首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Latitudinal genetic clines in body size occur in many ectotherms including Drosophila species. In the wing of D. melanogaster, these clines are generally based on latitudinal variation in cell number. In contrast, differences in wing area that evolve by thermal selection in the laboratory are in general based on cell size. To investigate possible reasons for the different cellular bases of these two types of evolutionary response, we compared the newly established North and South American wing size clines of Drosophila subobscura. The new clines are based on latitudinal variation in cell area in North America and cell number in South America. The ancestral European cline is also based on latitudinal variation in cell number. The difference in the cellular basis of wing size variation in the American clines, which are roughly the same age, together with the similar cellular basis of the new South American cline and the ancient European one, suggest that the antiquity of a cline does not explain its cellular basis. Furthermore, the results indicate that wing size as a whole, rather than its cellular basis, is under selection. The different cellular bases of different size clines are most likely explained either entirely by chance or by different patterns of genetic variance--or its expression--in founding populations.  相似文献   

2.
Latitudinal, genetic variation in body size is a commonly observed phenomenon in many invertebrate species and is shaped by natural selection. In this study, we use a chromosome substitution and a quantitative trait locus (QTL) mapping approach to identify chromosomes and genomic regions associated with adaptive variation in body size in natural populations of Drosophila melanogaster from the extreme ends of clines in South America and Australia. Chromosome substitution revealed the largest effects on chromosome three in both continents, and minor effects on the X and second chromosome. Similarly, QTL analysis of the Australian cline identified QTL with largest effects on the third chromosome, with smaller effects on the second. However, no QTL were found on the X chromosome. We also compared the coincidence of locations of QTL with the locations of five microsatellite loci previously shown to vary clinally in Australia. Permutation tests using both the sum of the LOD scores and the sum distance to nearest QTL peak revealed there were no significant associations between locations of clinal markers and QTL's. The lack of significance may, in part, be due to broad QTL peaks identified in this study. Future studies using higher resolution QTL maps should reveal whether the degree of clinality in microsatellite allele frequencies can be used to identify QTL in traits that vary along an environmental gradient.  相似文献   

3.
Hoffmann AA  Weeks AR 《Genetica》2007,129(2):133-147
Drosophila melanogaster invaded Australia around 100 years ago, most likely through a northern invasion. The wide range of climatic conditions in eastern Australia across which D. melanogaster is now found provides an opportunity for researchers to identify traits and genes that are associated with climatic adaptation. Allozyme studies indicate clinal patterns for at least four loci including a strong linear cline in Adh and a non-linear cline in alpha-Gpdh. Inversion clines were initially established from cytological studies but have now been validated with larger sample sizes using molecular markers for breakpoints. Recent collections indicate that some genetic markers (Adh and In(3R)Payne) have changed over the last 20 years reflecting continuing evolution. Heritable clines have been established for quantitative traits including wing length/area, thorax length and cold and heat resistance. A cline in egg size independent of body size and a weak cline in competitive ability have also been established. Postulated clinal patterns for resistance to desiccation and starvation have not been supported by extensive sampling. Experiments under laboratory and semi-natural conditions have suggested selective factors generating clinal patterns, particularly for reproductive patterns over winter. Attempts are being made to link clinal variation in traits to specific genes using QTL analysis and the candidate locus approach, and to identify the genetic architecture of trait variation along the cline. This is proving difficult because of inversion polymorphisms that generate disequilibrium among genes. Substantial gaps still remain in linking clines to field selection and understanding the genetic and physiological basis of the adaptive shifts. However D. melanogaster populations in eastern Australia remain an excellent resource for understanding past and future evolutionary responses to climate change.  相似文献   

4.
Abstract Latitudinal geographic variation in Drosophila melanogaster is pervasive. Parallel clines in traits such as body size, egg size, ovariole number, and development time have been found on several continents throughout the world. However, a cline in starvation resistance and fat content in D. melanogaster has so far been found only in India. Here we investigate starvation resistance and fat content in 10 populations from South America, in which clines in body size, egg size, and development time have previously been found. We find no evidence for a cline in starvation resistance or fat content in South America. We therefore suggest that the cline in starvation resistance in India may have evolved in response to specific climatic variation found only in India.  相似文献   

5.
Lee SF  Rako L  Hoffmann AA 《Heredity》2011,107(1):22-29
Many ecologically important traits exhibit latitudinal variation. Body size clines have been described repeatedly in insects across multiple continents, suggesting that similar selective forces are shaping these geographical gradients. It is unknown whether these parallel clinal patterns are controlled by the same or different genetic mechanism(s). We present here, quantitative trait loci (QTL) analysis of wing size variation in Drosophila simulans. Our results show that much of the wing size variation is controlled by a QTL on Chr 3L with relatively minor contribution from other chromosome arms. Comparative analysis of the genomic positions of the QTL indicates that the major QTL on Chr 3 are distinct in D. simulans and D. melanogaster, whereas the QTL on Chr 2R might overlap between species. Our results suggest that parallel evolution of wing size clines could be driven by non-identical genetic mechanisms but in both cases involve a major QTL as well as smaller effects of other genomic regions.  相似文献   

6.
Latitudinal clines in quantitative traits are common, but surprisingly little is known about the genetic bases of these divergences and how they vary within and between clines. Here, we use line‐cross analysis to investigate the genetic architecture of wing size divergences at varying spatial scales along a body size cline in Drosophila melanogaster. Our results revealed that divergences in wing size along the cline were due to strong additive effects. Significant nonadditive genetic effects, including epistasis and maternal effects, were also detected, but they were relatively minor in comparison to the additive effects and none were common to all crosses. There was no evidence of increased epistasis in crosses between more geographically distant populations and, unlike in previous studies, we found no significant dominance effects on wing size in any cross. Our results suggest there is little variation in the genetic control of wing size along the length of the Australian cline. They also highlight marked inconsistencies in the magnitude of dominance effects across studies, which may reflect different opportunities for mutation accumulation while lines are in laboratory culture.  相似文献   

7.
Body size often shows adaptive clines in many ectotherms across altitude and latitude, but little is known about the genetic basis of these adaptive clines. Here we identify a polymorphism in the Dca (Drosophila cold acclimation) gene in Drosophila melanogaster that influences wing size, affects wing:thorax allometry and also controls a substantial proportion of the clinal wing‐size variation. A polymorphism in the promoter region of Dca had two common alleles showing strong reciprocal clinal variation in frequency with latitude along the east coast of Australia. The Dca‐237 allele increased towards the tropics where wing size is smaller. A within‐population association study highlighted that an increase in the frequency of this allele decreased wing size but did not influence thorax size. A manipulated increase in the level of expression of Dca achieved through UAS‐GAL4 was associated with a decrease in wing size but had no effect on thorax size. This was consistent with higher Dca expression levels in family lines with higher frequency of the Dca‐237 allele. Genetic variation in the promoter region of the Dca gene appears to influence adaptive size variation in the eastern Australian cline of Drosophila melanogaster and accounts for more than 10% of the genetic variation in size within and between populations.  相似文献   

8.
Gilchrist AS  Partridge L 《Genetics》1999,153(4):1775-1787
Body size clines in Drosophila melanogaster have been documented in both Australia and South America, and may exist in Southern Africa. We crossed flies from the northern and southern ends of each of these clines to produce F(1), F(2), and first backcross generations. Our analysis of generation means for wing area and wing length produced estimates of the additive, dominance, epistatic, and maternal effects underlying divergence within each cline. For both females and males of all three clines, the generation means were adequately described by these parameters, indicating that linkage and higher order interactions did not contribute significantly to wing size divergence. Marked differences were apparent between the clines in the occurrence and magnitude of the significant genetic parameters. No cline was adequately described by a simple additive-dominance model, and significant epistatic and maternal effects occurred in most, but not all, of the clines. Generation variances were also analyzed. Only one cline was described sufficiently by a simple additive variance model, indicating significant epistatic, maternal, or linkage effects in the remaining two clines. The diversity in genetic architecture of the clines suggests that natural selection has produced similar phenotypic divergence by different combinations of gene action and interaction.  相似文献   

9.
Clinal variation is one of the most emblematic examples of the action of natural selection at a wide geographical range. In Drosophila subobscura, parallel clines in body size and inversions, but not in wing shape, were found in Europe and South and North America. Previous work has shown that a bottleneck effect might be largely responsible for differences in wing trait–inversion association between one European and one South American population. One question still unaddressed is whether the associations found before are present across other populations of the European and South American clines. Another open question is whether evolutionary dynamics in a new environment can lead to relevant changes in wing traits–inversion association. To analyse geographical variation in these associations, we characterized three recently laboratory founded D. subobscura populations from both the European and South American latitudinal clines. To address temporal variation, we also characterized the association at a later generation in the European populations. We found that wing size and shape associations can be generalized across populations of the same continent, but may change through time for wing size. The observed temporal changes are probably due to changes in the genetic content of inversions, derived from adaptation to the new, laboratory environment. Finally, we show that it is not possible to predict clinal variation from intrapopulation associations. All in all this suggests that, at least in the present, wing traits–inversion associations are not responsible for the maintenance of the latitudinal clines in wing shape and size.  相似文献   

10.
Gilchrist  George W.  Huey  Raymond B.  Serra  Lluís 《Genetica》2001,(1):273-286
Parallel latitudinal clines across species and continents provide dramatic evidence of the efficacy of natural selection, however little is known about the dynamics involved in cline formation. For example, several drosophilids and other ectotherms increase in body and wing size at higher latitudes. Here we compare evolution in an ancestral European and a recently introduced (North America) cline in wing size and shape in Drosophila subobscura. We show that clinal variation in wing size, spanning more than 15 degrees of latitude, has evolved in less than two decades. In females from Europe and North America, the clines are statistically indistinguishable however the cline for North American males is significantly shallower than that for European males. We document that while overall patterns of wing size are similar on two continents, the European cline is obtained largely through changing the proximal portion of the wing, whereas the North American cline is largely in the distal portion. We use data from sites collected in 1986/1988 (Pegueroles et al. 1995) and our 1997 collections to compare synchronic (divergence between contemporary populations that share a common ancestor) and allochronic (changes over time within a population) estimates of the rates of evolution. We find that, for these populations, allochronically estimated evolutionary rates within a single population are over 0.02 haldanes (2800 darwins), a value similar in magnitude to the synchronic estimates from the extremes of the cline. This paper represents an expanded analysis of data partially presented in Huey et al. (2000).  相似文献   

11.
A. C. James  RBR. Azevedo    L. Partridge 《Genetics》1995,140(2):659-666
We examined 20 Drosophila melanogaster populations collected from a 2600-km north-south transect in Australia. In laboratory culture at constant temperature and standard larval density, a genetic cline in thorax length and wing area was found, with both traits increasing with latitude. The cline in wing area was based on clines in both cell size and cell number, but was primarily determined by changes in cell number. Body size and larval development time were not associated among populations. We discuss our results in the context of selection processes operating in natural and experimental populations.  相似文献   

12.
Latitudinal clinal variation in wing size and shape has evolved in North American populations of Drosophila subobscura within about 20 years since colonization. While the size cline is consistent to that found in original European populations (and globally in other Drosophila species), different parts of the wing have evolved on the two continents. This clearly suggests that 'chance and necessity' are simultaneously playing their roles in the process of adaptation. We report here rapid and consistent thermal evolution of wing shape (but not size) that apparently is at odds with that suggestion. Three replicated populations of D. subobscura derived from an outbred stock at Puerto Montt (Chile) were kept at each of three temperatures (13, 18 and 22 degrees C) for 1 year and have diverged for 27 generations at most. We used the methods of geometric morphometrics to study wing shape variation in both females and males from the thermal stocks, and rates of genetic divergence for wing shape were found to be as fast or even faster than those previously estimated for wing size on a continental scale. These shape changes did not follow a neat linear trend with temperature, and are associated with localized shifts of particular landmarks with some differences between sexes. Wing shape variables were found to differ in response to male genetic constitution for polymorphic chromosomal inversions, which strongly suggests that changes in gene arrangement frequencies as a response to temperature underlie the correlated changes in wing shape because of gene-inversion linkage disequilibria. In fact, we also suggest that the shape cline in North America likely predated the size cline and is consistent with the quite different evolutionary rates between inversion and size clines. These findings cast strong doubts on the supposed 'unpredictability' of the geographical cline for wing traits in D. subobscura North American colonizing populations.  相似文献   

13.
Range expansion during biological invasion requires that invaders adapt to geographical variation in climate, which should yield latitudinal clines in reproductive phenology. We investigated geographic variation in life history among 25 introduced populations of Lythrum salicaria, a widespread European invader of North American wetlands. We detected a strong latitudinal cline in initiation of flowering and size at flowering, which paralleled that reported among native populations. Plants from higher latitudes flowered earlier and at a smaller size than those from lower latitudes, even when raised in a uniform glasshouse. Early flowering was associated with greatly reduced reproductive output, but this was not associated with latitudinal variation in abundance, and probably did not result from a genetic correlation between time to and size at flowering. As introduction to North America c. 200 years ago, L. salicaria has re-established latitudinal clines in life history, probably as an evolutionary response to climatic selection.  相似文献   

14.
Clines for size and stress resistance traits have been described for several Drosophila species and replicable clines across different species may indicate climatic selection. Here we consider clines in stress resistance traits in an Australian endemic species, D. serrata, by comparing levels of variation within and among isofemale lines initiated with flies collected from the eastern coast of Australia. We also consider clinical variation in chill coma recovery, a trait that has recently been shown to exhibit high levels of variation among Drosophila species. Patterns were compared with those in the cosmopolitan species D. melanogaster from the same area. Both desiccation and starvation resistance showed no clinical pattern despite heritable variation among isofemale lines. In contrast chill coma resistance exhibited a linear cline in the anticipated direction, resistance increasing with latitude. Body size was measured as wing length and body weight. Both traits showed geographic variation and strong non-linear clines with a sharp reduction in size in the tropics. These results are discussed in the context of climatic selection and evolutionary processes limiting species borders.  相似文献   

15.
In fewer than two decades after invading the Americas, the fly Drosophila subobscura evolved latitudinal clines for chromosomal inversion frequencies and wing size that are parallel to the long‐standing ones in native Palearctic populations. By sharp contrast, wing shape clines also evolved in the New World, but the relationship with latitude was opposite to that in the Old World. Previous work has suggested that wing trait differences among individuals are partially due to the association between chromosomal inversions and particular alleles which influence the trait under consideration. Furthermore, it is well documented that a few number of effective individuals founded the New World populations, which might have modified the biometrical effect of inversions on quantitative traits. Here we evaluate the relative contribution of chromosomal inversion clines in shaping the parallel clines in wing size and contrasting clines in wing shape in native and colonizing populations of the species. Our results reveal that inversion‐size and inversion‐shape associations in native and colonizing (South America) populations are generally different, probably due to the bottleneck effect. Contingent, unpredictable evolution was suggested as an explanation for the different details involved in the otherwise parallel wing size clines between Old and New World populations of D. subobscura. We challenge this assertion and conclude that contrasting wing shape clines came out as a correlated response of inversion clines that might have been predicted considering the genetic background of colonizers.  相似文献   

16.
SUMMARY We have taken advantage of parallel instances of natural selection on body size in Drosophila melanogaster to investigate constraints and adaptation affecting wing shape. Using recently developed techniques for statistical shape analysis, we have examined variation in wing shape in similar body size clines on three continents. Gender-related shape differences were constant among all populations, suggesting that gender differences represent a developmental constraint on wing shape. In contrast, the underlying shape varied significantly between continents and shape change within each cline (i.e., between small and large body size populations) also varied between continents. Therefore, variation at these two levels presumably results from either drift or natural selection. Functional considerations suggest that shape variation between the continents is unlikely to be adaptive. However, cline-related shape change, which we show has a significant allometric component, may be adaptive. The overall range of wing shape variation, across a large range of wing size, is extremely small, and the possibility that wing shape is subject to stabilizing selection (or canalization) is discussed.  相似文献   

17.
Drosophila subobscura is geographically widespread in the Old World. Around the late 1970s, it was accidentally introduced into both South and North America, where it spread rapidly over broad latitudinal ranges. This invading species offers opportunities to study the speed and predictability of trait evolution on a geographic scale. One trait of special interest is body size, which shows a strong and positive latitudinal cline in many Drosophila species, including Old World D. subobscura. Surveys made about a decade after the invasion found no evidence of a size cline in either North or South America. However, a survey made in North America about two decades after the invasion showed that a conspicuous size cline had evolved and (for females) was coincident with that for Old World flies. We have now conducted parallel studies on 10 populations (13 degrees of latitude) of flies, collected in Chile in spring 1999. After rearing flies in the laboratory for several generations, we measured wing sizes and compared geographic patterns (versus latitude or temperature) for flies on all three continents. South American females have now evolved a significant latitudinal size cline that is similar in slope to that of Old World and of North American flies. Rates of evolution (haldanes) for females are among the highest ever measured for quantitative traits. In contrast, the size cline is positive but not significant for South or North American males. At any given latitude, South American flies of both sexes are relatively large; this in part reflects the relatively cool climate of coastal Chile. Interestingly, the sections of the wing that generate the size cline for females differ among all three continents. Thus, although the evolution of overall wing size is predictable on a geographic scale (at least for females), the evolution of size of particular wing components is decidedly not.  相似文献   

18.
South America is home to one of the most culturally diverse present-day native populations. However, the dispersion pattern, genetic substructure, and demographic complexity within South America are still poorly understood. Based on genome-wide data of 58 native populations, we provide a comprehensive scenario of South American indigenous groups considering the genomic, environmental, and linguistic data. Clear patterns of genetic structure were inferred among the South American natives, presenting at least four primary genetic clusters in the Amazonian and savanna regions and three clusters in the Andes and Pacific coast. We detected a cline of genetic variation along a west-east axis, contradicting a hard Andes-Amazon divide. This longitudinal genetic variation seemed to have been shaped by both serial population bottlenecks and isolation by distance. Results indicated that present-day South American substructures recapitulate ancient macroregional ancestries and western Amazonia groups show genetic evidence of cultural exchanges that led to language replacement in precontact times. Finally, demographic inferences pointed to a higher resilience of the western South American groups regarding population collapses caused by the European invasion and indicated precontact population reductions and demic expansions in South America.  相似文献   

19.
Despite rampant colour pattern diversity in South America, Heliconius erato exhibits a ‘postman’ wing pattern throughout most of Central America. We examined genetic variation across the range of H. erato, including dense sampling in Central America, and discovered a deep genetic break, centred on the mountain range that runs through Costa Rica. This break is characterized by a novel mitochondrial lineage, which is nearly fixed in northern Central America, that branches basal to all previously described mitochondrial diversity in the species. Strong genetic differentiation also appears in Z‐linked and autosomal markers, and it is further associated with a distinct, but subtle, shift in wing pattern phenotype. Comparison of clines in wing phenotype, mtDNA and nuclear markers indicate they are all centred on the mountains dividing Costa Rica, but that cline width differs among data sets. Phylogeographical analyses, accounting for this new diversity, rewrite our understanding of mimicry evolution in this system. For instance, these results suggest that H. erato originated west of the Andes, perhaps in Central America, and as many as 1 million years before its co‐mimic, H. melpomene. Overall our data indicate that neutral genetic markers and colour pattern loci are congruent and converge on the same hypothesis—H. erato originated in northwest South America or Central America with a ‘postman’ phenotype and then radiated into the wealth of colour patterns present today.  相似文献   

20.
Body size and thermal tolerance clines in Drosophila melanogaster occur along the east coast of Australia. However the extent to which temperature affects the genetic architecture underlying the observed clinal divergence remains unknown. Clinal variation in these traits is associated with cosmopolitan chromosome inversions that cline in D. melanogaster. Whether this association influences the genetic architecture for these traits in D. melanogaster is unclear. Drosophila simulans shows linear clines in body size, but nonlinear clines in cold resistance. Clinally varying inversions are absent in D. simulans. Line-cross and clinal analyses were performed between tropical and temperate populations of D. melanogaster and D. simulans from the east coast of Australia to investigate whether clinal patterns and genetic effects contributing to clinal divergence in wing centroid size, thorax length, wing-to-thorax ratio, cold and heat resistance differed under different developmental temperatures (18 °C, 25 °C, and 29 °C). Developmental temperature influenced the genetic architecture in both species. Similarities between D. melanogaster and D. simulans suggest clinally varying inversion polymorphisms have little influence on the genetic architecture underlying clinal divergence in size in D. melanogaster. Differing genetic architectures across different temperatures highlight the need to consider different environments in future evolutionary and molecular studies of phenotypic divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号