首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modified laccase gene, CcLCC6, from Coprinopsis cinerea was chemically synthesized according to the yeast codon bias and expressed in Pichia pastoris. The main properties of laccase, effects of ions and inhibitors, and optimal condition for decolouring malachite green (MG) were investigated in this study. The optimal pH level and temperature of laccase are 3.0 and 40 °C, respectively. The metal ions Mn2+, Zn2+, Fe3+ and Al3+ could inhibit laccase activity, as well as 1 mM of sodium dodecyl sulphate and sodium thiosulphate. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), as a mediator, was necessary in decolorizing MG. The optimal pH and temperature for MG decolorization were 3.0 and 50 °C, respectively. Approximately 0.02 μM recombinant laccase could effectively decolour 0.05 mM of MG in 1 h. CcLCC6I could inhibit the toxicity of MG to P. pastoris. This is the first report on the successful expression in P. pastoris of CcLCC6I and its enzymatic property. Laccase can also be considered as a candidate for treating industrial effluent containing MG.  相似文献   

2.
Two new laccase genes, named lac1 and lac2, were cloned from the edible basidiomycete Coprinus comatus. Comparison of the deduced amino acid sequences revealed two laccases showed 66.12 % identity and clustered with lac2 and lac3 from Coprinopsis cinerea in same phylogenetic group. Lac1 and lac2 encode proteins of 517 and 523 amino acids preceded by 18 and 21-residue signal peptides, respectively. Lac1 was functionally expressed in Pichia pastoris. The optimum pHs of recombinant Lac1 were 3.0, 6.0, 5.5 and 6.0 and the optimum temperatures were 65, 55, 70 and 50 °C for ABTS, guaiacol, 2,6-dimethylphenol and syringaldazine, respectively. The Km values of Lac1 were 34, 4,317, 7,611 and 14 μM, and the corresponding kcat values were 465.79, 7.67, 1.15 and 0.60 (s?1 mM), for ABTS, guaiacol, 2,6-dimethylphenol and syringaldazine, respectively. The enzyme activity was completely inhibited by sodium azide (NaN3) and 1,4-dithiothreitol (DTT) at the concentration of 5 mM. Laccase activity was also inhibited by several metal ions, especially Fe2+, while K+ and NH4 + slightly enhanced laccase activity. Twelve synthetic dyes belonging to anthraquinone, azo and triphenylmethane dyes were decolorized by the recombinant Lac1 at different extents. The recombinant Lac1 decolorized azo dye Reactive Dark Blue KR up to 90 % without any mediator and increasing to 96 % with mediator, indicating its potential in the treatment of industrial effluent containing some recalcitrant synthetic dyes.  相似文献   

3.
An extracellular laccase was isolated and purified from Pleurotus sajor-caju grown in submerged culture in a bioreactor, and used to investigate its ability to decolorize three azo dyes. The extracellular laccase production was enhanced up to 2.5-fold in the medium amended with xylidine (1 mM). Purification was carried out using ammonium sulfate (70% w/v), DEAE-cellulose, and Sephadex G-100 column chromatography. The enzyme was purified up to 10.3-fold from the initial protein preparation with an overall yield of 53%. The purified laccase was monomeric with an apparent molecular mass of 61.0 kDa. The purified enzyme exerted its optimal activity with 2,2-azino–bis(3-ethylbenzo-thiazoline-6-sulfonate (ABTS) and oxidized various lignin-related phenols. The catalytic efficiencies k cat/K m determined for ABTS and syringaldazine were 9.2×105 and 8.7×105, respectively. The optimum pH and temperature for the purified enzyme was 5.0 and 40 °C, respectively. Sodium azide completely inhibited the laccase activity. The absorption spectrum revealed type 1 and type 3 copper signals. The purified enzyme decolorized azo dyes such as acid red 18, acid Black 1, and direct blue 71 up to 90, 87, and 72%, respectively. Decolorization ability of P. sajor-caju laccase suggests that this enzyme could be used for decolorization of industrial effluents.  相似文献   

4.
Presence of heavy metals including lead (Pb) in the textile effluents is a crucial factor affecting the growth and potential of the dye decolorizing bacterial strains. This work was planned to isolate and characterize a bacterial strain exhibiting the potential to decolorize a range of azo dyes as well as the resistance to Pb. In this study, several Pb tolerant bacteria were isolated from effluents of textile industry. These bacterial isolates were screened for their potential of decolorizing the reactive red-120 (RR120) azo dye with presence of Pb (50 mg L?1). The most efficient isolate was further characterized for its potential to resist Pb and decolorize different azo dyes under varying cultural and incubation conditions. Out of the total 82 tested bacterial isolates, 30 bacteria were found to have varying potentials to resist the presence of lead (Pb) and carry out decolorization of an azo dye reactive red-120 (RR120) in the medium amended with Pb (50 mg L?1). The most efficient selected bacterium, Pseudomonas aeruginosa strain HF5, was found to show a good potential not only to grow in the presence of considerable concentration of Pb but also to decolorize RR120 and other azo dyes in the media amended with Pb. The strain HF5 completely (>?90%) decolorized RR120 in mineral salt medium amended with 100 mg L?1 of Pb and 20 g L?1 NaCl. This strain also considerably (>?50%) decolorized RR120 up to the presence of 2000 mg L?1 of Pb and 50 g L?1 of NaCl but with reduced rate. The optimal decolorization of RR120 by HF5 was achieved when the pH of the Pb amended (100 mg L?1) mineral salt media was adjusted at 7.5 and 8.5. Interestingly, this strain also showed the tolerance to a range of metal ions with varying MIC values. The Pseudomonas aeruginosa strain HF5 harboring the unique potentials to grow and decolorize the azo dyes in the presence of Pb is envisaged as a potential bioresource for devising the remediation strategies for treatment of colored textile wastewaters loaded with Pb and other heavy metal ions.  相似文献   

5.
Laccases have received considerable attention in recent decades because of their ability to oxidise a large spectrum of phenolic and non-phenolic organic substrates and highly recalcitrant environmental pollutants. In this research, a laccase gene from Colletotrichum lagenarium was chemically synthesised using yeast bias codons and expressed in Pichia pastoris. The molecular mass of the recombinant laccase was estimated to be 64.6 kDa by SDS–PAGE, and the enzyme exhibited maximum activity at pH 3.6–4.0 but more stability in buffer with higher pH (>pH 3.6). The optimal reaction temperature of the enzyme was 40 °C, beyond which stability significantly decreased. By using 2,2′-azino-bis-(3-ethylbenzothiazoline)-6-sulphonate (ABTS) as a substrate, K m and V max values of 0.34 mM and 7.11 mM min?1 mg?1, respectively, were obtained. Using ABTS as a mediator, the laccase could oxidise hydroquinone to p-benzoquinone and decolourise the synthetic dyes malachite green, crystal violet and orange G. These results indicated that the laccase could be used to treat industrial effluents containing artificial dyes.  相似文献   

6.
Azoreductase plays a key role in bioremediation and biotransformation of azo dyes. It initializes the reduction of azo bond in azo dye metabolism under aerobic or anaerobic conditions. In the present study, we isolated an alkaliphilic red-colored Aquiflexum sp. DL6 bacterial strain and identified by 16S rRNA method. We report nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-dependent azoreductase purified from Aquiflexum sp. DL6 by a combination of ammonium sulfate precipitation and chromatography methods. The azoreductase was purified up to 30-fold with 37 % recovery. The molecular weight was found to be 80 kDa. The optimum activity was observed at pH 7.4 and temperature 60 °C with amaranth azo dye as a substrate. The thermal stability of azoreductase was up to 80 °C. The azoreductase has shown a wide range of substrate specificity, including azo dyes and nitro aromatic compounds. Metal ions have no significant inhibitory action on azoreductase activity. The apparent K m and V max values for amaranth azo dye were 1.11 mM and 30.77 U/mg protein respectively. This NAD (P) H azoreductase represents the first azoreductase to be characterized from alkaliphilic bacteria.  相似文献   

7.
During dye decoloration by Trametes versicolor ATCC 20869 in modified Kirk’s medium, manganese peroxidase (MnP) and laccase were produced, but not lignin peroxidase, cellobiose dehydrogenase or manganese-independent peroxidase. Purified MnP decolorized azo dyes [amaranth, reactive black 5 (RB5) and Cibacron brilliant yellow] in Mn2+-dependent reactions but did not decolorize an anthraquinone dye [Remazol brilliant blue R (RBBR)]. However, the purified laccase decolorized RBBR five to ten times faster than the azo dyes and the addition of a redox mediator, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), did not alter decoloration rates. Amaranth and RB5 were decolorized the most rapidly by MnP since they have a hydroxyl group in an ortho position and a sulfonate group in the meta position relative to the azo bond. During a typical batch decoloration with the fungal culture, the ratio of laccase:MnP was 10:1 to 20:1 (based on enzyme activity) and increased to greater than 30:1 after decoloration was complete. Since MnP decolorized amaranth about 30 times more rapidly than laccase per unit of enzyme activity, MnP should have contributed more to decoloration than laccase in batch cultures.  相似文献   

8.
Shewanella xiamenensis BC01 (SXM) was isolated from sediment collected off Xiamen, China and was identified based on the phylogenetic tree of 16S rRNA sequences and the gyrB gene. This strain showed high activity in the decolorization of textile azo dyes, especially methyl orange, reactive red 198, and recalcitrant dye Congo red, decolorizing at rates of 96.2, 93.0, and 87.5 %, respectively. SXM had the best performance for the specific decolorization rate (SDR) of azo dyes compared to Proteus hauseri ZMd44 and Aeromonas hydrophila NIU01 strains and had an SDR similar to Shewanella oneidensis MR-1 in Congo red decolorization. Luria-Bertani medium was the optimal culture medium for SXM, as it reached a density of 4.69 g-DCW L?1 at 16 h. A mediator (manganese) significantly enhanced the biodegradation and flocculation of Congo red. Further analysis with UV–VIS, Fourier Transform Infrared spectroscopy, and Gas chromatography–mass spectrometry demonstrated that Congo red was cleaved at the azo bond, producing 4,4′-diamino-1,1′-biphenyl and 1,2′-diamino naphthalene 4-sulfonic acid. Finally, SEM results revealed that nanowires exist between the bacteria, indicating that SXM degradation of the azo dyes was coupled with electron transfer through the nanowires. The purpose of this work is to explore the utilization of a novel, dissimilatory manganese-reducing bacterium in the treatment of wastewater containing azo dyes.  相似文献   

9.
Bioremediation is considered a promising eco-efficient alternative for industrial wastewater treatment. Particular attention is currently being given to biological degradation of synthetic dyes and more specifically to colour removal by fungi. This work looks at the extracellular enzymatic system of strain Euc-1. Its ability to decolourize 14 xenobiotic azo dyes was evaluated and compared with the well-known species Phanerochaete chrysosporium. Strain Euc-1 is a mesophilic white-rot basidiomycete, the main secreted ligninolytic enzyme being laccase (0.38 U ml–1). Although low manganese-dependent peroxidase activity (0.05 U ml–1) was also detected, neither lignin peroxidase nor aryl alcohol oxidase could be found in batch culture. Optimum pH values of 4.0 and 5.0 were obtained in the laccase-catalysed oxidation of guaiacol and syringaldazine, respectively. Laccase activity increased with the temperature rise up to 50–60 °C and remarkable thermal stability was observed at 50 °C with a half-life of 12 h and no deactivation within the first 2 h. Solid-plate decolourization studies showed that basidiomycete Euc-1 decolourized 11 azo dyes whereas P. chrysosporium only two. Moreover, it is shown that purified laccase from basidiomycete Euc-1 efficiently decolourizes the azo dye acid red 88.  相似文献   

10.
Pleurotus eryngii (DC.) Gillet (MCC58) was investigated for its ability to produce various ligninolytic enzymes such as laccase (Lac), manganese peroxidase (MnP), aryl alcohol oxidase (AAO), and lignin peroxidase (LiP) by solid-state fermentation (SSF), which was carried out using a support substrate from the fruit juice industry. The chemical content of grape waste from this industry was studied. Also, the production patterns of these extracellular enzymes were researched during the growth of the organism for a period of 20 days and the protein, reducing sugar, and nitrogen levels were monitored during the stationary cultivation. The highest Lac activity was obtained as 2247.62 ± 75 U/L on day 10 in the presence of 750 µM Mn2+, while the highest MnP activity was attained as 2198.44 ± 65 U/L on day 15 in the presence of 500 µM Mn2+. Decolorization of methyl orange and reactive red 2 azo dyes was also achieved with ligninolytic enzymes, produced in SSF of P. eryngii.  相似文献   

11.
Trametes hirsuta and a purified laccase from this organism were able to degrade triarylmethane, indigoid, azo, and anthraquinonic dyes. Initial decolorization velocities depended on the substituents on the phenolic rings of the dyes. Immobilization of the T. hirsuta laccase on alumina enhanced the thermal stabilities of the enzyme and its tolerance against some enzyme inhibitors, such as halides, copper chelators, and dyeing additives. The laccase lost 50% of its activity at 50 mM NaCl while the 50% inhibitory concentration (IC50) of the immobilized enzyme was 85 mM. Treatment of dyes with the immobilized laccase reduced their toxicities (based on the oxygen consumption rate of Pseudomonas putida) by up to 80% (anthraquinonic dyes). Textile effluents decolorized with T. hirsuta or the laccase were used for dyeing. Metabolites and/or enzyme protein strongly interacted with the dyeing process indicated by lower staining levels (K/S) values than obtained with a blank using water. However, when the effluents were decolorized with immobilized laccase, they could be used for dyeing and acceptable color differences (ΔE*) below 1.1 were measured for most dyes.  相似文献   

12.
Although there have been many studies on bacterial removal of soluble azo dyes, much less information is available for biological treatment of water-insoluble azo dyes. The few bacterial species capable of removing Sudan dye generally require a long time to remove low concentrations of insoluble dye particles. The present work examined the efficient removal of Sudan I by Shewanella oneidensis MR-1 in the presence of redox mediator. It was found that the microbially reduced anthraquinone-2,6-disulfonate (AQDS) could abiotically reduce Sudan I, indicating the feasibility of microbially-mediated reduction. The addition of 100 μM AQDS and other different quinone compounds led to 4.3–54.7 % increase in removal efficiencies in 22 h. However, adding 5-hydroxy-1,4-naphthoquinone into the system inhibited Sudan I removal. The presence of 10, 50 and 100 μM AQDS stimulated the removal efficiency in 10 h from 26.4 to 42.8, 54.9 and 64.0 %, respectively. The presence of 300 μM AQDS resulted in an eightfold increase in initial removal rate from 0.19 to 1.52 mg h?1 g?1 cell biomass. A linear relationship was observed between the initial removal rates and AQDS concentrations (0–100 μM). Comparison of Michaelis–Menten kinetic constants revealed the advantage of AQDS-mediated removal over direct reduction. Different species of humic acid could also stimulate the removal of Sudan I. Scanning electronic microscopy analysis confirmed the accelerated removal performance in the presence of AQDS. These results provide a potential method for the efficient removal of insoluble Sudan dye.  相似文献   

13.
In the present study laccase production potential of a photosynthetic, non nitrogen fixing cyanobacteria Arthrospira maxima (SAE-25780) was investigated for their probable use in synthetic dye decolorization which poses environmental pollution problem in aquatic bodies. A. maxima (SAE-25780) showed a constitutive production of laccase which increased up to 80% in the presence of inducer guaiacol. The optimal condition for laccase was 30 °C, 10 mM sucrose as a carbon source, 10 mM sodium nitrate as a nitrogen source, and 2 mM copper as metal activator. The partially purified laccase showed 84% and 49% decolorization potential for the two anthroquinonic dyes-Reactive Blue 4 and Remazol Brilliant Blue R, respectively (RBBR) within 96 h without any mediator. Therefore the laccase extracted from A. maxima (SAE-25780) can be used efficiently in bioremediation of synthetic dyes from paper, pulp and textile industries.  相似文献   

14.
The gene encoding copper-dependent laccase from Bacillus subtilis strain R5 was cloned and expressed in Escherichia coli. Initially the recombinant protein was produced in insoluble form as inclusion bodies. Successful attempts were made to produce the recombinant protein in soluble and active form. The laccase activity of the recombinant protein was highly dependent on the presence of copper ions in the growth medium and microaerobic conditions during protein production. The purified enzyme exhibited highest activity at 55 °C and pH 7.0. The recombinant protein was highly thermostable, albeit from a mesophilic source, with a half-life of 150 min at 80 °C. Similar to temperature, the recombinant protein was stable in the presence of organic solvents and protein denaturants such as urea. Furthermore, the recombinant protein was successfully utilized for the degradation of various synthetic dyes reflecting its potential use in treatment of wastewater in textile industry.

Abbreviations: ABTS,2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid; CBB, Coomassie brilliant blue; SGZ, syringaldazine; DMP, 2,2-dimethoxy phenol.  相似文献   


15.
Microbial biotechnologies for the decolorization of textile wastewaters have attracted worldwide attention because of their economic suitability and easiness in handling. However, the presence of high amounts of salts and metal ions in textile wastewaters adversely affects the decolorization efficiency of the microbial bioresources. In this regard, the present study was conducted to isolate salt tolerant bacterial strains which might have the potential to decolorize azo dyes even in the presence of multi-metal ion mixtures. Out of the tested 48 bacteria that were isolated from an effluent drain, the strain NA6 was found relatively more efficient in decolorizing the reactive yellow-2 (RY2) dye in the presence of 50 g L?1 NaCl. Based on the similarity of its 16S rRNA gene sequence and its position in a phylogenetic tree, this strain was designated as Proteus sp. NA6. The strain NA6 showed efficient decolorization (>90 %) of RY2 at pH 7.5 in the presence of 50 g L?1 NaCl under static incubation at 30 °C. This strain also had the potential to efficiently decolorize other structurally related azo dyes in the presence of 50 g L?1 NaCl. Moreover, Proteus sp. NA6 was found to resist the presence of different metal ions (Co+2, Cr+6, Zn+2, Pb+2, Cu+2, Cd+2) and was capable of decolorizing reactive dyes in the presence of different levels of the mixtures of these metal ions along with 50 g L?1 NaCl. Based on the findings of this study, it can be suggested that Proteus sp. NA6 might serve as a potential bioresource for the biotechnologies involving bioremediation of textile wastewaters containing the metal ions and salts.  相似文献   

16.
A new Trametes trogii laccase was purified and its biochemical properties were subsequently characterized. After a survey of other T. trogii laccases, this laccase showed a lower isoelectric point, different N-terminal sequence and kinetic parameters. Recently most laccase-catalyzed decolorizations of synthetic dyes are single-solute studies with commercially available dyes as model pollutants and need the employment of redox mediators. In this study, to simulate the real industry wastewaters, experiments of laccase-catalyzed decolorization of mixed dyes constituted by azo and anthraquinone dyes were carried out. The results showed that anthraquinone dyes, playing the role of mediators, dramatically promoted the degradation of azo dyes when there was no exogenous mediator in the reaction mixture. This study represents the first attempt to decolorize the mixtures of azo and anthraquinone dyes by purified T. trogii laccase, suggesting great potential for laccase to decolorize textile industry wastewaters.  相似文献   

17.
We investigated the expression of Phanerochaete flavido-alba laccase gene in Aspergillus niger and the physical and biochemical properties of the recombinant enzyme (rLac-LPFA) in order to test it for synthetic dye biotransformation. A. niger was able to produce high levels of active recombinant enzyme (30 mgL?1), whose identity was further confirmed by immunodetection using Western blot analysis and N-terminal sequencing. Interestingly, rLac-LPFA exhibited an improved stability at pH (2–9) and organic solvents tested. Furthermore, the percentage of decoloration and biotransformation of synthetic textile dyes, Remazol Brilliant Blue R (RBBR) and Acid Red 299 (NY1), was higher than for the native enzyme. Its high production, simple purification, high activity, stability and ability to transform textile dyes make rLac-LPFA a good candidate for industrial applications.  相似文献   

18.
Aims:  To produce and purify a recombinant laccase from Pichia pastoris and to test its ability in decolourization of synthetic dyes.
Methods and Results:  A cDNA encoding for a laccase was isolated from Pycnoporus sanguineus and was expressed in P. pastoris strain SMD1168H under the control of the alcohol oxidase (AOX1) promoter. The laccase native signal peptide efficiently directed the secretion of the recombinant laccase in an active form. Factors influencing laccase expression, such as cultivation temperature, pH, copper concentration and methanol concentration, were investigated. The recombinant enzyme was purified to electrophoretic homogeneity, and was estimated to have a molecular mass of about 62·8 kDa. The purified enzyme showed a similar behaviour to the native laccase produced by P. sanguineus . Four different synthetic dyes including azo, anthraquinone, triphenylmethane and indigo dyes could be efficiently decolourized by the purified recombinant laccase without the addition of redox mediators.
Conclusions:  Heterologous production of P. sanguineus laccase in P. pastoris was successfully achieved. The purified recombinant laccase could efficiently decolourize synthetic dyes in the absence of mediators.
Significance and Impact of the Study:  This study is the first report on the synthetic dye decolourization by the recombinant P. sanguineus laccase. The decolourization capacity of this recombinant enzyme suggested that it could be a useful biocatalyst for the treatment of dye-containing effluents.  相似文献   

19.
A white-rot basidiomycete, isolated from decayed acacia wood (from Northwest of Tunisia) and identified as Trametes sp, was selected in a broad plate screening because of its ability to decolorize and dephenolize olive oil mill wastewater (OMW) efficiently. The major laccase was purified and characterized as a monomeric protein with apparent molecular mass of 61 kDa (SDS-PAGE). It exhibits high enzyme activity over broad pH and temperature ranges with optimum activity at pH 4.0 and a temperature of 60 °C. The purified laccase is stable at alkaline pH values. The enzyme retained 50 % of its activity after 90 min of incubation at 55 °C. Using ABTS, this laccase presented K m and V max values of 0.05 mM and 212.73 μmoL min?1 mg?1, respectively. It has shown a degrading activity towards a variety of phenolic compounds. The purified laccase was partially inhibited by Fe2+, Zn2+, Cd2+ and Mn2+, while Cu2+ acted as inducer. EDTA (10 mM) and NaN3 (10 mM) were found to completely inhibit its activity. 73 % OMW was dephenolized after 315 min incubation at 30 °C with 2 U mL?1 of laccase and 2 mM HBT.  相似文献   

20.
Myrothecium verrucaria NF-05 is a deuteromycete fungus capable of producing a white laccase. The optimal concentration of Cu2+ for laccase production by this strain is 0.2 mM (43.23 ± 1.16 U mL? 1). A comprehensive investigation of the induction demonstrated that NF-05 laccase production could be synergistically enhanced by various inducers, including aromatic phenols, amines and recalcitrant dyes, in the presence of 0.2 mM Cu2+. Sixteen phenols, fourteen amines and four dyes exhibited significant inductive effects on laccase production. The best inducer was 3, 3’-dimethylbenzidine, which increased laccase production to 258.1 ± 11.1 U mL? 1. These results suggest that M. verrucaria NF-05 is a promising industrial laccase producer. Based on the increased production, purified NF-05 laccase was used to decolorize dyes of various structural types in the presence of six redox mediators. Among the 26 tested dyes, the decolorization rate of six azo dyes, chromotrope 2R, orange G6, Congo red, Ponceau S, amaranth and reactive yellow 135 and two arylmethane dyes, fast green 3 and neutral red, were significantly increased by each of the six mediators. These results demonstrate the potential use of the NF-05 laccase for the decolorization of recalcitrant dyes in dye bleaching and effluent detoxification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号