首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Partitioning of 14C-labelled photosynthates to various parts of un-pruned tea clones TV1 and TV25 was assessed in vivo by exposing maintenance leaves to 14CO2 at monthly intervals throughout the year. The plants from shoot apex to root tip were divided into twelve components to assess the allocation and retention of 14C-photosynthates by the maintenance foliage. Out of the total photosynthates produced by the maintenance leaves, only 11.08 % was allocated to the commercially useful harvestable two and a bud shoots which is accepted as the harvest index of tea. The photosynthetically active maintenance leaves retained 19.05 % while 24.56 % was distributed to the branches. The bottom and the top parts of the trunk utilized 7.44 and 7.21 %, respectively. The thick roots at the base of the trunk, medium sized roots, pencil size roots, and feeder roots imported 7.28, 7.72, 7.65, and 8.01 % of 14C assimilates, respectively. Except retention by leaves, all the plant parts of vigorous clone TV25 required higher percentage of assimilates than TV1. The mean quantities of net photosynthates utilized by the stem and the roots were 69.37 and 30.63 %, respectively.  相似文献   

2.
14C methods were applied to young, woody, branched and well-watered cork oak (Quercus suber L.) plants to determine carbon assimilation and its distribution among plant organs. Carbon assimilation rates by attached leaves clamped in a foliar 14CO2 assimilation chamber containing 3.7 × 104 Bq of a portable ventilated diffusion porometer were measured at different 14CO2 pulse-labeling periods (15, 30, 45, 60 and 120 s) in summer. Allocation of recently fixed C by attached leaves within plants was evaluated 7 days after a 60-min of 5.6 MBq of 14CO2 pulse-labeling in late winter. 14CO2 pulse-labeling was separately induced on leaves of a lower branch, two opposite branches at the same lower level, a middle branch and a top branch. 14C activity incorporated into the plants was measured by liquid scintillation and autoradiography. Our results show the optimum 14CO2 pulse-labeling period is between 15 and 30 s, which corresponds to 9.81 ± 0.15 and 9.16 ± 0.12 µmol m−2 s−1 C assimilation rates in summer, respectively. The investment of current assimilates ranged from 18 to 29% in leaves, 1 to 7% in lateral branches, 0 to 3% in the stem and over 65% in roots, in late winter. Roots displayed the greatest sink strength for the total 14C recovered by whole-plants. These results were expected because the trial was done in winter, when cork oak does not produce their leaves. Our results highlight the contribution of current assimilates for growth and maintenance of roots, in young woody plants under Mediterranean climate.  相似文献   

3.
The effect of soil pH on rhizosphere carbon flow of Lolium perenne   总被引:1,自引:0,他引:1  
Perennial rye-grass plants were grown at 15°C in microcosms containing soil sampled from field plots that had been maintained at constant pH for the last 30 years. Six soil pH values were tested in the experiment, with pH ranging from 4.3–6.5. After 3 weeks growth in the microcosms, plant shoots were exposed to a pulse of 14C-CO2. The fate of this label was determined by monitoring 14C-CO2 respired by the plant roots/soil and by the shoots. The 14C remaining in plant roots and shoots was determined when the plants were harvested 7 days after receiving the pulse label. The amount of 14C (expressed as a percentage of the total 14C fixed by the plant) lost from the plant roots increased from 12.3 to 30.6% with increasing soil pH from 4.3 to 6. Although a greater percentage of the fixed 14C was respired by the root/soil as soil pH increased, plant biomass was greater with increasing soil pH. Possible reasons for observed changes in the pattern of 14C distribution are discussed and, it is suggested that changes in the soil microbial biomass and in plant nitrogen nutrition may, in particular be key factors which led to increased loss of carbon from plant roots with increasing soil pH.  相似文献   

4.
To assess the influence of bacteria inoculation on carbon flow through maize plant and rhizosphere,14C allocation after14CO2 application to shoots over a 5-day period was determined. Plants were grown on C- and N-free quartz sand in two-compartment pots, separating root and shoot space. While one treatment remained uninoculated, treatments two and three were inoculated withPantoea agglomerans (D5/23) andPseudomonas fluorescens (Ps I A12), respectively, five days after planting. Bacterial inoculation had profound impacts on carbon distribution within the system. Root/rhizosphere respiration was increased and more carbon was allocated to roots of plants being inoculated. After five days of14CO2 application, more ethanol-soluble substances were found in roots of inoculated treatments and lower rhizodeposition indicated intensive C turnover in the rhizosphere. In both inoculated treatments the intensity of photosynthesis measured as net-CO2-assimilation rates were increased when compared to the uninoculated plants. However, high C turnover in the rhizosphere reduced shoot growth of D5/23 inoculated plants, with no effect on shoot growth of Ps I A12 inoculated plants. A separation of labeled compounds in roots and rhizodeposition revealed that neutral substances (sugars) constituted the largest fraction. The relative fractions of sugars, amino acids and organic acids in roots and rhizodeposition suggest that amino acid exudation was particularly stimulated by bacterial inoculation and that turnover of this substance group is high in the rhizosphere.  相似文献   

5.
Changes in growth parameters, carbon assimilation efficiency, and utilization of 14CO2 assimilate into alkaloids in plant parts were investigated at whole plant level by treatment of Catharanthus roseus with gibberellic acid (GA). Application of GA (1 000 g m−3) resulted in changes in leaf morphology, increase in stem elongation, leaf and internode length, plant height, and decrease in biomass content. Phenotypic changes were accompanied by decrease in contents of chlorophylls and in photosynthetic capacity. GA application resulted in higher % of total alkaloids accumulated in leaf, stem, and root. GA treatment produced negative phenotypic response in total biomass production but positive response in content of total alkaloids in leaf, stem, and roots. 14C assimilate partitioning revealed that 14C distribution in leaf, stem, and root of treated plants was higher than in untreated and variations were observed in contents of metabolites as sugars, amino acids, and organic acids. Capacity to utilize current fixed 14C derived assimilates for alkaloid production was high in leaves but low in roots of treated plants despite higher content of 14C metabolites such as sugars, amino acids, and organic acids. In spite of higher availability of metabolites, their utilization into alkaloid production is low in GA-treated roots.  相似文献   

6.
A pot experiment was conducted in a greenhouse using the 15N isotope dilution method and two reference plants, Parkia biglobosa and Tamarindus indica to estimate nitrogen fixed in four Acacia species: A raddiana, A. senegal, A. seyal and Faidherbia albida (synonym Acacia albida). For the reference plants, the 15N enrichments in leaves, stems and roots were similar. With the fixing plants, leaves and stems had similar 15N enrichments; they were higher than the 15N enrichment of roots. The amounts of nitrogen fixed at 5 months after planting were similar using either reference plant. Estimates of the percentage of N derived from fixation (%Ndfa) for the above ground parts, in contrast to %Ndfa in roots, were similar to those for the whole plant. However, none of the individual plant parts estimated accurately total N fixed in the whole plant, and excluding the roots resulted in at least 30% underestimation of the amounts of N fixed. Between species, differences in N2 fixation were observed, both for %Ndfa and total N fixed. For %Ndfa, the best were A. seyal (average, 63%) and A. raddiana (average, 62%), being at least twice the %Ndfa in A. senegal and F. albida. Because of its very high N content, A. seyal was clearly the best in total N fixed, fixing 1.62 g N plant–1 compared to an average of 0.48 g N plant–1 for the other Acacia species. Our results show the wide variability existing between Acacia species in terms of both %Ndfa and total N fixed: A. seyal was classified as having a high N2 fixing potential (NFP) while the other Acacia species had a low NFP.  相似文献   

7.
The effects of inoculating soil with a water suspension of Bradyrhizobium japonicum (i) at seeding, (ii) 7, or (iii) 14 days after planting (DAP), (iv) seed slurry inoculation and (v) seed slurry supplemented with postemergence inoculation of a water suspension of Bradyrhizobium at 7 or (vi) 14 DAP, on nodulation, N2 fixation and yield of soybean (Glycine max. [L.] Merrill) were compared in the greenhouse. The 15N isotope dilution technique was used to quantify N2 fixed at flowering, early pod filling and physiological maturity stages (36, 52 and 70 DAP, respectively). On average, the water suspension inoculation formed the greatest number of nodules, and seed plus postemergence inoculation formed slightly more nodules than the seed-only inoculated plants (27, 19 and 12 nodules/plant respectively at physiological maturity). Seed slurry inoculation followed by postemergence inoculation at 14 DAP gave the highest nodule weight, with the plants fixing significantly more (P<0.05) N2 (125 mg N plant−1 or 56% N) than any other treatment (mean, 75 mg plant−1 or 35% N). However, the higher N2 fixation was not translated into higher N or dry matter yields. Estimates of N2 fixed by the ostemergence Bradyrhizobium inoculations as well as plant yield were not significantly different from those of the seed slurry inoculation. Thus, delaying inoculation (e.g., by two weeks as in this study) did not reduce the symbiotic ability of soybean plants.  相似文献   

8.
Translocation of 14C-photosynthates to mycorrhizal (+ +), half mycorrhizal (0+), and nonmycorrhizal (00) split-root systems was compared to P accumulation in leaves of the host plant. Carrizo citrange seedlings (Poncirus trifoliata [L.] Raf. × Citrus sinensis [L.] Osbeck) were inoculated with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith. Plants were exposed to 14 CO2 for 10 minutes and ambient air for 2 hours. Three to 4% of recently labeled photosynthate was allocated to metabolism of the mycorrhiza in each inoculated root half independent of shoot P concentration, growth response, and whether one or both root halves were colonized. Nonmycorrhizal roots respired more of the label translocated to them than did mycorrhizal roots. Label recovered in the potting medium due to exudation or transport into extraradical hyphae was 5 to 6 times greater for (+ +) versus (00) plants. In low nutrient media, roots of (0+) and (+ +) plants transported more P to leaves per root weight than roots of (00) plants. However, when C translocated to roots utilized for respiration, exudation, etc., as well as growth is considered, (00) plant roots were at least as efficient at P uptake (benefit) per C utilized (cost) as (0+) and (+ +) plants. Root systems of (+ +) plants did not supply more P to leaves than (0+) plants in higher nutrient media, yet they still allocated twice the 14C-photosynthate to the mycorrhiza as did (0+) root systems. This indicates there is an optimal level of mycorrhizal colonization above which the plant receives no enhanced P uptake yet continues to partition photosynthates to metabolism of the mycorrhiza.  相似文献   

9.
Nitrogen uptake, distribution and remobilization in the vegetative and reproductive parts of the plant were studied in bean (Phaseolus vulgaris L.) cultivars Negro Argel and Rio Tibagi inoculated with either Rhizobium strain C05 or 127 K-17. Greenhouse grown plants were supplied with 2.5 mg N (plant)−1 day−1 as KNO3 or K15NO3 and the relative contribution to total plant nitrogen of mineral and symbiotically fixed nitrogen was determined. Control plants included those entirely dependent on fixed nitrogen as well as uninoculated plants supplied with 10 mg N (plant)−1 day−1. No differences were observed between inoculated treatments in total nitrate reductase activity and in the amount of mineral nitrogen absorbed, but there were considerable differences in the contribution of fixed nitrogen. Nitrogen fixation supplied from 58 to 72% of the total nitrogen assimilated during the bean growth cycle and the symbiotic combinations fixed most of their nitrogen (66 to 78% of total nitrogen) after flowering. Maximum uptake of mineral nitrogen was in the 15-day-period between flowering and mid-podfill (47 to 58% of total mineral nitrogen). Nitrogen partitioning varied with Rhizobium strains, and inoculation with strain C05 increased the nitrogen harvest index of both cultivars. Applied mineral nitrogen had a variable effect and in cv. Negro Argel was more beneficial to vegetative growth, resulting in smaller nitrogen harvest indices. Seed yield was not increased by heavy nitrogen fertilization. In contrast, cv. Rio Tibagi always benefited from nitrogen applications. Among the various nitrogen sources supplying the grain, the most important one was the fixed nitrogen translocated directly from nodules or after a rapid transfer through leaves, representing from 60 to 64% of the total nitrogen incorporated into the seeds.  相似文献   

10.
Summary Studies examined net photosynthesis (Pn) and dry matter production of mycorrhizal and nonmycorrhizalPinus taeda at 6 intervals over a 10-month period. Pn rates of mycorrhizal plants were consistently greater than nonmycorrhizal plants, and at 10 months were 2.1-fold greater. Partitioning of current photosynthate was examined by pulse-labelling with14CO2 at each of the six time intervals. Mycorrhizal plants assimilated more14CO2, allocated a greater percentage of assimilated14C to the root systems, and lost a greater percentage of14C by root respiration than did nonmycorrhizal plants. At 10 months, the quantity of14CO2 respired by roots per unit root weight was 3.6-fold greater by mycorrhizal than nonmycorrhizal plants. Although the stimulation of photosynthesis and translocation of current photosynthate to the root system by mycorrhiza formation was consistent with the source-sink concept of sink demand, foliar N and P concentrations were also greater in mycorrhizal plants.Further studies examined Pn and dry matter production ofPinus contorta in response to various combinations of N fertilization (3, 62, 248 ppm), irradiance and mycorrhizal fungi inoculation. At 16 weeks of age, 6 weeks following inoculation with eitherPisolithus tinctorius orSuillus granulatus, Pn rates and biomass were significantly greater in mycorrhizal than nonmycorrhizal plants. Mycorrhizal plants had significantly greater foliar %P, but not %N, than did nonmycorrhizal plants. Fertilization with 62 ppm N resulted in greater mycorrhiza formation than either 3 or 248 ppm. Increased irradiance resulted in increased mycorrhiza formation.  相似文献   

11.
Partitioning of 14C was assessed in sweet chestnut seedlings (Castanea sativa Mill.) grown in ambient and elevated atmospheric [CO2] environments during two vegetative cycles. The seedlings were exposed to 14CO2 atmosphere in both high and low [CO2] environments for a 6-day pulse period under controlled laboratory conditions. Six days after exposure to 14CO2, the plants were harvested, their dry mass and the radioactivity were evaluated. 14C concentration in plant tissues, root-soil system respiratory outputs and soil residues (rhizodeposition) were measured. Root production and rhizodeposition were increased in plants growing in elevated atmospheric [CO2]. When measuring total respiration, i.e. CO2 released from the root/soil system, it is difficult to separate CO2 originating from roots and that coming from the rhizospheric microflora. For this reason a model accounting for kinetics of exudate mineralization was used to estimate respiration of rhizospheric microflora and roots separately. Root activity (respiration and exudation) was increased at the higher atmospheric CO2 concentration. The proportion attributed to root respiration accounted for 70 to 90% of the total respiration. Microbial respiration was related to the amount of organic carbon available in the rhizosphere and showed a seasonal variation dependent upon the balance of root exudation and respiration. The increased carbon assimilated by plants grown under elevated atmospheric [CO2] stayed equally distributed between these increased root activities. ei]H Lambers  相似文献   

12.
Distribution of net assimilated C in meadow fescue (Fectuca pratensi L.) was followed before and after cutting of the shoots. Plants were continuously labelled in a growth chamber with 14C-labelled CO2 in the atmosphere from seedling to cutting and with 13C-labelled CO2 in the atmosphere during regrowth after the cutting. Labelled C, both 14C and 13C, was determined at the end of the two growth periods in shoots, crowns, roots, soil and rhizosphere respiration. Distribution of net assimilated C followed almost the same pattern at the end of the two growth periods, i.e. at the end of the 14C- and the 13C-labelling periods. Shoots retained 71–73% of net assimilated C while 9% was detected in the roots and 11–14% was released from the roots, determined as labelled C in soil and as rhizosphere respiration. At the end of the 2nd growth period, after cutting and regrowth, 21% of the residual plant 14C at cutting (14C in crowns and roots) was found in the new shoot biomass. A minor part of the residual plant 14C, 12%, was lost from the plants. The decreases in 14C in crowns and roots during the regrowth period suggest that 14C in both crowns and roots was translocated to new shoot tissue. Approximately half of the total root C at the end of the regrowth period after cutting was 13C-labelled C and thus represents new root growth. Root death after cutting could not be determined in this experiment, since the decline in root 14C during the regrowth period may also be assigned to root respiration, root exudation and translocation to the shoots. ei]{gnH}{fnLambers} ei]{gnA C}{fnBorstlap}  相似文献   

13.
The influence of a supplementary bradyrhizobial inoculation after an initial seed slurry inoculation with the same strain on nodulation and N2 fixation in soybeans was examined in the greenhouse. The plants were grown in a Typic Eutrocrepts soil: sand mixture containing 25, 65, or 83 mg of N per kg (i.e., native soil N plus 15N-labeled ammonium sulfate). Harvests were made at early flowering and physiological maturity. The supplementary inoculations which were made 14 or 21 days after planting (DAP) caused formation of substantially more nodules than the single slurry inoculation did. Autoregulation was therefore not completely successful in preventing subsequent infections. For the slurry-inoculated plants, at both harvests the proportion of N derived from fixation was greatest in the soil containing the least N, and only slight increases in N2 fixation resulted from a second inoculation. The inhibition of N2 fixation at the higher N levels was significantly reduced by a second inoculation at 21 DAP; this treatment resulted in at least a doubling of both the percentage and total amount of N2 fixed by the single slurry inoculation at physiological maturity. The N2 fixation increases resulting from the supplementary inoculation at 14 DAP were less pronounced and not significant. Greater N2 fixation was frequently not reflected by increased total N or dry matter yield, suggesting that the major benefit of the increased fixation was a decreased dependence of plants on soil N for growth.  相似文献   

14.
Willow is often used in bio-energy plantations for its potential to function as a renewable energy source, but knowledge about its effect on soil carbon dynamics is limited. Therefore, we investigated the temporal variation in carbon dynamics in willow, focusing on below-ground allocation and sequestration to soil carbon pools. Basket willow plants (Salix viminalis L.) in their second year of growth were grown in pots in a greenhouse. At five times during the plants growth, namely 0, 1, 2, 3 and 4 months after breaking winter dormancy, a subset of the plants were continuously labelled with 14CO2 in an ESPAS growth chamber for 28 days. After the labelling, the plants were harvested and separated into leaves, first and second year stems and roots. The soil was analysed for total C and 14C content as well as soil microbial biomass. Immediately after breaking dormancy, carbon stored in the first year stems was relocated to developing roots and leaves. Almost half the newly assimilated C was used for leaf development the first month of growth, dropping to below 15% in the older plants. Within the second month of growth, secondary growth of the stem became the largest carbon sink in the system, and remained so for the older age classes. Between 31 and 41% of the recovered 14C was allocated to below-ground pools. While the fraction of assimilated 14C in roots and root+soil respiration did not vary with plant age, the amount allocated to soil and soil microbial biomass increased in the older plants, indicating an increasing rhizodeposition. The total amount of soil microbial biomass was 30% larger in the oldest age class than in an unplanted control soil. The results demonstrate a close linkage between photosynthesis and below-ground carbon dynamics. Up to 13% of the microbial biomass consisted of carbon assimilated by the willows within the past 4 weeks, up to 11% of the recovered 14C was found as soil organic matter.  相似文献   

15.
Bacterial wilt, caused by Ralstonia solanacearum , is responsible for severe losses in tomato crops in the world. In the present study, the effect of temperature, cultivars of tomato, injury of root system and inoculums load of R. solanacearum to cause bacterial wilt disease under control conditions was undertaken. Three strains UTT-25, HPT-3 and JHT-5 of R. solanacearum were grown at 5–40?°C in vitro to study, the effect of temperature on the growth of bacteria and maximum growth was found at 30?°C after 72?h in all the strains. Twenty-one days old seedlings of two cultivars of tomato i.e. N-5 (moderately resistant) and Pusa Ruby (highly susceptible) were transplanted into the pots and inoculated with R. solanacearum strain UTT-25 (5 × 108?cfu/ml), mechanically injured and uninjured roots of the plant. The plants were allowed to grow at 20, 25, 30 and 35?°C at National Phytotron Facility, IARI, New Delhi to study the effect of temperature on intensity of bacterial wilt disease. Maximum wilt disease intensity was found 98.73 and 95.9 % in injured roots of Pusa Ruby and N-5 cultivars of tomato at 35?°C on 11th days of inoculation, respectively. However, no wilt disease was observed in both the cultivars at 20?°C up to 60?days. For detection of R. solanacearum from asymptomatic tomato plants, hrpB-based sequence primers (Hrp_rs2F and Hrp_rs2R) amplified at 323?bp was used in bio-PCR to detect R. solanacearum from crown, mid part of stem and upper parts of the plant. Another experiment was conducted to find out the inoculum potential of R. solanacearum strain UTT-25 to cause bacterial wilt in susceptible cultivar Pusa Ruby. The bacteria were inoculated at concentration of bacterial suspension 10 to 1010?cfu/ml in injured and uninjured roots of the plants separately and injured root accelerated wilt incidence and able to cause wilt disease 63.3% by 100?cfu/ml of R. solanacearum, while no disease appeared at 10?cfu/ml on the 11th day of inoculation in injured and uninjured roots of the plant.  相似文献   

16.
The allocation of carbon to shoots, roots, soil and rhizosphere respiration in barrel medic (Medicago truncatulaGaertn.) before and after defoliation was determined by growing plants in pots in a labelled atmosphere in a growth cabinet. Plants were grown in a 14CO2-labelled atmosphere for 30 days, defoliated and then grown in a 13CO2-labelled atmosphere for 19 days. Allocation of 14C-labelled C to shoots, roots, soil and rhizosphere respiration was determined before defoliation and the allocation of 14C and 13C was determined for the period after defoliation. Before defoliation, 38.4% of assimilated C was allocated below ground, whereas after defoliation it was 19.9%. Over the entire length of the experiment, the proportion of net assimilated carbon allocated below ground was 30.3%. Of this, 46% was found in the roots, 22% in the soil and 32% was recovered as rhizosphere respiration. There was no net translocation of assimilate from roots to new shoot tissue after defoliation, indicating that all new shoot growth arose from above-ground stores and newly assimilated carbon. The rate of rhizosphere respiration decreased immediately after defoliation, but after 8 days, was at comparable levels to those before defoliation. It was not until 14 days after defoliation that the amount of respiration from newly assimilated C (13C) exceeded that of C assimilated before defoliation (14C). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The floating, stoloniferous plant, Eichhornia crassipes, has high rates of productivity and rapidly invades new sites. Because the transport of carbon among connected ramets is known to increase the growth of clonal plants, we asked whether there is intraclonal carbon transport in E. crassipes. Because net photosynthesis of E. crassipes is significantly higher at high levels of atmospheric CO2, we also asked if high CO2 can change patterns of carbon transport in ways that might modify clonal growth. We exposed individual ramets within groups of connected ramets to 14CO2 for 15–45 min and measured the distribution of 14C in the group after 4 days of growth at 350, 700, 1,400, or 2,800 μ1 1−-1 CO2. At 350 μ1 1−-1 CO2, a parent ramet exported approximately 10% of the 14C that it assimilated to its first rooted offspring ramet. The offspring exported a similar percentage of the l4C it assimilated toward the parent; two-thirds of this 14C was retained by the parent, and one-third moved into new offspring of the parent. In all ramets, imported carbon moved into leaves as well as roots. At the higher levels of CO2, the percentage of assimilated carbon exported from a parent ramet to the leaf blades of its first offspring was lower by half. High CO2 had little other effect on carbon transport. E. crassipes maintains bidirectional transport of carbon between ramets even under uniform and favorable environmental conditions and when external CO2 levels are very high.  相似文献   

18.
The effect of living plants on root decomposition of four grass species   总被引:3,自引:0,他引:3  
We tested whether living plant roots of Holcus lanatus and Festuca ovina can affect the decomposition rate of dead roots of Holcus lanatus, Festuca rubra, Anthoxanthum odoratum and Festuca ovina. Moreover, we investigated whether this effect is dependent on the decomposing root species or the nitrogen supply during the growth of the roots. The selected perennial grass species are typical of grassland habitats in a range from high to low nitrogen availability: H. lanatus, F. rubra, A. odoratum and F. ovina. Seedlings of these species were homogeneously labelled with 14CO2 for eight weeks. Plants were grown on soil at two nitrogen levels: one without additional nitrogen and one with nitrogen addition (14 g N m−2).
At the start of the decomposition experiment 14C labelled roots were separated from soil and incubated in litterbags (mesh width 1 mm) in fresh soil. These 14C labelled roots were left to decompose for 19 weeks in an open greenhouse in soil planted with H. lanatus or F. ovina and in unplanted soil. After the incubation period, the decomposition of the 14C labelled roots of the four species was measured. The mass and 14C losses from the dead roots were calculated and the living plant biomass and C, N and P contents of the living plants were measured.
Living plant roots of F. ovina had positive effects on the decomposition rate of F. ovina root litter, but dead A. odoratum roots from the N fertilized treatment decomposed slower in the presence of living F. ovina plants. It seems likely that living plants like F. ovina exude carbon compounds that stimulate the growth of soil microbes and thereby increase dead root decomposition and mineralization. Root decomposition rates differed among the species. We found no evidence to support our hypothesis that dead roots of high fertility species (i.e. H. lanatus and F. rubra) decompose faster than dead roots of low fertility species (i.e. A. odoratum and F. ovina). In unplanted soil, the mass loss and total 14C loss from A. odoratum dead roots were higher than those from H. lanatus, F. rubra and F. ovina dead roots. Dead roots of F. ovina lost less mass and total 14C than dead roots of H. lanatus.  相似文献   

19.
The uptake of 14C and movement of 14C-labelled assimilates in wheat plants inoculated with Ophiobolus graminis was examined following exposure of the second youngest leaf to 14CO2. Autoradiographs of plants with infected seminal roots showed that assimilates were not translocated past the sites of root infection but accumulated in the undamaged portions of infected root systems, in particular the developing crown roots. There was no evidence that assimilates accumulated in the vicinity of O. graminis lesions. The net assimilation of 14CO2 by wheat plants over a 5 h feeding period was not significantly affected by O. graminis infection. However, infection reduced the amount of 14C lost through respiration. Infection delayed the transfer of labelled assimilates from the fed leaf to the remainder of the plant but increased the proportion translocated to the roots. The latter effect was not apparent when infected plants were continuously irrigated during, and for 20 h following, the feeding period.  相似文献   

20.
The natural cytokinin import from the root into the shoot of Urtica dioica plants was enhanced by supplying zeatin riboside (ZR) solutions of various concentrations to a portion less than 10 % of the root system after removal of their tips. After 6 h ZR pretreatment of the plants, 14CO2 was supplied for 3 h to a mature (source) leaf or to an expanding leaf and the 14C-distribution in the whole plant was determined after a subsequent dark period of 14 h. ZR substantially increased 14C fixation by the expanding leaves and also enhanced export of carbon and transport to the shoot apex. The effect of the hormone treatment was, however, more pronounced when the 14CO2 was supplied to a mature leaf. In the control plants these leaves exported carbon only to the roots: When the amount of the natural daily ZR input from the roots to the shoot was enhanced by 20%, the bulk of the 14C exported from a mature leaf moved to the shoot apex and only a minor portion of 14C was still detected in the root fraction. A several-fold increase of the natural daily ZR input into the shoot resulted in a flow of 14C only to the growing parts of the shoot. The results suggest control of the sink strength of the shoot apex by ZR in Urtica diocia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号