首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant membrane proteomics   总被引:11,自引:0,他引:11  
Plant membrane proteins are involved in many different functions according to their location in the cell. For instance, the chloroplast has two membrane systems, thylakoids and envelope, with specialized membrane proteins for photosynthesis and metabolite and ion transporters, respectively. Although recent advances in sample preparation and analytical techniques have been achieved for the study of membrane proteins, the characterization of these proteins, especially the hydrophobic ones, is still challenging. The present review highlights recent advances in methodologies for identification of plant membrane proteins from purified subcellular structures. The interest of combining several complementary extraction procedures to take into account specific features of membrane proteins is discussed in the light of recent proteomics data, notably for chloroplast envelope, mitochondrial membranes and plasma membrane from Arabidopsis. These examples also illustrate how, on one hand, proteomics can feed bioinformatics for a better definition of prediction tools and, on the other hand, although prediction tools are not 100% reliable, they can give valuable information for biological investigations. In particular, membrane proteomics brings new insights over plant membrane systems, on both the membrane compartment where proteins are working and their putative cellular function.  相似文献   

2.
Human embryonic stem cells (hESCs) are of immense interest in regenerative medicine as they can self-renew indefinitely and can give rise to any adult cell type. Human embryonal carcinoma cells (hECCs) are the malignant counterparts of hESCs found in testis tumors. hESCs that have acquired chromosomal abnormalities in culture are essentially indistinguishable from hECC. Direct comparison of karyotypically normal hESCs with hECCs could lead to understanding differences between their mechanisms of growth control and contribute to implementing safe therapeutic use of stem cells without the development of germ cell cancer. While several comparisons of hECCs and hESCs have been reported, their cell surface proteomes are largely unknown, partly because plasma membrane proteomics is still a major challenge. Here, we present a strategy for the identification of plasma membrane proteins that has been optimized for application to the relatively small numbers of stem cells normally available, and that does not require tedious cell fractionation. The method led to the identification of 237 and 219 specific plasma membrane proteins in the hESC line HUES-7 and the hECC line NT2/D1, respectively. In addition to known stemness-associated cell surface markers like ALP, CD9, and CTNNB, a large number of receptors, transporters, signal transducers, and cell-cell adhesion proteins were identified. Our study revealed that several Hedgehog and Wnt pathway members are differentially expressed in hESCs and hECCs including NPC1, FZD2, FZD6, FZD7, LRP6, and SEMA4D, which play a pivotal role in stem cell self-renewal and cancer growth. Various proteins encoded on chromosome 12p, duplicated in testicular cancer, were uniquely identified in hECCs. These included GAPDH, LDHB, YARS2, CLSTN3, CSDA, LRP6, NDUFA9, and NOL1, which are known to be upregulated in testicular cancer. Distinct HLA molecules were revealed on the surface of hESCs and hECCs, despite their low abundance. Results were compared with genomic and proteomic data sets reported previously for mouse ESCs, hECCs, and germ cell tumors. Our data provides a surface signature for HUES-7 and NT2/D1 cells and distinguishes normal hESCs from hECCs, helping explain their 'benign' versus 'malignant' nature.  相似文献   

3.
Genomics and proteomics have added valuable information to our knowledgebase of the human biological system including the discovery of therapeutic targets and disease biomarkers. However, molecular profiling studies commonly result in the identification of novel proteins of unknown localization. A class of proteins of special interest is membrane proteins, in particular plasma membrane proteins. Despite their biological and medical significance, the 3-dimensional structures of less than 1% of plasma membrane proteins have been determined. In order to aid in identification of membrane proteins, a number of computational methods have been developed. These tools operate by predicting the presence of transmembrane segments. Here, we utilized five topology prediction methods (TMHMM, SOSUI, waveTM, HMMTOP, and TopPred II) in order to estimate the ratio of integral membrane proteins in the human proteome. These methods employ different algorithms and include a newly-developed method (waveTM) that has yet to be tested on a large proteome database. Since these tools are prone for error mainly as a result of falsely predicting signal peptides as transmembrane segments, we have utilized an additional method, SignalP. Based on our analyses, the ratio of human proteins with transmembrane segments is estimated to fall between 15% and 39% with a consensus of 13%. Agreement among the programs is reduced further when both a positive identification of a membrane protein and the number of transmembrane segments per protein are considered. Such a broad range of prediction depends on the selectivity of the individual method in predicting integral membrane proteins. These methods can play a critical role in determining protein structure and, hence, identifying suitable drug targets in humans.  相似文献   

4.
Vener AV  Strålfors P 《IUBMB life》2005,57(6):433-440
Vectorial proteomics is a methodology for the differential identification and characterization of proteins and their domains exposed to the opposite sides of biological membranes. Proteomics of membrane vesicles from defined isolated membranes automatically determine cellular localization of the identified proteins and reduce complexity of protein characterizations. The enzymatic shaving of naturally-oriented, or specifically-inverted sealed membrane vesicles, release the surface-exposed peptides from membrane proteins. These soluble peptides are amenable to various chromatographic separations and to sequencing by mass spectrometry, which provides information on the topology of membrane proteins and on their posttranslational modifications. The membrane shaving techniques have made a breakthrough in the identification of in vivo protein phosphorylation sites in membrane proteins form plant photosynthetic and plasma membranes, and from caveolae membrane vesicles of human fat cells. This approach has also allowed investigation of dynamics for in vivo protein phosphorylation in membranes from cells exposed to different conditions. Vectorial proteomics of membrane vesicles with retained peripheral proteins identify extrinsic proteins associated with distinct membrane surfaces, as well as a variety of posttranslational modifications in these proteins. The rapid integration of versatile vectorial proteomics techniques in the functional characterization of biological membranes is anticipated to bring significant insights in cell biology.  相似文献   

5.
Poetsch A  Wolters D 《Proteomics》2008,8(19):4100-4122
About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.  相似文献   

6.
Tan S  Tan HT  Chung MC 《Proteomics》2008,8(19):3924-3932
Biological membranes form an essential barrier between living cells and their external environments, as well as serve to compartmentalize intracellular organelles within eukaryotes. The latter includes membranes that envelope the nucleus, the outer and inner membranes of the mitochondria, membrane cisternae complex of the ER, Golgi apparatus, as well as lysosomes and secretory vesicles. Depending on their localizations in the whole organism and also within the cell, these membranes have different, highly specialized functions. Although 30% of naturally occurring proteins are predicted to be embedded in biological membranes, membrane proteomics is traditionally understudied due to difficulties in solubilizing, separating, and identifying membrane proteins. Given the importance of membrane proteins in the various cellular processes listed in this review, as well as the roles they play in diseases and their potential as drug targets, it is imperative that this class of proteins be better studied. With the recent advancement in technology, it is expected that some of the difficulties in membrane proteomics will be overcome, yielding new data on membrane proteins.  相似文献   

7.
Membrane proteins play essential roles in various cellular processes, such as nutrient transport, bioenergetic processes, cell adhesion, and signal transduction. Proteomics is one of the key approaches to exploring membrane proteins comprehensively. Bottom–up proteomics using LC–MS/MS has been widely used in membrane proteomics. However, the low abundance and hydrophobic features of membrane proteins, especially integral membrane proteins, make it difficult to handle the proteins and are the bottleneck for identification by LC–MS/MS. Herein, to improve the identification and quantification of membrane proteins, we have stepwisely evaluated methods of membrane enrichment for the sample preparation. The enrichment methods of membranes consisted of precipitation by ultracentrifugation and treatment by urea or alkaline solutions. The best enrichment method in the study, washing with urea after isolation of the membranes, resulted in the identification of almost twice as many membrane proteins compared with samples without the enrichment. Notably, the method significantly enhances the identified numbers of multispanning transmembrane proteins, such as solute carrier transporters, ABC transporters, and G-protein–coupled receptors, by almost sixfold. Using this method, we revealed the profiles of amino acid transport systems with the validation by functional assays and found more protein–protein interactions, including membrane protein complexes and clusters. Our protocol uses standard procedures in biochemistry, but the method was efficient for the in-depth analysis of membrane proteome in a wide range of samples.  相似文献   

8.
A simple and rapid method for characterizing hydrophobic integral membrane proteins and its utility for membrane proteomics using microcapillary liquid chromatography coupled on-line with tandem mass spectrometry (microLC-MS/MS) is described. The present technique does not rely on the use of detergents, strong organic acids or cyanogen bromide-mediated proteolysis. A buffered solution of 60% methanol was used to extract, solubilize, and tryptically digest proteins within a preparation of Halobacterium (H.) halobium purple membranes. Analysis of the digested purple membrane proteins by microLC-MS/MS resulted in the identification of all the predicted tryptic peptides of bacteriorhodopsin, including those that are known to be post-translationally modified. In addition, 40 proteins from the purple membrane preparation were also identified, of which 80% are predicted to contain between 1 and 16 transmembrane domains. To evaluate the general applicability of the method, the same extraction, solubilization, and digestion conditions were applied to a plasma membrane fraction prepared from human epidermal sheets. A total of 117 proteins was identified in a single microLC-MS/MS analysis, of which 55% are known to be integral or associated with the plasma membrane. Due to its simplicity, efficiency, and absence of MS interfering compounds, this technique can be used for the characterization of other integral membrane proteins and may be concomitantly applied for the analysis of membrane protein complexes or large-scale proteomic studies of different membrane samples.  相似文献   

9.
X-ray crystal structures of human membrane proteins, although potentially of extremely great impact, are highly underrepresented relative to those of prokaryotic membrane proteins. One key reason for this is that human membrane proteins can be difficult to express at a level, and at a quality, suitable for structural studies. This protocol describes the methods that we use to overexpress human membrane proteins from clonal human embryonic kidney 293 (HEK293S) cells lacking N-acetylglucosaminyltransferase I (GnTI(-)), and was recently used in our 2.1-? X-ray crystal structure determination of human RhCG. Upon identification of highly expressing cell lines, suspension cell cultures are scaled up in a facile manner either using spinner flasks or cellbag bioreactors, resulting in a final purified yield of ~0.5 mg of membrane protein per liter of medium. The protocol described here is reliable and cost effective, can be used to express proteins that would otherwise be toxic to mammalian cells and can be completed in 8-10 weeks.  相似文献   

10.
We present the first focused proteome study on human platelet membranes. Due to the removal of highly abundant cytoskeletal proteins a wide spectrum of known platelet membrane proteins and several new and hypothetical proteins were accessible. In contrast to other proteome studies we focused on prefractionation and purification of membranes from human platelets according to published protocols to reduce sample complexity and enrich interesting membrane proteins. Subsequently protein separation by common one-dimensional SDS-PAGE as well as the combined benzyldimethyl-n-hexadecylammonium chloride/SDS separation technique was performed prior to mass spectrometry analysis by nano-LC-ESI-MS/MS. We demonstrate that the application of both separation systems in parallel is required for maximization of protein tagging out of a complex sample. Furthermore the identification of several potential membrane proteins in human platelets yields new potential targets in functional platelet research.  相似文献   

11.
Many cellular signaling and communication events take place at the plasma membrane and thus the characterization of the plasma membrane proteome has been a hot research area in the hopes of learning more about these processes. Membrane microdomains are large protein and lipid complexes found on the cell surface membrane, able to concentrate or recruit signaling molecules or factors. The first step of any organelle proteomics study is to get a pure and enriched protein sample yet this has always been problematic in membrane proteomics as it is virtually impossible to purify a specific membrane type to homogeneity. In this review, we summarize the biochemical and proteomic approaches that have been used recently in the isolation and identification of several membrane microdomains and non-typical membrane proteins.  相似文献   

12.
We have devised an approach for analyzing shotgun proteomics datasets based on the normalized spectral abundance factor that can be used for quantitative proteomics analysis. Three biological replicates of samples enriched for plasma membranes were isolated from S. cerevisiae grown in 14N-rich media and 15N-minimal media and analyzed via quantitative multidimensional protein identification technology. The natural log transformation of NSAF values from S. cerevisiae cells grown in 14N YPD media and 15N-minimal media had a normal distribution. The t-test analysis demonstrated 221 of 1316 proteins were significantly overexpressed in one or the other growth conditions with a p value <0.05. Notably, amino acid transporters were among the 14 membrane proteins that were significantly upregulated in cells grown in minimal media, and we functionally validated these increases in protein expression with radioisotope uptake assays for selected proteins.  相似文献   

13.
植物膜蛋白质组学是当前植物科学研究的热点领域。本文概论了蛋白质组学在植物膜蛋白研究中的应用,包括双向电泳前膜蛋白样品的制备以及植物质膜、液泡膜和其他膜蛋白组分的蛋白质组学研究进展,并介绍了植物膜蛋白质组学相关的数据库,最后对其发展作了展望。  相似文献   

14.
Identifying the membrane proteome of HIV-1 latently infected cells   总被引:11,自引:0,他引:11  
Profiling integral plasma membrane proteins is of particular importance for the identification of new biomarkers for diagnosis and for drug development. We report in this study the identification of surface markers by performing comparative proteomics of established human immunodeficiency virus-1 (HIV-1) latent cell models and parental cell lines. To this end we isolated integral membrane proteins using a biotin-directed affinity purification method. Isolated proteins were separated by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) after in gel digestion. Seventeen different proteins were found to vary on the surface of T-cells due to HIV-1 infection. Of these proteins, 47% were integral membrane proteins, and 18% were membrane-associated. Through the use of complementary techniques such as Western blotting and fluorescent staining, we confirmed the differential expression of some of the proteins identified by MALDI-TOF including Bruton's tyrosine kinase and X-linked inhibitor of apoptosis. Finally, using phosphatidylinositol 3-kinase inhibitors and flavopiridol to inhibit Bruton's tyrosine kinase localization at the membrane and X-linked inhibitor of apoptosis protein expression, respectively, we showed that HIV-1 latently infected cells are more sensitive to these drugs than uninfected cells. This suggests that HIV-1 latently infected cells may be targeted with drugs that alter several pathways that are essential for the establishment and maintenance of latency.  相似文献   

15.
Mammalian plasma membrane proteomics   总被引:1,自引:0,他引:1  
Josic D  Clifton JG 《Proteomics》2007,7(16):3010-3029
Plasma membrane proteins serve essential functions for cells, interacting with both cellular and extracellular components, structures and signaling molecules. Additionally, plasma membrane proteins comprise more than two-thirds of the known protein targets for existing drugs. Consequently, defining membrane proteomes is crucial to understanding the role of plasma membranes in fundamental biological processes and for finding new targets for action in drug development. MS-based identification methods combined with chromatographic and traditional cell-biology techniques are powerful tools for proteomic mapping of proteins from organelles. However, the separation and identification of plasma membrane proteins remains a challenge for proteomic technology because of their hydrophobicity and microheterogeneity. Creative approaches to solve these problems and potential pitfalls will be discussed. Finally, a representative overview of the impressive achievements in this field will also be given.  相似文献   

16.
蛋白质组学研究相关技术及进展   总被引:1,自引:0,他引:1  
蛋白质组学以蛋白质组为研究对象,应用相关研究技术,从整体水平上来认识蛋白的存在及活动方式。随着人类基因组计划的完成,蛋白质组学的研究也得到了快速发展,与蛋白质组学研究相关的一些技术也日益得到完善和提高。简要综述了近年来蛋白质组学研究中最为重要的样品制备、蛋白质分离、蛋白质鉴定等技术及研究进展。  相似文献   

17.
The cell surface proteome of human mesenchymal stromal cells   总被引:1,自引:0,他引:1  

Background

Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers.

Methodology/Principal Findings

To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316) were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously.

Conclusions/Significance

Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention.  相似文献   

18.
Macrophages are involved in various important biological processes and their functions are tightly regulated. Hydrophobic proteins are difficult to analyse by 2-DE because of their intrinsic tendency to self-aggregate during the first dimension (IEF). We have compared two protocols for extracting, separating and identifying membrane proteins from human macrophages by MALDI-TOF MS. The first protocol used protein extraction by solvent, followed by 2-DE and allowed us to identify 10% membrane proteins among the proteins identified a being like the peroxisome-activated receptor delta. The second method is based on solubilizing the membranes with Triton X-100, separating the proteins by anion-exchange chromatography followed by SDS-PAGE. This method allowed us to identify 49 membrane proteins, including four integral membrane proteins, ten type I, two type II and one type III membrane proteins. Several receptors were identified, including integrin alpha-3 and ephrin type A receptor 7. Interestingly, several proteins involved in macrophage functions were identified, such as integrin alpha-X and macrophage mannose receptor. These findings show that techniques are available to identify membrane proteins, but that they require large quantities of cells which means that they are not suitable for the limiting amounts of precious samples available from clinical studies.  相似文献   

19.
We are interested in the biological as well as the molecular processes involved in natural killer (NK) cell development and function. Determining the proteomic complement could be a useful tool in predicting cellular function and fate. For the first time shown here, we have utilized iTRAQ, a new method that allows identification and quantification of proteins between multiple samples, to determine the expression of membrane-bound proteins in two previously characterized human NK cell populations. One population was derived from umbilical cord blood (UCB) stem cells (CD34+38-Lin-) and the other from expanded CD3-depleted adult peripheral blood. iTRAQ was employed for multiplex peptide labeling of proteins from fractionated membranes followed by two-dimensional high-performance liquid chromatography (2D-HPLC), and tandem mass spectrometry was used to identify protein signatures. We were able to identify and quantify differences in expression levels of 400-800 proteins in a typical experiment. Ontology analysis showed the majority of the proteins to be involved in cell signaling, nucleic acid binding, or mitochondrial function. Nearly all proteins were associated with the plasma membrane, membrane-bound organelle (lysosome or mitochondria), or nucleus. We found several novel proteins highly expressed in UCB stem cell derived NK cells compared to adult NK cells including CD9, alpha-2 macroglobulin, brain abundant signaling protein (BASP1), and allograft inflammatory factor-1 (AIF-1). In addition, we were able to confirm several of our iTRAQ results by RT-PCR, Western blot, and fluorescence-activated cell-sorting (FACS) analysis. This is the first demonstration and verification using iTRAQ to screen for membrane-bound protein differences in human NK cells and represents a powerful new tool in the field of proteomics.  相似文献   

20.
Plasma membrane proteome in Arabidopsis and rice   总被引:1,自引:0,他引:1  
Komatsu S 《Proteomics》2008,8(19):4137-4145
Plant cells contain many membrane systems that are specially adapted to perform particular functions. In plant cells, the processing of signals that are involved in responses to biotic and abiotic stressors occurs in the plasma membrane. Therefore, characterization of the plasma membrane proteome can provide new insights into the functions of various plant membrane systems. Plant plasma membrane proteomics can also provide valuable information for plant-specific biological investigations. Despite recent advances in preparative and analytical techniques for plant plasma membrane proteins, the characterization of these proteins, particularly the hydrophobic ones, remains challenging. In this review, plant plasma membrane proteomics data compiled from the literature on Arabidopsis thaliana are presented. Initial attempts to determine the physiological significance of some proteins identified from plasma membrane proteomics in rice and other plants are also described from the results of our research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号