首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectrofluorometric studies of the lipid probe, nile red   总被引:18,自引:0,他引:18  
We found that the dye nile red, 9-diethylamino-5H-benzo[alpha]phenoxazine-5-one, can be applied as a fluorescent vital stain for the detection of intracellular lipid droplets by fluorescence microscopy and flow cytofluorometry (J. Cell. Biol. 1985. 100: 965-973). To understand the selectivity of the staining, we examined the fluorescence properties of nile red in the presence of organic solvents and model lipid systems. Nile red was found to be both very soluble and strongly fluorescent in organic solvents. The excitation and emission spectra of nile red shifted to shorter wavelengths with decreasing solvent polarity. However, the fluorescence of nile red was quenched in aqueous medium. Nile red was observed to fluoresce intensely in the presence of aqueous suspensions of phosphatidylcholine vesicles (excitation maximum: 549 nm; emission maximum: 628 nm). When neutral lipids such as triacylglycerols or cholesteryl esters were incorporated with phosphatidylcholine to form microemulsions, nile red fluorescence emission maxima shifted to shorter wavelengths. Serum lipoproteins also induced nile red fluorescence and produced spectral blue shifts. Nile red fluorescence was not observed in the presence of either immunoglobulin G or gelatin. These results demonstrate that nile red fluorescence accompanied by a spectral blue shift reflects the presence of nile red in a hydrophobic lipid environment and account for the selective detection of neutral lipid by the dye. Nile red thus serves as an excellent fluorescent lipid probe.  相似文献   

2.
We describe the use of the fluorescent dye nile red, 9-diethylamino-5H-benzo[alpha]phenoxazine-5-one, as a general-purpose reagent for the rapid detection and quantitation of a wide variety of lipids and other hydrophobic compounds separated by thin-layer chromatography. After samples are applied to silica gel plates and chromatographed, the plate is briefly dipped into a nile red solution (8 micrograms/ml of methanol-water 80:20, v/v). Background fluorescence of nile red dye adsorbed to the silica gel is then preferentially destroyed by dipping the plate in a dilute aqueous solution of bleach. After drying, lipid bands are visualized under ultraviolet light. Reflectance fluorometry (Ex: 580 nm; Em: 640 nm) is utilized for in situ quantitative analysis of the fluorescence of the lipids on the nile red-stained plate. Neutral lipids, phospholipids, sphingolipids, and fatty acids can be examined, although the nile red fluorescence intensity varies significantly among the lipid classes. Also, staining is stronger for unsaturated lipids than for saturated lipids. The lower detection limit of the assay is 25-100 ng for cholesterol, cholesteryl esters, triacylglycerols, and phospholipids.  相似文献   

3.
Summary We have employed the fluorescent dye nile red to distinguish between normal cells and cells containing lysosomal accumulations of phospholipids. When fibroblasts from an individual with a genetic deficiency in lysosomal sphingomyelinase activity (Niemann-Pick disease) were stained with nile red and visualized by fluorescence microscopy, orange-colored inclusions were observed throughout the cytoplasm. The orange fluorescent bodies could be distinguished from the neutral lipid droplets that fluoresce a brilliant yellow-gold in the presence of nile red. These inclusions were also observed in alveolar macrophages obtained from rats treated with amiodarone, an antiarrhythmic agent known to produce lysosomal phospholipidosis. Flow cytofluorometric analysis revealed that staining of these phospholipid-rich macrophages with nile red can distinguish them from control alveolar macrophages. These results demonstrate that nile red can be employed for the rapid staining of cellular phospholipid inclusions.  相似文献   

4.
Nile red staining of lysosomal phospholipid inclusions.   总被引:1,自引:0,他引:1  
We have employed the fluorescent dye nile red to distinguish between normal cells and cells containing lysosomal accumulations of phospholipids. When fibroblasts from an individual with a genetic deficiency in lysosomal sphingomyelinase activity (Niemann-Pick disease) were stained with nile red and visualized by fluorescence microscopy, orange-colored inclusions were observed throughout the cytoplasm. The orange fluorescent bodies could be distinguished from the neutral lipid droplets that fluoresce a brilliant yellow-gold in the presence of nile red. These inclusions were also observed in alveolar macrophages obtained from rats treated with amiodarone, an antiarrhythmic agent known to produce lysosomal phospholipidosis. Flow cytofluorometric analysis revealed that staining of these phospholipid-rich macrophages with nile red can distinguish them from control alveolar macrophages. These results demonstrate that nile red can be employed for the rapid staining of cellular phospholipid inclusions.  相似文献   

5.
Nile red: a selective fluorescent stain for intracellular lipid droplets   总被引:46,自引:5,他引:46  
We report that the dye nile red, 9-diethylamino-5H-benzo[alpha]phenoxazine-5-one, is an excellent vital stain for the detection of intracellular lipid droplets by fluorescence microscopy and flow cytofluorometry. The specificity of the dye for lipid droplets was assessed on cultured aortic smooth muscle cells and on cultured peritoneal macrophages that were incubated with acetylated low density lipoprotein to induce cytoplasmic lipid overloading. Better selectivity for cytoplasmic lipid droplets was obtained when the cells were viewed for yellow-gold fluorescence (excitation, 450-500 nm; emission, greater than 528 nm) rather than red fluorescence (excitation, 515-560 nm; emission, greater than 590 nm). Nile red-stained, lipid droplet-filled macrophages exhibited greater fluorescence intensity than did nile red-stained control macrophages, and the two cell populations could be differentiated and analyzed by flow cytofluorometry. Such analyses could be performed with either yellow-gold or red fluorescence, but when few lipid droplets per cell were present, the yellow-gold fluorescence was more discriminating. Nile red exhibits properties of a near-ideal lysochrome. It is strongly fluorescent, but only in the presence of a hydrophobic environment. The dye is very soluble in the lipids it is intended to show, and it does not interact with any tissue constituent except by solution. Nile red can be applied to cells in an aqueous medium, and it does not dissolve the lipids it is supposed to reveal.  相似文献   

6.
Functional and structural changes accompany the differentiation of granulosa cells during follicular development. We used flow cytometry and fluorescent dyes to characterize two organelles important to the steroidogenic process. Mitochondria, which contain the rate-limiting enzyme responsible for cholesterol conversion to pregnenolone, and lipid droplets, which store cholesterol substrate, were probed in viable hen granulosa cells during differentiation. The fluorescent dye Dio3-C5 (DiO) was used to probe mitochondrial membrane potential, indicative of mitochondrial activity and/or number, during rapid granulosa cell differentiation in a hierarchy of individual developing hen preovulatory follicles (F6, smallest, to F1, largest). Cellular DiO fluorescence, granularity, and cell size were significantly elevated with increasing maturation state. Treatment with LH significantly increased DiO fluorescence in granulosa cells from F1 but not F3. The increased mitochondrial activity/number in granulosa cells that accompanies follicular maturation and is influenced by LH may reflect, at least in part, increased activity or amount of hormone-regulated mitochondrial enzymes controlling steroidogenesis. Flow spectrofluorometry and the metachromatic lipid dye, nile red, were used to probe lipid droplets in differentiating granulosa cells from F6 to F1. There was a dramatic increase in the fluorescence component related to lipid droplets with increasing stages of follicular maturation, suggesting recruitment of lipids into droplets during the differentiation of granulosa cells into hormone-responsive steroidogenic cells. The results demonstrate the dynamic nature of the granulosa cell morphology involved in steroidogenesis during follicular development.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The interaction of an extrinsic probe (Nile red) with an enzyme (horseradish peroxidase) in solution was investigated using fluorescence techniques. Nile red fluorescence is very environmentally sensitive and the presence of domains of differing polarity within the enzyme was ascertained by the decomposition of the Nile red emission spectrum. Further evidence for the position of the probe inside the enzyme was obtained from a molecular modeling study. A decrease in the emission intensity of the dye during incubation with horseradish peroxidase was explained by the occurrence of resonance energy transfer between the Nile red and the heme group in the enzyme. This was supported by a calculation of the critical transfer distance and a comparison of the fluorescence intensity of the dye in both the holo- and apo-enzyme. These data were then applied to the study of the effect of temperature on the structure of the enzyme, where changes in conformation were elucidated.  相似文献   

8.
Nile red is a phenoxazone dye that fluoresces intensely, and in varying color, in organic solvents and hydrophobic lipids. However, the fluorescence is fully quenched in water. The dye acts, therefore, as a fluorescent hydrophobic probe. We utilized this novel property of nile red to develop a sensitive fluorescent histochemical stain for tissue lipids. Nile red was prepared by boiling Nile blue A under reflux for 2 hr in 0.5% H2SO4, and extracting the product into xylene. For staining, the purified dye is dissolved in 75% glycerol (1-5 micrograms/ml) and applied to frozen tissue sections. Tissue lipids then fluoresce yellow-gold to red, depending on their relative hydrophobicity. Using sections of liver and aorta from a cholesterol-fed rabbit, we assessed the value of Nile red as a stain for neutral lipids by comparing the staining pattern obtained with that produced by oil red O, a commonly used dye for tissue cholesteryl esters and triacylglycerols. In the cholesterol fatty liver, Nile red staining was comparable to that of oil red O. In contrast, Nile red staining of rabbit aortic atheroma revealed ubiquitous lipid deposits not observed with oil red O staining. These latter results suggest that Nile red can detect neutral lipid deposits, presumably unesterified cholesterol, not usually seen with oil red O or other traditional fat stains.  相似文献   

9.
研究一种快速准确测定微藻中中性脂的方法。湛江等鞭金藻是一种中性脂含量高且具有开发潜力的能源微藻。以湛江等鞭金藻为实验对象,首先优化尼罗红染色的条件。当二甲基亚砜体积分数为2.0%、尼罗红质量浓度为1.00μg/m L、细胞密度为1.0×106个/m L、激发波长为480 nm、检测波长为580 nm时,优化的染色时间为10min。其次测定了背景荧光对检测的影响。结果表明,在不同细胞状态下,背景荧光强度大约是微藻内荧光强度的20%左右,可以忽略。最后比较了尼罗红荧光法和重量法。结果表明,荧光强度与中性脂含量的相关系数R2=0.946 8,虽然两者相关性并不十分高,但作为一种快速测定微藻中中性脂的方法,尼罗红荧光法依然是研究微藻培养过程中中性脂含量变化的有效方法。  相似文献   

10.
【目的】建立产油酵母筛选以及胞内油脂含量测定的简便方法。【方法】利用尼罗红与胞内油脂成分结合后在紫外光照射下发出荧光且荧光强弱与油脂含量相关的原理。通过在添加尼罗红的培养基中培养酵母,并观察菌落荧光的方法对385株深海酵母进行产油脂菌株筛选,利用26S rDNA D1/D2区序列分析方法对筛选获得的产油酵母菌株进行鉴定,并以其中的一株高产油脂酵母(2A00015)为试验菌株,建立了一套尼罗红染色快速测定油脂含量的方法。【结果】获得22株产油酵母,其中油脂含量最高可达62.9%,经分子鉴定后显示这22株酵母分别属于(Candida viswanathii)、近平滑假丝酵母(Candidaparapsilosis)、粘质红酵母(Rhodotorula mucilaginosa)、汉逊德巴利酵母(Debaryomyceshansenii)、季也蒙毕赤酵母(Pichia guilliermondii)以及Rhodosporidium paludigenum酵母。尼罗红染色快速测定油脂含量方法的最佳检测条件为:菌悬液OD600小于1.2,尼罗红浓度0.5 mg/L,染色时间5 min,激发波长488 nm,发射波长570 nm。该测定方法得到相对荧光强度与称重法得到油脂含量呈正相关性,R2=0.9637。  相似文献   

11.
Oil bodies are spherical entities containing a triacylglycerol (TAG) matrix encased by a phospholipid monolayer, which is stabilized by oil body-specific proteins, principally oleosins. Biochemical investigations in the recent past have also demonstrated the expression of calcium-binding proteins, called caleosins, as a component of oil body membranes during seed germination. Using DM-Bodipy-phenylalkylamine (PAA; a fluorescent derivative of phenylalkylamine)-a fluorescent probe known to bind L-type calcium channel proteins, present investigations provide the first report on the localization and preferential accumulation of putative calcium channel proteins on/around oil bodies during peak lipolytic phase in protoplasts derived from dark-grown sunflower (Helianthus annuus L. cv Morden) seedling cotyledons. Specificity of DM-Bodipy-PAA labeling was confirmed by using bepridil, a non-fluorescent competitor of PAA while non-specific dye accumulation has been ruled out by using Bodipy-FL as control. Co-localization of fluorescence from DM-Bodipy-PAA binding sites (ex: 504 nm; em: 511 nm) and nile red fluorescing oil bodies (ex: 552 nm; em: 636 nm) has been undertaken by epifluorescence and confocal laser scanning microscopy (CLSM). It revealed the affinity of PAA-sensitive ion channels for the oil body surface. Findings from the current investigations highlight the significance of calcium and calcium channel proteins during oil body mobilization in sunflower.Key words: calcium channels, confocal laser scanning microscopy, epifluorescence microscopy, oil bodies, phenylalkylamine-binding ion channels, seed germination, sunflower  相似文献   

12.
A suitable matrix to host enzymes for biosensor applications should encage and retain the bioactive species, while allowing it to be accessed to exploit its catalytic properties. Sol-gel derived monoliths are promising in this aspect. Molecular diffusion was monitored using fluorescence labelled proteins and unbound fluorescence dye molecules (representative of enzyme substrates) and their interaction with and mobility within the host assessed using time-resolved fluorescence anisotropy and fluorescence recovery after photobleaching observed via confocal microscopy.  相似文献   

13.
Cutinase, an esterase from Fusarium solani pisi, was immobilized in sol-gel matrices of composition 1:5 tetramethoxysilane (TMOS):n-alkyltrimethoxysilane (n-alkylTMS). Fluorescence spectroscopy using the single tryptophan (Trp-69) residue of cutinase as a probe revealed that the polarity of the matrices decreased as their hydrophobicity increased up to the TMOS/n-butylTMS pair, which correlates with an increase in cutinase activity. Fluorescence emission was suppressed (a higher than two orders of magnitude reduction) in the TMOS/n-octylTMS matrix, suggesting a greater proximity of the tryptophan to a nearby disulfide bridge. When sol-gel matrices were prepared with added zeolite NaY, the fluorescence emission intensity maximum (lambda(max)) of the tryptophan did not change. And although the presence of the zeolite led to the recovery of fluorescence emission from the TMOS/n-octylTMS matrix, the corresponding lambda(max) fell in line with the values obtained for the matrices with lower n-alkyl chain lengths, indicating that the tryptophan does not sense the zeolite. On the other hand, the presence of the zeolite led to increases in cutinase activity in all the matrices. This suggests that the zeolite is in a position to affect the active site of the enzyme, located at the opposite pole of the enzyme molecule. Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed that the zeolite particles were segregated to the pores of the matrices. Optical microscopy following the staining of the protein with a fluorescent dye showed that the enzyme was distributed throughout the material, and tended to accumulate around zeolite particles. By promoting the accumulation of the enzyme at the pores of the material, the zeolite should improve the accessibility of the enzyme to the substrates and lead to a higher enzymatic activity. Data obtained for sol-gel matrices with epoxy or SH groups provided further evidence that cutinase responded to changes in the chemical nature of the precursors.  相似文献   

14.
The fluorescence dynamics of the dye 3,3'-diethyloxadicarbocyanine iodide (DODCI) was used to probe the microenvironment of cytochrome c oxidase (CcO) and cardiolipin. The dye was partitioned between an aqueous and a hydrophobic phase. The 'bound' and 'free' populations of DODCI could be separated by analysis of the time-resolved fluorescence decay of the dye. The anisotropy decay of the DODCI bound to CcO showed a unique 'dip and rise' shape that was analyzed by a combination of rotational correlation times with time-dependent weight factors for each lifetime component. Rotational dynamics studies revealed the existence of a restricted motion of the dye bound at the enzyme surface. Adriamycin, an anticancer, albeit cardiotoxic drug, was previously proposed to affect the surface structure of CcO, most likely by causing a disorder to the surface lipid arrangement. A drastic change in the rotational correlation time of the dye bound to the enzyme surface was observed, which suggested a depletion of cardiolipin layer due to complexation with the drug. The effect of Adriamycin on cardiolipin was drastic, leading to its phase separation. The present study suggests that the effect of Adriamycin on CcO is primarily a segregation of the cardiolipins.  相似文献   

15.
Summary Cationic cyanine dyes have been widely used to measure electrical potentials of red blood cells and other membrane preparations. A quantitative analysis of the binding of the most extensively studied of these dyes, diS-C3-(5), to red blood cells and their constituents is presented here. Absorption spectra were recorded for the dye in suspensions of isolated red cell membranes and in solutions of cell lysate. The dependence of the spectra on the concentrations of dye and cell constituents shows that the dye binds to these membranes as monomers with an absorbance maximum at 670 nm instead of 650 nm as for free aqueous dye and that the dye binds to oxyhaemoglobin partly as monomer but primarily as dimer, with absorbance maxima ca. 670 and 595 nm, respectively. Quantitative estimates are derived for all binding constants and extinction coefficients. These estimates are applied to suspensions of whole cells to predict the dye binding, absorbance spectra, and calibration curves of binding and fluorescencevs. membrane voltage. Satisfactory agreement is found with binding and absorbance data for whole cells at zero membrane potential and with the binding and fluorescence data reported by Hladky and Rink (J. Physiol. (London) 263:287, 1976) for cells driven to positive and negative potentials using valinomycin. The marked tendency of oxyhaemoglobin to bind dye as dimer is not shared by some other proteins tested, including deocyhaemoglobin and oxymyoglobin.  相似文献   

16.
Congo red was found to be feasible as a microscopic fluorescence indicator of hyphal growth at the single-hypha level. When 1 m Congo red was applied to mold of Aspergillus niger, the dye was found to a specific cell-wall component, chitin, without causing any inhibitory effect on hyphal growth. The bound Congo red emitted fluorescence at 614 nm. This binding reaction, however, proceeded more slowly than the growing speed of hypha. Consequently the fluorescence intensity was low at the apex where the surface area of the hypha was expanding rapidly. In contrast, as an apex where the growth was retarded, the fluorescence intensity became remarkably high. Therefore growing hyphae could be distinguished from non-growing hyphae by using Congo red.  相似文献   

17.
In this study, we investigated measurements of the intrinsic fluorescence of yeast hexokinase as an assay for glucose and immobilization of the enzyme in a silica sol-gel matrix as a potential in vivo glucose sensor for use in patients with diabetes. The intrinsic fluorescence of hexokinase in solution (excitation=295 nm, emission=330 nm) decreased by 23% at a saturating glucose concentration of 1 mM (Kd=0.3 mM), but serum abolished the glucose-related fluorescence response. When entrapped in tetramethylorthosilicate-derived sol gel, hexokinase retained activity, with a 25% maximal glucose-related decrease in intrinsic fluorescence, and the saturation point was increased to 50 mM glucose (Kd=12.5 mM). The glucose response range was increased further (to 120 mM, Kd=57 mM) by a covering membrane of poly(2-hydroxyethyl) methacrylate. Unlike free enzyme, the fluorescence responses to glucose with sol-gel immobilized hexokinase, with or without covering membrane, were similar for buffer and serum. We conclude that fluorescence monitoring of sol-gel entrapped yeast hexokinase is a suitable system for development as an in vivo glucose biosensor.  相似文献   

18.
Hydrophobic interaction of 8-anilino-1-naphthalene sulfonic acid (ANS) with proteins is one of the widely used methods for characterizing/detecting partially folded states of proteins. We have carried out a systematic investigation on the effect of ANS, a charged hydrophobic fluorescent dye, on structural properties of acid-unfolded horse heart cytochrome c at pH 2.0 by a combination of optical methods and electrospray ionization mass spectroscopy (ESI MS). ANS was found to induce, a secondary structure similar to native protein and quenching of fluorescence of tryptophan residue, in the acid-unfolded protein. However, the tertiary structure was found to be disrupted thus indicating that ANS stabilizes a molten globule state in acid-unfolded protein. To understand the mechanism of ANS-induced folding of acid-unfolded cytochrome c, comparative ESI MS, soret absorption, and tryptophan fluorescence studies using nile red, a neutral hydrophobic dye, and ANS were carried out. These studies suggested that, at low pH, electrostatic interactions between negatively charged ANS molecules and positively charged amino acid residues present in acid-unfolded cytochrome c are probably responsible for ANS-induced folding of acid-unfolded protein to partially folded compact state or molten globule state. This is the first experimental demonstration of ANS induced folding of unfolded protein and puts to question the usefulness of ANS for characterization/determination of partially folded intermediates of proteins observed under low pH conditions.  相似文献   

19.
In this article, we characterize the fluorescence of an environmentally sensitive probe for lipid membranes, di-4-ANEPPDHQ. In large unilamellar lipid vesicles (LUVs), its emission spectrum shifts up to 30 nm to the blue with increasing cholesterol concentration. Independently, it displays a comparable blue shift in liquid-ordered relative to liquid-disordered phases. The cumulative effect is a 60-nm difference in emission spectra for cholesterol containing LUVs in the liquid-ordered state versus cholesterol-free LUVs in the liquid-disordered phase. Given these optical properties, we use di-4-ANEPPDHQ to image the phase separation in giant unilamellar vesicles with both linear and nonlinear optical microscopy. The dye shows green and red fluorescence in liquid-ordered and -disordered domains, respectively. We propose that this reflects the relative rigidity of the molecular packing around the dye molecules in the two phases. We also observe a sevenfold stronger second harmonic generation signal in the liquid-disordered domains, consistent with a higher concentration of the dye resulting from preferential partitioning into the disordered phase. The efficacy of the dye for reporting lipid domains in cell membranes is demonstrated in polarized migrating neutrophils.  相似文献   

20.
We have monitored the mixing of both aqueous intracellular and membrane-bound fluorescent dyes during the fusion of human red blood cells to influenza hemagglutinin-expressing fibroblasts using fluorescence spectroscopy and low light, image-enhanced video microscopy. The water-soluble fluorescent dye, N-(7-nitrobenzofurazan-4-yl)taurine, was incorporated into intact human red blood cells. The fluorescence of the dye in the intact red blood cell was partially quenched by hemoglobin. The lipid fluorophore, octadecylrhodamine, was incorporated into the membrane of the same red blood cell at self-quenching concentrations (Morris, S. J., D. P. Sarkar, J. M. White, and R. Blumenthal. 1989. J. Biol. Chem. 264: 3972-3978). Fusion, which allowed movement of the water-soluble dye from the cytoplasm of the red blood cell into the hemagglutinin-expressing fibroblasts, and movement of octadecylrhodamine from membranes of red blood cell to the plasma membrane of the fibroblasts, was observed by fluorescence microscopy as a spatial relocation of dyes, and monitored by spectrofluorometry as an increase in fluorescence. Upon lowering the pH below 5.4, fluorescence increased after a delay of about 30 s at 37 degrees C, reaching a maximum within 3 min. The kinetics, pH profile, and temperature dependence were similar for both fluorescent events measured simultaneously, indicating that influenza hemagglutinin-induced fusion rapidly establishes bilayer continuity and exchange of cytoplasmic contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号