaces. It has been recently shown that cdiGMP stimulates innate immunity and enhances antigen-specific humoral and cellular immune responses. We herein report that intranasal (i.n.) administration with cdiGMP induces an acute but transient inflammatory response and activation of dendritic cells in the lungs. Moreover, i.n. immunization of mice with pneumococcal surface adhesion A (PsaA) in conjunction with cdiGMP elicited strong antigen-specific serum immunoglobulin G (IgG) and secretory IgA antibody responses at multiple mucosal surfaces. More importantly, the immunized mice showed significantly reduced nasopharyngeal Streptococcus pneumoniae colonization. These results, for the first time, provide direct evidence for the induction of protection against mucosal bacterial infections by cdiGMP as an adjuvant. 相似文献