首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
Polyploidization is a major mechanism of speciation in plants. Within the barley genus Hordeum, approximately half of the taxa are polyploids. While for diploid species a good hypothesis of phylogenetic relationships exists, there is little information available for the polyploids (4×, 6×) of Hordeum. Relationships among all 33 diploid and polyploid Hordeum species were analyzed with the low-copy nuclear marker region TOPO6 for 341 Hordeum individuals and eight outgroup species. PCR products were either directly sequenced or cloned and on average 12 clones per individual were included in phylogenetic analyses. In most diploid Hordeum species TOPO6 is probably a single-copy locus. Most sequences found in polyploid individuals phylogenetically cluster together with sequences derived from diploid species and thus allow the identification of parental taxa of polyploids. Four groups of sequences occurring only in polyploid taxa are interpreted as footprints of extinct diploid taxa, which contributed to allopolyploid evolution. Our analysis identifies three key species involved in the evolution of the American polyploids of the genus. (i) All but one of the American tetraploids have a TOPO6 copy originating from the Central Asian diploid H. roshevitzii, the second copy clustering with different American diploid species. (ii) All hexaploid species from the New World have a copy of an extinct close relative of H. californicum and (iii) possess the TOPO6 sequence pattern of tetraploid H. jubatum, each with an additional copy derived from different American diploids. Tetraploid H. bulbosum is an autopolyploid, while the assumed autopolyploid H. brevisubulatum (4×, 6×) was identified as allopolyploid throughout most of its distribution area. The use of a proof-reading DNA polymerase in PCR reduced the proportion of chimerical sequences in polyploids in comparison to Taq polymerase.  相似文献   

2.
The origin and evolution of polyploids have been studied extensively in angiosperms and ferns but very rarely in gymnosperms. With the exception of three species of conifers, all natural polyploid species of gymnosperms belong to Ephedra, in which more than half of the species show polyploid cytotypes. Here, we investigated the origin and evolution of polyploids of Ephedra distributed in the Qinghai–Tibetan Plateau (QTP) and neighbouring areas. Flow cytometry (FCM) was used to measure the ploidy levels of the sampled species that are represented by multiple individuals from different populations, and then, two single‐copy nuclear genes (LFY and DDB2) and two chloroplast DNA fragments were used to unravel the possible origins and maternal donors of the polyploids. The results indicate that the studied polyploid species are allopolyploids, and suggest that allotetraploidy is a dominant mode of speciation in Ephedra. The high percentage of polyploids in the genus could be related to some of its biological attributes such as vegetative propagation, a relatively high rate of unreduced gamete formation, and a small genome size relative to most other gymnosperms. Significant ecological divergences between allotetraploids and their putative progenitors were detected by PCAs and anova and Tukey's tests, with the exception of E. saxatilis. The overlap of geographical distributions and ecological niches of some diploid species could have provided opportunities for interspecific hybridization and allopolyploid speciation.  相似文献   

3.
BackgroundWhereas the incidence or rate of polyploid speciation in flowering plants is modest, the production of polyploid individuals within local populations is widespread. Explanations for this disparity primarily have focused on properties or interactions of polyploids that limit their persistence.HypothesisThe emergence of local polyploid populations within diploid populations is similar to the arrival of invasive species at new, suitable sites, with the exception that polyploids suffer interference from their progenitor(s). The most consistent predictor of successful colonization by invasive plants is propagule pressure, i.e. the number of seeds introduced. Therefore, insufficient propagule pressure, i.e. the formation of polyploid seeds within diploid populations, ostensibly is a prime factor limiting the establishment of newly emergent polyploids within local populations. Increasing propagule number reduces the effects of genetic, environmental and demographic stochasticity, which thwart population survival. As with invasive species, insufficient seed production within polyploid populations limits seed export, and thus reduces the chance of polyploid expansion.ConclusionThe extent to which propagule pressure limits the establishment of local polyploid populations remains to be determined, because we know so little. The numbers of auto- or allopolyploid seed in diploid populations rarely have been ascertained, as have the numbers of newly emergent polyploid plants within diploid populations. Moreover, seed production by these polyploids has yet to be assessed.  相似文献   

4.
Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids. We found that polyploids are often more climatically differentiated from their diploid parents than the diploids are from each other. Consistent with this pattern, we estimated that polyploid species generally have higher rates of multivariate niche differentiation than their diploid relatives. In contrast to recent analyses, our results confirm that ecological niche differentiation is an important component of polyploid speciation and that niche differentiation is often significantly faster in polyploids.  相似文献   

5.
Diploid species of the genus Triticum L. are its most ancient representatives and have the A genome, which was more recently inherited by all polyploid species. Studies of the phylogenetic relationships among diploid and polyploid wheat species help to identify the donors of elementary genomes and to examine the species specificity of genomes. In this study, molecular analysis of the variable sequences of three nuclear genes (Acc-1, Pgk-1, and Vrn-1) was performed for wild and cultivated wheat species, including both diploids and polyploids. Based on the sequence variations found in the genes, clear differences were observed among elementary genomes, but almost no polymorphism was detected within each genome in polyploids. At the same time, the regions of the three genes proved to be rather heterogeneous in the diploid species Triticum boeoticum Boiss., T. urartu Thum. ex Gandil., and T. monococcum L., thus representing mixed populations. A genome variant identical to the A genome of polyploid species was observed only in T. urartu. Species-specific molecular markers discriminating the diploid species were not found. Analysis of the inheritance of morphological characters also failed to identify a species-specific character for the three diploid wheat species apart from the hairy leaf blade type, described previously.  相似文献   

6.
Variation in chromosome number and internal transcribed sequences (ITS) of nrDNA is used to infer phylogenetic relationships of a wide range ofHedera species. Polyploidy was found to be frequent inHedera, with diploid, tetraploid, hexaploid and octoploid populations being detected. Nucleotide additivity occurs in the ITS sequences of one tetraploid (H. hibernica) and two hexaploid species (H. maderensis, H. pastuchovii), suggesting that all three species originated by allopolyploidisation. ITS sequence polymorphism and nucleotide characters may indicate the presence of an ancient genome persistent only in some allopolyploid species. Phylogenetic analyses of ITS sequence data reveal two lineages ofHedera: one containing all sequences belonging to extant diploids plus the tetraploidH. algeriensis, and a second that includes this ancient ITS type and others exclusive to several polyploid species. The origin of the polyploids is evaluated on the basis of morphology, chromosome counts, ITS sequence polymorphism, and phylogenetic analyses. Reconstruction of reticulate evolution inHedera agrees with two allopolyploid areas on both sides of the Mediterranean basin. Morphological, molecular and cytological evidence also suggests an active dispersal ofHedera populations that may account for three independent introductions in Macaronesia.  相似文献   

7.
132 cultivated populations (2x–16x) of 15 arctic-alpine species ofDraba were investigated to clarify a possible relationship between reproductive strategies and polyploid evolution in the genus. The populations were exclusively sexual and produced viable seed after spontaneous self-pollination, but showed large variation both in traits promoting cross-pollination and in autogamous fruit and seed set. Traits promoting cross-pollination, e.g., floral display, protogyny, and delayed selfing, were positively correlated, and these traits were negatively correlated with autogamous fruit and seed set. All diploid and many polyploid populations had high autogamous seed set and small, unscented, non-protogynous, and rapidly selfing flowers. In contrast, all populations with low autogamous seed set and large, scented, and strongly protogynous flowers with distinctly delayed selfing were polyploid. These results are consistent with those previously obtained from enzyme electrophoresis, suggesting that the genetically depauperate diploids are extreme inbreeders and that the highly fixed-heterozygous polyploids vary from extreme inbreeders to mixed maters. The reproductive data lend additional support to the hypothesis that allopolyploidy in arcticDraba serves as an escape from genetic depauperation caused by uniparental inbreeding at the diploid level.  相似文献   

8.
Tragopogon mirus Ownbey and T. miscellus Ownbey are allopolyploids that formed repeatedly during the past 80 years following the introduction of three diploids (T. dubius Scop., T. pratensis L. and T. porrifolius L.) from Europe to western North America. These polyploid species of known parentage are useful for studying the consequences of recent and recurrent polyploidization. We summarize recent analyses of the cytogenetic, genomic and genetic consequences of polyploidy in Tragopogon. Analyses of rDNA ITS (internal transcribed spacer) + ETS (external transcribed spacer) sequence data indicate that the parental diploids are phylogenetically well separated within Tragopogon (a genus of perhaps 150 species), in agreement with isozymic and cpDNA data. Using Southern blot and cloning experiments on tissue from early herbarium collections of T. mirus and T. miscellus (from 1949) to represent the rDNA repeat condition closer to the time of polyploidization than samples collected today, we have demonstrated concerted evolution of rDNA. Concerted evolution is ongoing, but has not proceeded to completion in any polyploid population examined; rDNA repeats of the diploid T. dubius are typically lost or converted in both allopolyploids, including populations of independent origin. Molecular cytogenetic studies employing rDNA probes, as well as centromeric and subtelomeric repeats isolated from Tragopogon, distinguished all chromosomes among the diploid progenitors (2n = 12). The diploid chromosome complements are additive in both allopolyploids (2n = 24); there is no evidence of major chromosomal rearrangements in populations of either T. mirus or T. miscellus. cDNA‐AFLP display revealed differences in gene expression between T. miscellus and its diploid parents, as well as between populations of T. miscellus of reciprocal origin. Approximately 5% of the genes examined in the allopolyploid populations have been silenced, and an additional 4% exhibit novel gene expression relative to their diploid parents. Some of the differences in gene expression represent maternal or paternal effects. Multiple origins of a polyploid species not only affect patterns of genetic variation in natural populations, but also contribute to differential patterns of gene expression and may therefore play a major role in the long‐term evolution of polyploids. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82 , 485–501.  相似文献   

9.
Polyploidy plays a prominent role in the speciation process in plants. Many species are known to be part of agamic complexes comprising sexual diploids and more or less exclusively asexual polyploids. However, polyploid formation has been studied in very few cases, primarily because of the challenges in examining these cases phylogenetically. In this study, we demonstrate the use of a variety of phylogenetic approaches to unravel origins and infer reticulation history in a diploid–polyploid complex of black‐fruited Crataegus. The tree approaches are shown to be useful in testing alternative hypotheses and in revealing genealogies of nuclear genes, particularly in polyploid organisms that may contain multiple copies. Compared to trees, network approaches provide a better indication of reticulate relationships among recently diverged taxa. Taken together, our data point to both the autopolyploid and allopolyploid origins of triploids in natural populations of Crataegus suksdorfii, whereas tetraploids are formed via a triploid bridge, involving the backcross of allotriploid offspring with their diploid C. suksdorfii parent, followed by gene introgression from sympatric C. douglasii. Our findings provide empirical evidence for different pathways of polyploid formation that are all likely to occur within natural populations and the allopatric establishment of neopolyploids subsequent to their formation.  相似文献   

10.
We examined genetic variation in sympatric diploid and polyploid brine shrimp Artemia parthenogenetica from each of three populations (China, Italy and Spain). Italian and Spanish tetraploids are closely related (I=0.964). Diploids and tetraploids within each of the two European populations are also closely related (mean I=0.905). Most alleles found in diploids also exist in sympatric polyploids. In contrast, the asexual Artemia (2N, 4N and 5N) in our study share few alleles with their close sexual relative, A. tunisiana (mean I=0.002). These results, as well as the work of other authors, strongly suggest that at least the tetraploid Artemia in our study have an autopolyploid origin.Clonal diversity of polyploid Artemia can be very high at least in some population. Both diploids and polyploids had low clonal diversities in the populations dominated by polyploids and high clonal diversities in the population dominated by diploids.The most common genotypes of sympatric diploid and polyploid Artemia frequently differed. Some alleles occurred only in diploids, while others were restricted to polyploids. These results suggest that polyploidy in Artemia has led to genetic divergence from diploid progenitors, and that ploidy-level variation must also be considered in developing an understanding of spatial and temporal allozyme polymorphism in asexual populations.  相似文献   

11.
Numerous hybrid and polypoid species are found within the Triticeae. It has been suggested that the H subgenome of allopolyploid Elymus (wheatgrass) species originated from diploid Hordeum (barley) species, but the role of hybridization between polyploid Elymus and Hordeum has not been studied. It is not clear whether gene flow across polyploid Hordeum and Elymus species has occurred following polyploid speciation. Answering these questions will provide new insights into the formation of these polyploid species, and the potential role of gene flow among polyploid species during polyploid evolution. In order to address these questions, disrupted meiotic cDNA1 (DMC1) data from the allopolyploid StH Elymus are analyzed together with diploid and polyploid Hordeum species. Phylogenetic analysis revealed that the H copies of DMC1 sequence in some Elymus are very close to the H copies of DMC1 sequence in some polyploid Hordeum species, indicating either that the H genome in theses Elymus and polyploid Hordeum species originated from same diploid donor or that gene flow has occurred among them. Our analysis also suggested that the H genomes in Elymus species originated from limited gene pool, while H genomes in Hordeum polyploids have originated from broad gene pools. Nucleotide diversity (π) of the DMC1 sequences on H genome from polyploid species (π = 0.02083 in Elymus, π = 0.01680 in polyploid Hordeum) is higher than that in diploid Hordeum (π = 0.01488). The estimates of Tajima''s D were significantly departure from the equilibrium neutral model at this locus in diploid Hordeum species (P<0.05), suggesting an excess of rare variants in diploid species which may not contribute to the origination of polyploids. Nucleotide diversity (π) of the DMC1 sequences in Elymus polyploid species (π = 0.02083) is higher than that in polyploid Hordeum (π = 0.01680), suggesting that the degree of relationships between two parents of a polyploid might be a factor affecting nucleotide diversity in allopolyploids.  相似文献   

12.
104 populations of 15 Nordic species (2x–16x) of the taxonomically complex genusDraba were investigated using enzyme electrophoresis. The polyploids were genetic alloploids showing high levels of fixed heterozygosity and electrophoretic variation; the diploids were homozygous and genetically depauperate. Thus, the data suggest that alloploidy in arctic-alpineDraba serves as an escape from genetic depauperation caused by inbreeding at the diploid level. Although some populations probably have local alloploid origins, electrophoretic data indicate that several polyploids have migrated repeatedly into the Nordic area.Draba crassifolia (2n = 40) is probably octoploid based on x = 5. A hypothesis on the evolutionary history of the polyploids based on x = 8 is presented. Diploids contributing to numerous polyploid genomes and multiple origins of polyploids have seriously blurred taxonomic relationships. Relationships inferred from genetic data do not always correspond to those based on morphology; two morphologically very similar polyploids,D. alpina andD. oxycarpa, were, for example, genetically distant and probably represent independent lineages.  相似文献   

13.
Analysis of 368 plants derived from 239 natural populations showed that this taxonomically perplexing and wide-ranging species-complex consists of diploids (n = 8), tetraploids, hexaploids and octoploids. Microsporocytes were the source of most of the chromosome counts. Meiosis was basically regular. Multivalent formation was uncommon, but 11 % of all the plants examined had one or more full-sized extra chromosomes. The frequency of plants with extra chromosomes varied significantly among the taxa, from 0 (five varieties) to over 20 % (two varieties). Except in one instance, where one population yielded a diploid and a triploid, different ploidy levels were not found in the same population. The frequency of diploid, tetraploid, hexaploid and octoploid populations was, respectively, 71, 22, 4 and 2%. Variety obovatum appears to be exclusively diploid, and var. aphanactis exclusively tetraploid. Diploids and one or more polyploid levels occurred in the other taxa. No correlation was found between polyploidy and geological history, soils, topography or climate, nor were the polyploids more widely distributed than the diploids. Some of the polyploid populations seem to have been derived from inter-varietal hybridizations, but others do not. The complex has a “pillar” structure in which 10 diploid taxa support a three-level polyploid superstructure. The available evidence suggests that the major role of polyploidy here has been to stabilize the products of intra- and inter-varietal hybridizations.  相似文献   

14.
Menzel , Margaret Y. (Florida State U., Tallahassee), and James B. Pate . Chromosomes and crossing behavior of some species of Sansevieria. Amer. Jour. Bot. 47(3) : 230—238. Illus. 1960.–Approximately 20 species (28 clones) studied were diploids, tetraploids or hexaploids of the basic numbers x = 20; about 40% of the taxa were polyploid. All species had similar karyotypes, except for chromosome number. Five of 12 combinations of diploid species gave fertile F1 hybrids; 4 studied cytologically showed 20 bivalents at metaphase I. Two triploid interspecific hybrids showed high trivalent frequencies. In contrast, multivalent formation in polyploid species was variable but rather low. Morphological relationships appeared reticulate among and between diploids and polyploids and did not coincide with barriers to crossing or to hybrid fertility. The following tentative hypothesis concerning relationships in the genus is proposed: Sansevieria is monophyletic and speciation has proceeded through genetic variation and hybridization at the diploid level and by allopolyploidy (of the segmental type) ; a low level of chromosome differentiation has accompanied speciation such that complete pairing occurs in diploid hybrids, but considerable preferential pairing occurs in allopolyploids. The occurrence of both polyploid and hybrid vigor, the fertility of hybrids between species differing greatly in morphology and physiology, and the high potential for vegetative propagation make the genus a favorable subject for breeding based on interspecific hybridization.  相似文献   

15.
In this paper we demonstrate that, by investigating polyploid complexes in Asplenium, it is possible to locate the areas in Europe that are southern glacial rcfugia, and arc likely to have been so since the beginning of the Pleistocene during the consecutive cold and warm periods in Europe. Identification and conservation of these specific areas that serve as safe havens for plants, and perhaps animals, is of paramount importance for the maintenance of European biodiversity because Man's activities arc resulting in an ever-increasing loss of natural habitats and putting diversity at risk. The genus Asplenium in Europe comprises some 50 taxa: half of these are diploid while the other half arc polyploids derived from the diploids. All aspleniums in Europe are (small) rock ferns with high substrate specificity. Today, most of mainland Europe, Scandinavia and the British Isles has been colonized by polyploid Asplenium species, while the diploids that gave rise to these polyploids are distributed around (and more or less confined to) the Mediterranean Basin. In the tetraploids genetic variation is partitioned mostly between sites, whereas diploids show a high degree of genetic variation both within and between sites. The tctraploid taxa seem capable of single spore colonization via intragametophytic selfing, but the diploid taxa appear to be predominantly outbreeding. For most diploids at least two gametophytes, produced by different spores, have to be present to achieve fertilization and subsequent sporophyte formation for the successful colonization of a new site. This results in a slower rate of colonization. The formation of auto- and allopolyploid taxa from diploid communities appears to have been a recurrent and common feature in Europe. Minority cytotypc exclusion is likely to prevent the establishment of tetraploids within the diploid communities, but spores from tetraploids can establish populations outside the diploid communities. The differences between colonization abilities of tctraploid and ancestral diploid taxa, resulting from their different breeding systems, has prevented the merging and mingling of their ranges and led to the establishment of contact/ hybrid zones. This has resulted in the restriction of diploid populations to ancient glacial rcfugia and the colonization of the rest of Europe by polyploids. Mapping the current distribution of these diploid communities and comparing the genetic diversity within and between outbreeding diploid Asplenium taxa allows us to define the area, age and historical biogcography of these rcfugia and to assess their importance for present day genetic and species diversity in Europe.  相似文献   

16.
Aim Newly formed polyploids experience problems of establishment and spread similar to those faced by newly introduced alien species. To understand the significance of polyploidy in biological invasions, we mapped the distribution of ploidy levels in Solidago gigantea Aiton in its native range in North America, and in Europe and East Asia where it is invasive. Location North America, Europe and East Asia. Methods Flow cytometry was used to measure ploidy levels in a total of 834 plants from 149 locations. Together with data from contributors and a literature review, ploidy‐level data were assembled for 336 locations. Cytogeographical maps from North America and Europe were prepared, incorporating new and previously published ploidy‐level data. Results In the native range, diploid, tetraploid and hexaploid plants were found, and also one triploid and one pentaploid plant (2n = 3x and 2n = 5x, respectively, each being new reports for this species). There was a high degree of geographical separation among the ploidy levels, and populations with mixed ploidy were rare. However, four zones were identified where plants of different ploidy could come into contact. In Europe and East Asia, only tetraploid plants were found. Main conclusions The geographical pattern in North America suggests that the ploidy levels are ecologically differentiated, although further investigations are needed to identify the nature of these differences. Alien populations appear to be exclusively tetraploid, but it is not clear whether this is because tetraploids were selectively introduced or because diploids were unsuccessful. In any case, comparisons between native and introduced populations need to account for ploidy level.  相似文献   

17.
Despite knowledge that polyploidy is widespread and a major evolutionary force in flowering plant diversification, detailed comparative molecular studies on polyploidy have been confined to only a few species and families. The genus Oryza is composed of 23 species that are classified into ten distinct ‘genome types’ (six diploid and four polyploid), and is emerging as a powerful new model system to study polyploidy. Here we report the identification, sequence and comprehensive comparative annotation of eight homoeologous genomes from a single orthologous region (Adh1–Adh2) from four allopolyploid species representing each of the known Oryza genome types (BC, CD, HJ and KL). Detailed comparative phylogenomic analyses of these regions within and across species and ploidy levels provided several insights into the spatio‐temporal dynamics of genome organization and evolution of this region in ‘natural’ polyploids of Oryza. The major findings of this study are that: (i) homoeologous genomic regions within the same nucleus experience both independent and parallel evolution, (ii) differential lineage‐specific selection pressures do not occur between polyploids and their diploid progenitors, (iii) there have been no dramatic structural changes relative to the diploid ancestors, (iv) a variation in the molecular evolutionary rate exists between the two genomes in the BC complex species even though the BC and CD polyploid species appear to have arisen <2 million years ago, and (v) there are no clear distinctions in the patterns of genome evolution in the diploid versus polyploid species.  相似文献   

18.
A total of 134 chromosome counts representing 21 taxa of the genus Arnica are presented. Counts are published here for the first time for A. lonchophylla (n = 38) and A. nevadensis (n = 38). Ten previously unreported counts representing 9 taxa are also presented. The basic chromosome number of the genus is x = 19. With respect to chromosome number, the genus exhibits maximum diversity in the Rocky Mountains of Colorado and Wyoming. Arnica angustifolia, A. cordifolia and A. mollis are recognized as mature polyploid complexes, containing several wide ranging polyploid races and only a few highly restricted or scattered diploid races. Within the genus in general, diploids tend to be restricted to unglaciated areas while polyploids are much wider ranging, particularly in unglaciated areas.  相似文献   

19.
In many polyploid species, polyploids often have different suites of floral traits and different flowering times than their diploid progenitor species. We hypothesized that such differences in floral traits in polyploids may subsequently affect their interactions with pollinating and other insect visitors. We measured floral morphology and flowering phenology in 14 populations of diploid and autotetraploid Heuchera grossulariifolia Rydb. (Saxifragaceae), determined if repeated evolution of independent polyploid lineages resulted in differentiation in floral morphology among those lineages, and ascertained if there was a consistent pattern of differentiation among genetically similar diploid and autotetraploid populations. In addition, we evaluated the differences in suites of floral visitors within a natural community where diploids and autotetraploids occur sympatrically. Overall, flowers of autotetraploid plants were larger and shaped differently than those of diploids, had a different flowering phenology than that of diploids, and attracted different suites of floral visitors. In comparison with flowers of diploids, tetraploid floral morphology varied widely from pronounced differences between cytotypes in some populations to similar flower shapes and sizes between ploidal levels in other populations. Observations of floral visitors to diploids and autotetraploids in a natural sympatric population demonstrated that the cytotypes had different suites of floral visitors and six of the 15 common visitors preferentially visited one ploidy more frequently. Moreover, we also found that floral morphology differed among independent autotetraploid origins, but there was no consistent pattern of differentiation between genetically similar diploid and autotetraploid populations. Hence, the results suggest that the process of polyploidization creates the potential for attraction of different suites of floral visitors. Multiple origins of polyploidy also presents the opportunity for new or different plant-insect interactions among independent polyploid lineages. These differences in turn may affect patterns of gene flow between diploids and polyploids and also among plants of independent polyploid origin. Polyploidy, therefore, may result in a geographic mosaic of interspecific interactions across a species' range, contributing to diversification in both plant and insect groups.  相似文献   

20.
Prieto P  Santos AP  Moore G  Shaw P 《Chromosoma》2004,112(6):300-307
Studies of the meiosis of diploid plants such as Arabidopsis, maize and diploid progenitors of wheat have revealed no premeiotic association of chromosomes. Premeiotic and somatic association of chromosomes has only been previously observed in the anther tissues and xylem vessel cells of developing roots in polyploid plants such as hexaploid and tetraploid wheat, polyploid relatives of wheat and artificial polyploids made from the progenitor diploids of wheat. This suggested that this association was confined specifically to polyploids or was induced by polyploidy. However, we developed procedures for in situ hybridization on structurally well-preserved tissue sections of rice, and analysed two diploid rice species (Oryza sativa and O. punctata). Contrary to expectation, this has revealed that centromeres and telomeres also associate both in the xylem vessel cells of developing root and in undifferentiated anther cells in these diploids. However, in contrast to wheat and related polyploids, where the initial association in undifferentiated anthers is between either non-homologous or related chromosomes, and not homologous chromosomes, the initial association of rice chromosomes seems to be between homologues. Thus, in contrast to the diploid dicot model Arabidopsis, meiotic studies on the diploid model cereal, rice, will now need to take into account the effects of premeiotic chromosome association.Pilar Prieto and Ana Paula Santos are joint first authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号