首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Several antigens have been tested as vaccine candidates against Leishmania infections but controversial results have been reported when different antigens are co-administered in combined vaccination protocols. Immunization with A2 or nucleoside hydrolase (NH) antigens was previously shown to induce Th1 immune responses and protection in BALB/c mice against Leishmania donovani and L. amazonensis (A2) or L. donovani and L. mexicana (NH) infections. In this work, we investigated the protective efficacy of A2 and NH DNA vaccines, in BALB/c mice, against L. amazonensis or L. chagasi challenge infection. Immunization with either A2 (A2-pCDNA3) or NH (NH-VR1012) DNA induced an elevated IFN-gamma production before infection; however, only A2 DNA immunized mice were protected against both Leishmania species and displayed a sustained IFN-gamma production and very low IL-4 and IL-10 levels, after challenge. Mice immunized with NH/A2 DNA produced higher levels of IFN-gamma in response to both specific recombinant proteins (rNH or rA2), but displayed higher IL-4 and IL-10 levels and increased edema and parasite loads after L. amazonensis infection, as compared to A2 DNA immunized animals. These data extend the characterization of the immune responses induced by NH and A2 antigens as potential candidates to compose a defined vaccine and indicate that a highly polarized type 1 immune response is required for improvement of protective levels of combined vaccines against both L. amazonensis and L. chagasi infections.  相似文献   

2.
In this report, we investigated the effect of ODN containing immunostimulatory CG motifs as adjuvant with soluble antigen (SA) from Leishmania donovani. BALB/c mice were vaccinated with the soluble antigen with or without CpG-ODN as adjuvant and then challenged with L. donovani metacyclic promastigotes. CpG-ODN alone resulted in partial protection against challenge with L. donovani. Immunization of mice with SA and CpG-ODN showed enhanced reduction in parasite load ( approximately 60%) when compared to SA ( approximately 40%) immunized mice. Immunization with SA by itself resulted in a mixed Th1/Th2 response whereas co-administration of SA with CpG-ODN resulted in a strong Th1 promoting isotype as they together promoted production of immunoglobulin G2a. Leishmania-specific Th1 cytokine response was induced by co-administering CpG-ODN and SA as they together promoted production of IFN-gamma and IL-12. In the present study, we demonstrate that immunostimulatory phosphorothioate-modified ODN are promising immune enhancers for vaccination against visceral leishmaniaisis.  相似文献   

3.
The secretion of macrophage migration inhibitory factor (MIF) is enhanced by inflammatory and other stimuli. MIF regulates innate and adaptive immune responses, but the mechanisms of this regulation are poorly understood. Our hypothesis was that MIF generated by these stimuli regulates these responses by modulating key molecular expression. This hypothesis was tested by adding greater than constitutive concentrations of recombinant MIF to cultures of various cell types and flow cytometric assay. MIF modulated surface expression of MHC-II, B7-2, CD40, CD40 ligand, ICAM-1 and Fcgamma, CR1/CR2, and IL-10 receptors and intracellular expression of IL-10, TNFalpha, and p40 (IL-12). MIF increased expression of B7-1 by B cells and CD40 L by T cells in spleens from Schistosoma mansoni-infected mice. Footpad injection of MIF reduced expression of MHC-II and CD40 by B cells in draining lymph nodes. Footpad injection of Mab to MIF reduced expression of B7-2 and CR1/CR2 by B cells and B7-2 by macrophages in these nodes. These data support our hypothesis.  相似文献   

4.
We have evaluated the effect of combining CD2 with conventional antimonial (sb) therapy in protection in BALB/c mice infected with either drug sensitive or resistant strain of Leishmania donovani with 3×10(7) parasites via-intra-cardiac route. Mice were treated with anti CD2 adjunct SAG sub-cutaneously twice a week for 4 weeks. Assessment for measurement of weight, spleen size, anti-Leishmania antibody titer, T cell and anti-leishmanial macrophage function was carried out day 0, 10, 22 and 34 post treatments. The combination therapy was shown boosting significant proportion of T cells to express CD25 compared to SAG monotherapy. Although, the level of IFN-γ was not statistically different between combination vs monotherapy (p=0.298) but CD2 treatment even alone significantly influenced IFN-γ production than either SAG treatment (p=0.045) or with CD2 adjunct SAG treatment (p=0.005) in Ld-S strain as well as in Ld-R strain. The influence of CD2 adjunct treatment was also documented in anti-leishmanial functions in macrophages. As shown, the super-oxide generation began enhancing very early on day 10 after SAG treatment with CD2 during which SAG action was at minimum. Interestingly, the super-oxide generation ability remained intact in macrophage after treatment with immuno-chemotherapy even in mice infected with Leishmania resistant strain. Unlike SAG treatment, treatment of SAG with CD2 also led to production of nitric oxide and TNF-α, resulting in resulting in most effective clearance of L. donovani from infected macrophages. Our results indicate that CD2, which can boost up a protective Th1 response, might also be beneficial to enable SAG to induce Macrophages to produce Leishmanicidal molecules and hence control the infection in clinical situation like Kala-azar. Drug resistance is the major impedance for disease control but the encouraging results obtained after infecting mice with resistant strain of the parasite strongly imply that this drug can be effective even in treating resistant cases of Kala-azar.  相似文献   

5.
Development of a protective vaccine against Leishmania depends on antigen formulation and adjuvants that induce specific immunity and long-lasting immune responses. We previously demonstrated that BALB/c mice intranasally vaccinated with a plasmid DNA encoding the p36/LACK leishmanial antigen (LACK-DNA) develop a protective immunity for up to 3 months after vaccination, which was linked with the systemic expression of vaccine mRNA in peripheral organs. In this study, LACK-DNA vaccine was associated with biocompatible chitosan microparticles cross-linked with glyceraldehyde (CMC) to boost the long-lasting immunity against the late Leishmania infantum challenge. Infection at 7 days, 3 or 6 months after vaccination resulted in significantly lower parasite loads when compared with non-vaccinated controls. Besides, LACK-DNA-chitosan vaccinated mice showed long-time protection observed after the late time point challenge. The achieved protection was correlated with an enhanced spleen cell responsiveness to parasite antigens, marked by increased proliferation and IFN-γ as well as decreased IL-10 production. Moreover, we found diminished systemic levels of TNF-α that was compatible with the better health condition observed in LACK-DNA/CMC vaccinated-infected mice. Together, our data indicate the feasibility of chitosan microparticles as a delivery system tool to extend the protective immunity conferred by LACK-DNA vaccine, which may be explored in vaccine formulations against Leishmania parasite infections.  相似文献   

6.
Peritoneal cells from highly susceptible BALB/c mice were infected with Leishmania major and cultured for various times in vitro. The culture supernatants contained significant levels of IL-1 which were consistently higher than those in the cell cultures stimulated with an optimal concentration of LPS. This finding extends to a macrophage cell line, P388D1, and peritoneal exudate cells stimulated with starch in vivo. However, the level of IL-1 produced was significantly reduced when the cells were preincubated with a lymphokine preparation (supernatant of Con A-stimulated rat spleen cells). The level of IL-1 produced seems to be directly correlated with the degree of parasitization of the macrophages. A similar and dose-dependent reduction in IL-1 production by infected macrophages could also be obtained when the cells were preincubated with IFN-gamma. This finding is in direct contrast to that of visceral leishmaniasis in which peritoneal macrophages from BALB/c mice infected with Leishmania donovani not only fail to produce IL-1 but also lose the capacity to produce IL-1. This apparent discrepancy is discussed in terms of a possible difference in the induction of cell-mediated immunity between the two leishmanial diseases.  相似文献   

7.
Visceral leishmaniasis presents a serious health threat in many parts of the world. There is, therefore, an urgent need for an approved vaccine for clinical use to protect against infection. In this study, the ability of recombinant Leishmania donovani gamma-glutamyl cysteine synthetase protein (LdγGCS) alone or incorporated into a non-ionic surfactant vesicle (NIV) delivery system to protect against L. donovani infection was evaluated in a BALB/c mouse model. Immunization with LdγGCS alone or LdγGCS-NIV induced specific IgG1 and IgG2a antibodies compared to controls, with LdγGCS-NIV inducing significantly higher titers of both antibody classes (P < 0.05). Both formulations induced similar increases in splenocyte IFN-γ production following ex vivo antigen stimulation with LdγGCS compared with cells from control mice (P < 0.05). Similar levels of protection against infection were induced by LdγGCS alone and LdγGCS-NIV, based on their ability to suppress liver parasite burdens compared to control values (P < 0.01), indicating that using a carrier system did not enhance the protective responses induced by the recombinant protein. The results of this study indicate that LdγGCS may be a useful component in a vaccine against L. donovani.  相似文献   

8.
We have shown previously that BALB/c mice can be protected against a fatal infection with Leishmania major by adoptive transfer of a T cell line recognizing a protective soluble fraction (fraction 9) of promastigotes. We now describe the isolation and characterization of a T cell clone (9.1-2) that also transfers protective immunity against Leishmania. After Ag or mitogen stimulation, this clone secrets IL-2 and IFN-gamma, but not IL-4 or IL-5. The clone preferentially recognizes L. major fraction 9, and in addition, soluble Ag from Leishmania donovani, Leishmania amazonensis, and Leishmania braziliensis, but not from the related flagellates, Trypanosoma cruzi or Crithidia fasciculata. Besides being contained in fraction 9, the stimulatory Ag is also released from the parasite, because concentrated promastigote culture supernatants induced IFN-gamma production by 9.1-2. By means of T cell immunoblotting, we determined that 9.1-2 recognized a protein with a relative m.w. between 8,000 and 12,000, and within this region is a predominant protein contained in fraction 9 of approximately 10,000 m.w. These data identify a new candidate Ag for immunization against protozoa belonging to the genus Leishmania.  相似文献   

9.
BALB/c mice can be protected against a fatal Leishmania major infection by immunization with whole radio-attenuated promastigotes; however, neither the antigens responsible for protection nor the protective immunologic mechanisms have been defined. In this study, the ability of promastigote fractions to elicit similar immunity to that obtained with whole organisms, and the immune responses associated with such protection were analyzed. Intraperitoneal immunization with a soluble, membrane-free parasite extract was found to induce protection against L. major challenge equal to that obtained with whole organisms. Induction of immunity (89% protection in seven experiments) was most effective with 100 micrograms of the soluble leishmanial antigen (SLA) and required concomitant injection of the bacterial adjuvant, Corynebacterium parvum (CP), followed by an i.p. boost of SLA alone 1 wk later. Vaccinated animals exhibited Leishmania-specific cell-mediated immunity, as assessed both by lymphocyte transformation and the production of macrophage-activating factors (MAF). In addition, although SLA + CP-immunized mice failed to exhibit delayed-type hypersensitivity (DTH) before challenge, splenic lymphocytes from these mice could transfer a local DTH reaction to naive recipients. Immunization also induced the production of antibodies against two major metabolically labeled proteins of m.w. 30,000 and 53,000, but failed to stimulate a detectable humoral response against promastigote surface antigens. Thus, these experiments demonstrate that vaccine-induced immunity against cutaneous leishmaniasis is strongly associated with the induction of cell-mediated immunity, but does not require the development of an antibody response to promastigote surface antigens. In addition, these studies establish the feasibility of employing soluble, nonmembrane-derived parasite material as a source of protective immunogens.  相似文献   

10.
After presenting processed glycoprotein of Leishmania donovani to T-cell, macrophage seeks the help of a panel of T-cells lymphokines to transform from a state that sustains intra cellular replication of parasite to an effector state for destructing parasites. But esterase and trypsin of macrophage membrane prevent T-cells to release MIF. Role of soya-bean trypsin inhibitor (STI) has been exposed in the present study with a view to alter esterase functional behaviour of macrophage for control of T-cell activation and also, if T-cells once made responsive to antigen by STI do alter macrophage response to T-cells or not. Results establish STI as potent effector molecule, which can serve as an adjuvant to candidate T-cell epitope and synthetic peptide for development of anti-Kala-azar vaccine protocol in future.  相似文献   

11.
The antibody responses of outbred normal mice and nude mice injected with alkaline detoxified lipopolysaccharide (Alk-LPS) were measured. In some cases the antibody against lipopolysaccharide (LPS) and native protoplasmic polysaccharide (NPP). The kinetics of the primary responses to Alk-LPS and NPP were similar, whereas LPS stimulated a more rapid appearance of antibodies in the primary responses. Alk-LPS stimulated only primary antibody responses in both types of mice and sensitized nude mice for secondary responses which could be triggered with LPS. However, secondary antibody responses could not be triggered in normal mice primed with Alk-LPS. These data suggested that, on a functional basis, Alk-LPS possessed the specific antigenic signal associated with LPS antigens but lack the second nonspecific mitogenic signal dependent on the lipid A portion of LPS.  相似文献   

12.
Helicobacter species are common laboratory pathogens which induce intestinal inflammation and disease in susceptible mice. Since in vitro studies indicate that Helicobacter products activate macrophages, we hypothesized that in vivo Helicobacter infection regulates the inflammatory response of intestinal muscularis macrophages from C57Bl/6 mice. Helicobacter hepaticus infection increased surface expression of macrophage markers F4/80, CD11b and MHC-II within whole intestinal muscle mounts. However, constitutive cytokine and chemokine production by macrophages isolated from infected mice significantly decreased compared to macrophages from uninfected mice despite no detectable bacterial products in the cultures. In addition, muscularis macrophages from infected mice up-regulated FIZZ-1 and SK-1 gene expression, suggesting the macrophages had an anti-inflammatory phenotype. Corresponding with increased anti-inflammatory gene expression, macrophages from infected mice were more phagocytic but did not produce cytokines after stimulation with LPS and IFN-γ or immune complexes and IL-4. Therefore, the presence of Helicobacter infection matures intestinal muscularis macrophages, modulating the constitutive macrophage response to become more anti-inflammatory and resistant to secondary stimulation.  相似文献   

13.
Macrophage migration inhibitory factor (MIF) is responsible for proinflammatory reactions in various infectious and non-infectious diseases. We have investigated the mechanism of anti-inflammatory activity of epoxyazadiradione, a limonoid purified from neem (Azadirachta indica) fruits, against MIF. Epoxyazadiradione inhibited the tautomerase activity of MIF of both human (huMIF) and malaria parasites (Plasmodium falciparum (PfMIF) and Plasmodium yoelii (PyMIF)) non-competitively in a reversible fashion (K(i), 2.11-5.23 μm). Epoxyazadiradione also significantly inhibited MIF (huMIF, PyMIF, and PfMIF)-mediated proinflammatory activities in RAW 264.7 cells. It prevented MIF-induced macrophage chemotactic migration, NF-κB translocation to the nucleus, up-regulation of inducible nitric-oxide synthase, and nitric oxide production in RAW 264.7 cells. Epoxyazadiradione not only exhibited anti-inflammatory activity in vitro but also in vivo. We tested the anti-inflammatory activity of epoxyazadiradione in vivo after co-administering LPS and MIF in mice to mimic the disease state of sepsis or bacterial infection. Epoxyazadiradione prevented the release of proinflammatory cytokines such as IL-1α, IL-1β, IL-6, and TNF-α when LPS and PyMIF were co-administered to BALB/c mice. The molecular basis of interaction of epoxyazadiradione with MIFs was explored with the help of computational chemistry tools and a biological knowledgebase. Docking simulation indicated that the binding was highly specific and allosteric in nature. The well known MIF inhibitor (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) inhibited huMIF but not MIF of parasitic origin. In contrast, epoxyazadiradione inhibited both huMIF and plasmodial MIF, thus bearing an immense therapeutic potential against proinflammatory reactions induced by MIF of both malaria parasites and human.  相似文献   

14.
试验中以小鼠为动物模型,对不同蛋白载体的痢疾多糖结合疫苗进行免疫效果观察。3种福氏2a痢疾结合疫苗和3种宋内氏痢疾结合疫苗分别皮下免疫NIH小鼠,同时设置O-SP(O-特异性多糖)对照组,免疫3针,在不同免疫针次间采血,用ELISA测定抗体滴度。单独使用福氏2aO-SP和宋内氏O-SP免疫后,小鼠血清中几乎没有抗LPS IgG抗体产生,而用结合疫苗免疫后,小鼠血清中产生了抗LPS IgG抗体,且第二次、第三次免疫后,小鼠血清中抗LPS IgG抗体水平有显著升高,表明结合疫苗具有加强免疫应答效应。三种不同的痢疾结合疫苗相比较,F2a-O-SP-rEPA结合疫苗较F2a-O-SP-TT结合疫苗和F2a-0-SP—DT结合疫苗的小鼠抗LPS IgG抗体水平高,S-O-SP-rEPA结合疫苗较S-O-SP-TT结合疫苗和S-O-SP—CRM9,结合疫苗的小鼠抗LPS IgG抗体水平高。以rEPA作为载体的痢疾结合疫苗比DT,TT作为载体的痢疾结合疫苗的免疫原性要强。  相似文献   

15.
OBJECTIVE: Previous studies have demonstrated that neutralization of macrophage migration inhibitory factor (MIF) by anti-MIF antibody decreases joint destruction in the collagen-induced arthritis model. The present study was undertaken to investigate whether selective deletion of MIF inhibits inflammation and joint destruction of the anti-type II collagen antibody (anti-CII Ab)/lipopolysaccharide (LPS)-induced arthritis in mice, in order to determine the role of this cytokine in inflammatory arthritis. DESIGN: Anti-CII Ab/LPS-induced arthritis was induced in MIF-deficient and wild-type mice. The effects of anti-MIF polyclonal antibody administration on anti-CII Ab-induced arthritis were also evaluated. RESULTS: The expression of MIF protein and mRNA was induced in anti-CII Ab/LPS-induced arthritis joint tissues. Histopathological arthritis scores for synovial inflammation induced by anti-CII Ab/LPS -induced arthritis were significantly decreased in anti-MIF Ab-treated mice and in MIF-deficient mice compared to wild-type mice. In addition, mRNA levels of MMP-13 and MIP-2 in anti-CII Ab/LPS-induced arthritis joint tissues were significantly reduced in MIF-deficient mice compared to wild-type control mice. CONCLUSIONS: These results indicate that MIF plays a critical role in inflammation and joint destruction in the anti-CII Ab/LPS-induced arthritis model in mice, in part via induction of MMP-13 and neutrophil infiltration through the induction of MIP-2.  相似文献   

16.
Active human visceral leishmaniasis (VL) is characterized by a progressive increase in visceral parasite burden, cachexia, massive splenomegaly, and hypergammaglobulinemia. In contrast, mice infected with Leishmania donovani, the most commonly studied model of VL, do not develop overt, progressive disease. Furthermore, mice control Leishmania infection through the generation of NO, an effector mechanism that does not have a clear role in human macrophage antimicrobial function. Remarkably, infection of the Syrian hamster (Mesocricetus auratus) with L. donovani reproduced the clinicopathological features of human VL, and investigation into the mechanisms of disease in the hamster revealed striking differences from the murine model. Uncontrolled parasite replication in the hamster liver, spleen, and bone marrow occurred despite a strong Th1-like cytokine (IL-2, IFN-gamma, and TNF/lymphotoxin) response in these organs, suggesting impairment of macrophage effector function. Indeed, throughout the course of infection, inducible NO synthase (iNOS, NOS2) mRNA or enzyme activity in liver or spleen tissue was not detected. In contrast, NOS2 mRNA and enzyme activity was readily detected in the spleens of infected mice. The impaired hamster NOS2 expression could not be explained by an absence of the NOS2 gene, overproduction of IL-4, defective TNF/lymphotoxin production (a potent second signal for NOS2 induction), or early dominant production of the deactivating cytokines IL-10 and TGF-beta. Thus, although a Th1-like cytokine response was prominent, the major antileishmanial effector mechanism that is responsible for control of infection in mice was absent throughout the course of progressive VL in the hamster.  相似文献   

17.
Upon loading with microbial Ag and adoptive transfer, dendritic cells (DC) are able to induce immunity to infections. This offers encouragement for the development of DC-based vaccination strategies. However, the mechanisms underlying the adjuvant effect of DC are not fully understood, and there is a need to identify Ag with which to arm DC. In the present study, we analyzed the role of DC-derived IL-12 in the induction of resistance to Leishmania major, and we evaluated the protective efficacy of DC loaded with individual Leishmania Ag. Using Ag-pulsed Langerhans cells (LC) from IL-12-deficient or wild-type mice for immunization of susceptible animals, we showed that the inability to release IL-12 completely abrogated the capacity of LC to mediate protection against leishmaniasis. This suggests that the availability of donor LC-derived IL-12 is a requirement for the development of protective immunity. In addition, we tested the protective effect of LC loaded with Leishmania homolog of receptor for activated C kinase, gp63, promastigote surface Ag, kinetoplastid membrane protein-11, or Leishmania homolog of eukaryotic ribosomal elongation and initiation factor 4a. The results show that mice vaccinated with LC that had been pulsed with selected molecularly defined parasite proteins are capable of controlling infection with L. major. Moreover, the protective potential of DC pulsed with a given Leishmania Ag correlated with the level of their IL-12 expression. Analysis of the cytokine profile of mice after DC-based vaccination revealed that protection was associated with a shift toward a Th1-type response. Together, these findings emphasize the critical role of IL-12 produced by the sensitizing DC and suggest that the development of a DC-based subunit vaccine is feasible.  相似文献   

18.
The gp63 gene of Leishmania major was transformed into the AroA- vaccine strain of Salmonella typhimurium (SL3261). The construct (SL3261-gp63), which stably expresses the gp63 Ag in vitro, was used to immunize CBA mice by the oral route. Spleen cells from mice inoculated with SL3261-gp63 developed antibody and proliferative T cell response to L. major. They did not express detectable delayed-type hypersensitivity reactivity. The activated T cells are mainly CD4+ and secrete IL-2 and IFN-gamma but no IL-4. The orally immunized mice developed significant resistance against a challenge L. major infection. We have, therefore, demonstrated the feasibility of oral vaccination against leishmaniasis and that the oral route of antigen delivery via the heterologous carrier may preferentially induce Th1 subsets of CD4+ cells.  相似文献   

19.
To determine whether the systemic immune activation by CpG DNA could alter airway inflammation, we pretreated mice with either i.v. bacterial DNA (bDNA) or oligonucleotides with or without CpG motifs, exposed these mice to LPS by inhalation, and measured the inflammatory response systemically and in the lung immediately following LPS inhalation. Compared with non-CpG oligonucleotides, i. v. treatment with CpG oligonucleotides resulted in higher systemic concentrations of polymorphonuclear leukocytes, IL-10, and IL-12, but significantly reduced the concentration of total cells, polymorphonuclear leukocytes, TNF-alpha, and macrophage inflammatory protein-2 in the lavage fluid following LPS inhalation. The immunoprotective effect of CpG-containing oligonucleotides was dose-dependent and was most pronounced in mice pretreated between 2 and 4 h before the inhalation challenge, corresponding to the peak levels of serum cytokines. bDNA resulted in a similar immunoprotective effect, and methylation of the CpG motifs abolished the protective effect of CpG oligonucleotides. The protective effect of CpG oligonucleotides was observed in mice with either a disrupted IL-10 or IFN-gamma gene, but release of cytokines in the lung was increased, especially in the mice lacking IFN-gamma. In contrast, CpG DNA did not protect mice with a disrupted IL-12 gene against the LPS-induced cellular influx, even though CpG DNA reduced the release of TNF-alpha and macrophage inflammatory protein-2 in the lung. These findings indicate that CpG-containing oligonucleotides or bDNA are protected against LPS-induced cellular airway inflammation through an IL-12-dependent pathway, and that the pulmonary cytokine and cellular changes appear to be regulated independently.  相似文献   

20.
Ability of peripheral blood monocytes in association with HLA-DR molecules to support T-cell activation in response to soluble Leishmania donovani antigen was investigated. Adherent cells were stained with monoclonal antibodies. The increased number of cells with DR expression was more efficient in presenting L. donovani antigen to sensitized T-cells. The results suggest that quantitative variation in monocytes with expression of DR molecules, correlates with their ability to support T-cell response to L. donovani antigen, in vitro, as assessed by migration inhibition factor (MIF). However, it is not clear whether this is due to only HLA-DR antigen on the surface or whether other factors are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号