首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient and simple, organogenesis (direct and indirect) and somatic embryogenesis (cell suspension) systems were developed for in vitro propagation of Cyrtanthus mackenii, a valuable economic plant from leaf explants cultured on Murashige and Skoog (MS) medium supplemented with various concentrations and combinations of sucrose, plant growth regulators (PGRs), glutamine, phloroglucinol (PG) and 6-(2-hydroxy-3-methylbenzylamino) purine (PI55). MS medium solidified with 8 g L?1 agar (MSS) containing 40 g L?1 sucrose, 10 µM picloram, 2.5 µM benzyladenine (BA) and 20 µM glutamine produced a higher number of shoots from white nodular callus. This was however, not significantly different to direct shoot regeneration on media containing 10 µM picloram, 2.5 µM BA and a reduced concentration of sucrose and glutamine. The regenerated shoots were rooted best with MSS medium incorporating 10 µM PG. The number of somatic embryos (SEs) were significantly higher using liquid MS medium containing 30 g L?1 sucrose, 0.5 µM picloram, 1 µM thidiazuron or BA and 3 µM glutamine or gibberellic acid. The embryos were germinated in PGR-free MSS medium. All plantlets were successfully acclimatized in the greenhouse. Histological studies confirmed the different developmental stages and bipolar structure of SE. The organogenesis and somatic embryogenesis protocols provides a system for large scale propagation and germplasm conservation. Developed protocols can be used for clonal production and pharmacological and genetic transformation studies.  相似文献   

2.
A simple efficient in vitro plant regeneration system was developed by direct and indirect somatic embryogenesis of Drimia robusta, a medicinal plant extensively used in South African traditional medicine. Different developmental stages of somatic embryos (SEs: globular embryos, partial pear-shaped embryos and club-shaped embryos), club-shaped cotyledon initiation, plumule initiation and plantlets were directly obtained from leaf explants on Murashige and Skoog (MS) medium containing 3.5 % (w/v) sucrose and different plant growth regulators (PGRs). In MS medium containing 3.5 % (w/v) sucrose and supplemented with 10 μM picloram, 1 μM thidiazuron (TDZ) and 20 μM glutamine, a higher number of SEs and plantlets were achieved. These were established onto half-strength MS medium followed by successful acclimatization (100 %) in the greenhouse. Liquid somatic embryo medium (SEML) containing 500 mg of friable embryogenic callus on MS medium supplemented with different concentrations and combinations of PGRs and organic elicitors produced different stages of SEs. Somatic embryo production was enhanced by 0.5 μM picloram, 1 μM TDZ and mebendazole treatment. The highest number of plantlets (9.0 ± 0.70) was obtained in SEML containing 0.5 μM picloram, 1 μM TDZ and 25 mg l?1 haemoglobin. All the cotyledon and plumule embryos germinated on half-strength MS medium, however 90 % of SEs germinated on half-strength MS medium containing 0.5 μM naphthaleneacetic acid. All plantlets were successfully acclimatized in the greenhouse. This first report of D. robusta somatic embryogenesis provides an opportunity to control extinction threats, ensure germplasm conservation and provides a system for analysis of bioactive compounds and bioactivity.  相似文献   

3.
An efficient protocol for a complete plant regeneration by somatic embryogenesis was developed with Smooth Cayenne pineapple (Ananas comosus L.). Previous works showed that this species is responsive to somatic embryogenesis. In the present work the influence of components of culture medium in the induction, development and conversion of somatic embryos was investigate in order to establish a somatic embryogenesis protocol. Nodular callus (83.67%) was initiated from leaf explants of young plants on CIM3 medium. The highest frequency (37.6%) of embryogenic callus induction was obtained from 4-week-old calluses on EIM3 medium supplemented with 3.0 mg/l picloram. The highly organized callus induction and the development of somatic embryos were achieved after the transfer of callus clumps onto EIM3 medium containing 1.0 mg/l BAP + 0.1 mg/l NAA. The frequency of somatic embryo formation was of 39.5?±?2.45 embryos per callus. Up to 97% of the somatic embryos were converted into complete plants within 4 week on MSB medium with 1.0 mg/l BAP + 0.05 mg/l GA3 + 500 mg/l glutamine. The continuation of the elongation of the shoots occurred on this medium). Shoots obtained from all the above methods were rooted in MSB medium with activated charcoal. Complete plantlets were transferred onto specially made polyethylene bags containing soil mixture and transferred to the greenhouse. Survival rate of the plantlets under ex vitro conditions was 98% and maximum average number of plantlets (80?±?0.6). The well-developed plantlets were transferred to an open field where the plants produced normal fruits.  相似文献   

4.
In the present study a simple and efficient somatic embryogenesis system was developed from leaf explants of Lycopersicon esculentum L. The protocol has been developed by using plant growth regulators and seaweed extracts a natural biostimulant. The leaf sections were initially cultured on to leaf embryogenic callus induction medium fortified with various concentration and combinations of 2,4-dichlorophenoxy acetic acid (0.2–1.0 mg L?1), picloram (0.2–1.0 mg L?1), and kinetin (0.1–0.5 mg L?1). The best responding concentration in induction of friable embryogenic callus was tested for the proliferation. The friable cultures were detached from the mother culture and inoculated in three different media supplemented with plant growth regulators, plus 0–25 % Caulerpa scalpelliformis or 0–25 % Gracilaria corticata extracts for embryo development. A twofold increase in maturation and germination of somatic embryos was observed in the media containing seaweed extracts (MSMG2 and MSMG3) than the control (MSMG1). The plantlets transferred from plant growth chamber to greenhouse conditions exhibited higher survival rate (90 %) than directly shifted plantlets.  相似文献   

5.
6.
An efficient and simple system for inducing somatic embryogenesis and regenerating plantlets from immature zygotic embryos of açaí palm (Euterpe oleracea) has been developed. Embryogenic calli (ECs) were induced from immature zygotic embryos of açaí palm on Murashige and Skoog (MS) modified medium with 2,4-dichlorophenoxyacetic acid and picloram. Embryogenic frequency was dependent on auxin type and concentration. The optimal concentration of picloram for the high-frequency induction of embryogenic calli (72%) was 225 μM. ECs were then subcultured on a differentiation and maturation medium composed of MS modified medium with 2-isopentenyladenine and naphthaleneacetic acid with subcultures at 4-week intervals. SEs were converted to plants on MS modified medium with half-strength macro- and micronutrients, 20 g l?1 sucrose, and 2.5 g l?1 activated charcoal and gelled with 2.5 g l?1 Phytagel. Detailed morpho anatomical changes during the different stages of somatic embryogenesis were characterized. The development of SEs was asynchronous, and ontogenic studies confirmed that the initial cell divisions occur in the epidermal and subepidermal regions of the zygotic embryos. Broad base attachment of SEs to the epidermis indicates the presence of a suspensor.  相似文献   

7.
Somatic embryogenesis and organogenesis in Lilium pumilum were successfully regulated by picloram, α-naphthaleneacetic acid (NAA), and 6-benzyladenine (BA). In organogenesis, the highest shoot regeneration frequency (92.5%) was obtained directly from bulb scales on Murashige and Skoog (MS) medium containing 2.0 mg L?1 BA and 0.2 mg L?1 NAA, while organogenic callus (OC) formed from leaves on MS medium supplemented with 1.0 mg L?1 BA and 0.5 mg L?1 NAA. Following subculture, 76.7% of OC regenerated shoots. In somatic embryogenesis, the combination of picloram and NAA increased the amount of embryogenic callus (EC) that formed with a maximum on 90.7% of all explants which formed 11 somatic embryos (SEs) per explant. Differences between EC and OC in cellular morphology and cell differentiation fate were easily observed. SEs initially formed via an exogenous or an endogenous origin. The appearance of a protoderm in heart-shaped SE and the bipolar shoot–root development in oval-shaped SE indicated true somatic embryogenesis. This protocol provides a new and detailed regulation and histological examination of regeneration pattern in L. pumilum.  相似文献   

8.
Direct somatic embryogenesis is favoured over indirect methods for the in vitro propagation of Coffea canephora, as the frequency of somaclonal variation is usually reduced. Ethylene action inhibitors improve the tissue culture response and thus silver nitrate (AgNO3) is used for direct somatic embryogenesis in coffee. It was observed that silver thiosulphate (STS) that is a more potent ethylene action inhibitor, induced a much robust response in C. canephora cotyledonary leaf explants with 7.49?±?0.57 and 7.08?±?0.12 embryos/explant at 60 and 80 µM AgNO3, respectively compared to 3.3?±?0.18 embryos/explant at 40 µM AgNO3. Transient transformation indicated that STS improved the transformation potential of embryos by enhancing Agrobacterium tumefaciens adherence to surfaces. In vitro adherence assays demonstrated that the cell wall material from STS-derived embryos provide a better substratum for adherence of Agrobacterium. Furthermore, blocking this substratum with anti-mannan hybridoma supernatant negatively effects the adherence. The presence of galactose and mannose residues in the decomposed cellulose fraction of STS treated somatic embryos are indicative of de-branching and re-modelling of galactomannan in response to ethylene inhibition. Genes of mannan biosynthesis, degradation and de-branching enzyme were affected to different extents in embryos derived in AgNO3 and STS containing somatic embryogenesis medium. The results indicate that ethylene-mediated cell wall galactomannan remodelling is vital for improving the transgenic potential in coffee.  相似文献   

9.
To assess the potential of different genotypes of Brazilian oil palm (Elaeis guineensis Jacq.) to somatic embryogenesis and somatic embryo proliferation, mature zygotic embryos of nine commercial genotypes of E. guineensis (BRSC2001, BRSC2328, BRSC2301, BRSC3701, BRSCM1115, BRSC7201, BRSC2528, BRSC2501, and BRSCN1637) were used. Explants were incubated on Murashige and Skoog (MS) supplemented with 450 μM picloram, 3.0 % sucrose, 500 mg l?1 glutamine, and 2.5 g l?1 activated charcoal, and gelled with 2.5 g l?1 Phytagel. After induction, for differentiation and maturation, the embryogenic calli (ECs) were transferred into fresh medium supplemented with 0.6 μM naphthaleneacetic acid (NAA) and 12.30 μM 2-isopentenyladenine (2iP) or 40 μM picloram in combination with 0.3 g l?1 activated charcoal, and 500 mg l?1 glutamine. Somatic embryos were converted into plants on MS medium with macro- and micro-nutrients at half strength, 2 % sucrose, and 2.5 g l?1 activated charcoal, and gelled with 2.5 g l?1 Phytagel. In general, zygotic embryos swelled after 14 days. Primary calli, which were observed in all the genotypes after 45–60 days of culture, eventually progressed to ECs at 90 days. At this time, scanning electron microscopy (SEM) analysis showed cellular differences between compact and friable calli. After 150 days in the induction phase, the ECs with proembryos that were transferred to the medium for differentiation and maturation, differentiated asynchronically into somatic embryos at globular and torpedo stages. The results showed that BRSC2328 and BRSCM1115 had the highest potential for EC formation (90–100 %) and somatic embryo differentiation (40.7 and 52.5 somatic embryos per callus, respectively) when compared to other genotypes. After approximately 90 days of culture on MS basal medium without growth regulators, protrusion of the leaf primordia was observed, characterizing the onset of germination of the somatic embryos into plants.  相似文献   

10.
An efficient and reproducible Agrobacterium-mediated transformation system via repetitive secondary somatic embryogenesis was developed for Rosa rugosa ‘Bao white’. Somatic embryogenesis was induced from in vitro-derived unexpanded leaflet explants on MS medium supplemented with 4.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), 0.05 mg/L Kinetin and 30 g/L glucose. Secondary somatic embryos were successfully proliferated via cyclic secondary somatic embryogenesis on MS medium containing 1.0 mg/L 2,4-D, 0.01 mg/L 6-benzyladenine and 45 g/L glucose under light intensity of 500–1,000 lux. The highest germination rate (86.33 %) of somatic embryos was observed on 1/2-strength MS medium containing 1.0 mg/L BA. Relying on the repetitive secondary somatic embryogenesis and A. tumefaciens strain EHA105 harboring the binary vector pBI121, a stable and effective Agrobacterium-mediated transformation pattern was developed. The presented transformation protocol, in which somatic embryo clumps at globular stage (0.02–0.04 g) were infected by Agrobacterium for 60 min and co-cultivated for 2 days, and then selected under a procedure of 3 steps, were confirmed to be optional by GUS histochemical assay and Southern blot analysis. The procedure described here will be very useful for the introgression of desired genes into R. rugosa ‘Bao white’ and the molecular analysis of gene function.  相似文献   

11.
Somatic embryogenesis is a reliable and important tool, and the relevant genes controlling this process act as vital roles through the whole development of somatic embryos. However, regeneration via somatic embryogenesis in Chinese chestnut has been impeded and its molecular mechanism is not known. Therefore, firstly we described a protocol for somatic embryo initiation, development, maturation and germination. Embryogenic calli were obtained in embryo initiation medium containing 1.8 μM 2,4-D and 1.1 μM 6-BA, and then were transferred to embryo development medium without any hormones for at least 4 weeks, until cotyledonary embryos appeared. Next, the somatic embryos were transferred to embryo maturation medium containing Gamborg’s B-5 Basal Salt Mixture with 0.5 μM NAA and 0.5 μM 6-BA for 3 weeks. Finally, these mature embryos were germinated in embryo germination medium consisting of WPM with 0.5 μM NAA and 0.5 μM 6-BA, resulting in shoot regeneration with a 2.1% conversion rate. Additionally, eight embryogenesis-related genes were identified, and the expression profiles of these genes during embryogenesis were analyzed via quantitative real-time RT-PCR (qRT-PCR). The CmSERK, CmLEC1, CmWUS and CmAGL15 genes exhibited high expression in the initial embryo stages, which inferred that these genes played key roles during the initiation of embryogenesis. Studies on embryogenesis-related genes will provide an insight for further elucidating molecular mechanism during somatic embryogenesis of Chinese chestnut. Furthermore, the successful establishment of a somatic embryo regeneration system for Chinese chestnut will lay a significant foundation for a stable genetic transformation system and genetic improvement.  相似文献   

12.
We developed an efficient and simple system for inducing somatic embryogenesis and regenerating plantlets from mature zygotic embryos of oil palm. Embryogenic calli were induced from mature zygotic embryos of oil palm on modified Murashige and Skoog medium with 2,4-dichlorophenoxyacetic acid or picloram, alone or in combination with activated charcoal. The greatest frequency of embryogenic callus induction (97.5%) was obtained by culturing mature zygotic embryos on callus induction medium with 450 μM picloram and 2.5 g?L?1 activated charcoal. Embryogenic calli proliferated on a medium with a reduced concentration of picloram. Embryogenic calli were then subcultured on a medium supplemented with 12.3 μM 2-isopentenyladenine and 0.54 μM naphthaleneacetic acid, with subcultures at 4-wk intervals. Somatic embryos were regenerated on a medium with Murashige and Skoog macro- and micronutrients at half-strength concentrations supplemented with 20 g?L?1 sucrose, 2.5 g?L?1 activated charcoal, and 2.5 g?L?1 Phytagel. Detailed histological analysis revealed that somatic embryogenesis followed an indirect pathway. Primary calli were observed after 4–6 wk of culture and progressed to embryogenic calli at 12 wk. Embryogenic cells exhibited dense protoplasm, a high nucleoplasmic ratio, and small starch grains. Proembryos, which seemed to have a multicellular origin, formed after 16–20 wk of culture and successive cell divisions. Differentiated somatic embryos had a haustorium, a plumule, and the first and second foliar sheaths. In differentiated embryos, the radicular protrusion was not apparent because it generally does not appear until after the first true leaves emerge.  相似文献   

13.
Deschampsia antartctica Desv. is a type of grass that is physiologically and biochemically adapted to the extreme environmental conditions of the Antarctic continent, which is of interest to many investigators. To explore the potential use of somatic embryogenesis as a biotechnological tool for the mass micropropagation of this grass, the effects of three dosages of 2,4-dichlorophenoxyacetic acid, dicamba, and picloram were evaluated. The developmental and morphological stages of somatic embryo formation were evaluated using scanning electron microscopy (SEM). Plant regeneration was evaluated under the effects of different dosages of 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA), alone and combined. The results indicated that a Murashige and Skoog basal medium supplemented with 3 mg/l of dicamba was the best for inducing somatic embryogenesis, while the combination of 1 mg/l BAP and 0.1 mg/l of NAA was the most efficient for the regeneration and development of the plants. This work demonstrates, for the first time with the use of SEM, that it is possible to apply somatic embryogenesis for the regeneration of superficial and morphological structures of somatic embryos in the species D. antarctica.  相似文献   

14.
The objective of this study was to characterize the histodifferentiation of somatic embryogenesis obtained from leaf explants of C. arabica. Therefore, we histologically analyzed the respective stages of the process: leaf segments at 0, 4, 7, 15 and 30 days of cultivation, Type 1 primary calli (primary calli with embryogenic competence) and 2 (primary calli with no embryogenic competence), embryogenic calli, globular, torpedo and cotyledonary embryos, and mature zygotic embryos. Callus formation occurred after seven days of culture, with successive divisions of procambium cell. In this cultivation phase, it was found that Type 1 primary calli are basically formed by parenchymal cells with reduced intercellular spacing, whereas Type 2 primary calli are predominantly composed of parenchymal cells with ample intercellular spaces and embryogenic calli composed entirely of meristematic cells. After 330 days, it was evident from the differentiation of somatic embryogenesis that there was formation of globular somatic embryos, consisting of a characteristic protoderm surrounding the fundamental meristem. With the maturation of these propagules after 360 days, torpedo-stage somatic embryos arose, in which tissue polarization and early differentiation of procambial strands were verified. After 390 days, cotyledonary somatic embryos were obtained, where the onset of vessel elements differentiation was verified, a characteristic also observed in mature zygotic embryos. We concluded that somatic embryogenesis obtained from C. arabica leaves initiates from procambium cell divisions that, in the course of cultivation, produce mature somatic embryos suitable for regenerating whole plants.  相似文献   

15.
Somatic embryogenesis was induced in immature zygotic embryos of pea (Pisum sativum L.), synthetic auxins α-naphthalene acetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-amino-3,5,6-trichloropicolinic acid (picloram, PIC) being used. Only one (line HM-6) of 46 genotypes tested exhibited good potential for somatic embryogenesis. 2,4-D was found as the best somatic embryo inductor. Three different ways of somatic embryo conversion have been described. Plantlets from individual somatic embryos were micropropagated as somaclones and subsequently rooted. A sterile morphological mutant has been found within a group of fertile plants of T0-generation. Sufficient amount of T1-seeds is available for somaclonal variation studies.  相似文献   

16.
Direct differentiation of shoot buds in Coffea dewevrei was evident from the seedling shoots with collar region and also from collar region end of hypocotyl segments in presence of 40 μM AgNO3, 8.88 μM of BA and 2.85 μM of IAA. Apart from this, shoot end of hypocotyl explants mainly supported yellow friable callus or somatic embryos. Subsequent transfer to the same medium induced secondary somatic embryogenesis. The collar region of the hypocotyl explants not only showed direct organogenesis by producing 1–3 shoots per explant and also able to produce globular somatic embryos and embryogenic yellow friable callus. Similarly direct somatic embryogenesis along with yellow friable embryogenic callus formation on 1/2 strength MS medium comprising 1.47 μM IAA, 2.22 μM BA and 40 μM AgNO3 was noticed from cut portion of in vitro leaf and stalk of regenerated plants. The microshoots rooted well upon subculturing onto the same medium in 6 weeks and showed 60 % survival in green house and resumed growth upon hardening.  相似文献   

17.
Somatic embryogenesis is a powerful tool for plant regeneration and also provides a suitable material for investigating the molecular events that control the induction and development of somatic embryos. This study focuses on expression analysis of the QrCPE gene (which encodes a glycine-rich protein) during the initiation of oak somatic embryos from leaf explants and also during the histodifferentiation of somatic embryos. Northern blot and in situ hybridization were used to determine the specific localisation of QrCPE mRNA. The results showed that the QrCPE gene is developmentally regulated during the histodifferentiation of somatic embryos and that its expression is tissue- and genotype-dependent. QrCPE was strongly expressed in embryogenic cell aggregates and in embryogenic nodular structures originated in leaf explants as well as in the protodermis of somatic embryos from which new embryos are generated by secondary embryogenesis. This suggests a role for the gene during the induction of somatic embryos and in the maintenance of embryogenic competence. The QrCPE gene was highly expressed in actively dividing cells during embryo development, suggesting that it participates in embryo histodifferentiation. The localised expression in the root cap initial cells of cotyledonary somatic embryos and in the root cap of somatic seedlings also suggests that the gene may be involved in the fate of root cap cells.  相似文献   

18.
Hemoglobins are ancient O2-binding proteins, ubiquitously found in eukaryotes. They have been categorized as symbiotic, nonsymbiotic and truncated hemoglobins. We have investigated the cellular localization of nonsymbiotic hemoglobin proteins during somatic embryogenesis in Cichorium hybrid leaves (Cichorium intybus L. var. sativum × C. endivia var. latifolia) using immunolocalization technique. These proteins were detected during the two steps of culture: induction and expression. In leaves, hemoglobins colocalised with plastids, which were dispersed in the parietal cytoplasm as well as in the two guard cells of a stomata, but not in epidermis cells. Upon induction of embryogenesis, in the dark, this pattern disappeared. During the induction phase, where competent cells reinitiate the cell cycle and prepare for mitosis, hemoglobins appeared initially near chloroplasts, and then in the vicinity of vascular vessels especially in the phloem and in cells surrounding the xylem vessels. When leaf fragments were transferred to another medium for the expression phase, hemoglobins were observed in the majority of the leaf blade cells and in small young embryos but not in the older ones. Hemoglobins were also detected in other leaves cells or tissues all along the process. The role of these nonsymbiotic hemoglobins during somatic embryogenesis is discussed.Key Words: chicory, immunolocalization, nonsymbiotic hemoglobin, somatic embryogenesis  相似文献   

19.
A protocol has been developed for achieving somatic embryogenesis from callus derived from nodal cuttings and production of synthetic seeds in Hemidesmus indicus L. R. Br. a highly traded ethnomedicinal plant. Proembryogenic, friable, light yellowish callus was induced from the basal cut end of the nodal cuttings on Murashige and Skoog (MS) medium supplemented with 3 μM indole-3-butyric acid (IBA). The highest rate of somatic embryogenesis (92 %) was observed when the callus was subcultured on half strength MS medium supplemented with 2 μM IBA. On induction medium somatic embryos were developed up to the torpedo stage. Further elongation and germination of somatic embryos were obtained in MS medium supplemented with 4 μM 6-benzylaminopurine (BA) in combination with 1.5 μM gibberellic acid (GA3). Somatic embryos were collected and suspended in a matrix of MS medium containing sodium alginate (3 % W/V) dropped into 75 mM calcium chloride (CaCl2·2H2O) solution for the production of synthetic seeds and later transferred to MS medium for germination. The synthetic seeds were successfully germinated on medium even after 120 days of storage at 4 °C. The plantlets were eventually transferred to soil with 92 % success.  相似文献   

20.
Understanding the fate and dynamics of cells during callus formation is essential to understanding totipotency and the somatic embryogenesis (SE) mechanisms. In the present study, the histodifferentiation events involved during the acquisition and development of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.) was investigated. Zygotic embryos were inoculated on SE induction medium, and at 14 days the first divisions of the procambial and perivascular cells were observed. This region progressed to the formation of meristematic masses at 21 days, indicating their procambial and perivascular origin. Primary calli emerged at 45 days of culture, followed by progression to embryogenic calli at 90 days. The formation of proembryos (PE) from the meristematic cells occurred at 135 days of cultivation. The PE were isolated from the tissue of origin by the slight thickening of the cell wall, indicating their unicellular origin. When transferred to the maturation phase, differentiation of the somatic embryos at different developmental stages (globular and torpedo) was observed. The differentiated somatic embryos presented protoderm, procambial strands and plumules. Afterwards, they were transferred to culture medium without growth regulators in which conversion of the somatic embryos from torpedo stage into plants was observed. These results enable a greater understanding of the SE process and plantlet formation in E. guineensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号