首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The virion synthesis by five human cytomegalovirus (CMV) strains in human embryonic fibroblast cultures was stopped by incubation of the infected cultures at 40 degrees C. At this temperature the antigens appeared diffusely filling the nucleus and the cytoplasm. The blocking effect of the elevated temperature was exerted in the same period of the reproduction cycle as the inhibitory effect of cytosine arabinoside (ara-C). In cell cultures infected with CMV and incubated first at 40 degrees C, then at 37 degrees C, the synthesis of infectious virus started again, thus the abortive cycle developed at 40 degrees C was reversible. The inhibition of virus multiplication cannot be attributed to the thermosensitive events in the normal function of the host cell.  相似文献   

2.
To study the function of the envelope glycoprotein gH of pseudorabies virus, a gH null mutant was constructed. A premature translation termination codon was introduced in the gH gene by linker insertion mutagenesis, and a mutant virus was rescued by using a cell line that expresses the wild-type protein. Mutant virus isolated from complementing cells was unable to form plaques on noncomplementing cells, indicating that gH is essential in the life cycle of the virus. Immunological staining and electron microscopy showed that the mutant virus produced noninfectious progeny and was unable to spread from infected to uninfected cells by cell-cell fusion. Thus, similar to gH of herpes simplex virus, gH of pseudorabies virus is required for entry and cell-to-cell spread.  相似文献   

3.
4.
Neurovirulent TYCSA strain and attenuated Schwarz strain of measles virus and Halle strain of subacute sclerosing panencephalitis (SSPE) virus replicated in cultures of human lymphoid cell lines of the T-cell type, MOLT-3, MOLT-4 and CCRF-CEM. TYCSA and Halle strains grew rapidly, but Schwarz strain grew slowly in these cell lines. Furthermore, these three strains established persistent infection in CCRF-CEM cells but not in the other cell lines. In these persistently infected cultures an almost entire population of cells were shown to be infected and infectious virus was produced constantly for over 100 days. Cells persistently infected with Schwarz strain contained nucleocapsid structures in both the nucleus and cytoplasm and produced low titered infectious virus, whereas nucleocapsid structures were observed only in the cytoplasm of cells persistently infected with either TYCSA or Halle strain and the titers of infectious virus produced from these cells were high.  相似文献   

5.
Due to the recent development of a cell culture model, hepatitis C virus (HCV) can be efficiently propagated in cell culture. This allowed us to reinvestigate the subcellular localization of HCV structural proteins in the context of an infectious cycle. In agreement with previous reports, confocal immunofluorescence analysis of the subcellular localization of HCV structural proteins indicated that, in infected cells, the glycoprotein heterodimer is retained in the endoplasmic reticulum. However, in contrast to other studies, the glycoprotein heterodimer did not accumulate in other intracellular compartments or at the plasma membrane. As previously reported, an association between the capsid protein and lipid droplets was also observed. In addition, a fraction of labeling was consistent with the capsid protein being localized in a membranous compartment that is associated with the lipid droplets. However, in contrast to previous reports, the capsid protein was not found in the nucleus or in association with mitochondria or other well-defined intracellular compartments. Surprisingly, no colocalization was observed between the glycoprotein heterodimer and the capsid protein in infected cells. Electron microscopy analyses allowed us to identify a membrane alteration similar to the previously reported "membranous web." However, no virus-like particles were found in this type of structure. In addition, dense elements compatible with the size and shape of a viral particle were seldom observed in infected cells. In conclusion, the cell culture system for HCV allowed us for the first time to characterize the subcellular localization of HCV structural proteins in the context an infectious cycle.  相似文献   

6.
7.
Dipyridamole at a concentration of 50 microM/ml displays no activity on adsorption and penetration of pseudorabies virus in chicken embryonal cells. Furthermore, first stages of virus replication take place within the nucleus, whereas incomplete virus cores defective in DNA content are found within the nucleoplasm at times when the regular viral replication has been finished in controls. Defective pseudorabies virus particles lacking in DNA-content of the core, can be observed at the end of normal replication time. Consequently, the antiviral activity of dipyridamole may be due to blocking of the synthesis or of the incorporation of infectious viral DNA into the virus core.  相似文献   

8.
The production of infectious virus, hemagglutinin, and viral (V) antigens and the changes in ribonucleoprotein (RNP) and lipoprotein metabolism have been studied in four sublines of HeLa cells infected with the PR8 and a PR8 recombinant strain of influenza virus. Much greater amounts of infectious virus and much less hemagglutinin were produced by the PR8 recombinant than by PR8 virus in all four cell lines. Different amounts of infectious virus per infected cell were produced by the recombinant in the four cell lines, whereas very little infectious virus was produced by the PR8 strain in any of the HeLa cells. In all cell lines infected with both strains of virus, "soluble" (S) antigen appeared early in the nucleolus. In cells infected with PR8 recombinant, S antigen subsequently filled the nucleus and later appeared in the cytoplasm. In most cells infected with PR8 virus, nuclear S antigen did not fuse to fill the nucleus, and S antigen was not detected in the cytoplasm. V antigen was observed in the cytoplasm of cells when diffuse nuclear S antigen had formed. The earliest and most frequent change in the RNP of the infected cells was a decrease in stainable RNP spherules (nucleolini) in the nucleolus. This was followed, in a smaller proportion of cells, by the appearance of nuclear and cytoplasmic inclusions containing RNP. There was a characteristic difference in the morphology of the cytoplasmic inclusions produced by the two strains of virus, but the same types of inclusions were observed in all four HeLa lines. A significant increase in lipoprotein was observed only in association with the cytoplasmic inclusions produced by PR8 recombinant virus. There was a striking difference in the proportion of cells with cytochemical changes in RNP in the four cell lines. A significant cytopathic effect (CPE) was observed only in three virus-cell systems in which a high proportion of cells exhibited changes in nucleolinar RNP. It is suggested that disappearance of RNP in the nucleolini may be an indication of shutdown of host ribonucleic acid synthesis and that this in turn results in a CPE. Virus infection resulted in a C-mitotic block that was followed by karyorrhexis. Infection of the cell did not always result in the production of infectious virus, in changes in the RNP of the nucleolini, in the development of nuclear or cytoplasmic RNP inclusions, or in CPE. The results suggest that production of infectious virus, shutdown of cellular RNP synthesis with accompanying CPE, and the formation of inclusions appear to be independent events.  相似文献   

9.
The production of cytoplasmic and nucleolar rRNA species was examined in HeLa cells infected with high multiplicities of adenovirus type 5. Both 28S and 18S rRNA newly synthesized in infected cells ceased to enter the cytoplasm as reported previously (N. Ledinko, Virology 49: 79-89, 1972; H. J. Raskas, D. C. Thomas, and M. Green, Virology 40: 893-902, 1970). However, the effects on 28S cytoplasmic rRNA were observed considerably earlier in the infectious cycle than those on 18S rRNA. The inhibition of cellular protein synthesis and of the appearance in the cytoplasm of labeled cellular mRNA sequences (G. A. Beltz and S. J. Flint, J. Mol. Biol. 131: 353-373, 1979) were also monitored in infected cultures. During the later periods of an infectious cycle, from 18 h after infection, nucleolar rRNA synthesis and processing and exit of 18S rRNA from the nucleus were inhibited, probably reflecting the failure of infected cells to synthesize normal quantities of ribosomal proteins. The earliest responses of cellular RNA metabolism to adenovirus infection were, however, the rapid and apparently coordinate reductions in the levels of newly synthesized 28S rRNA and cellular mRNA sequences entering the cytoplasm.  相似文献   

10.
Pseudorabies virus (PRV) is a herpesvirus of swine, a member of the Alphaherpesvirinae subfamily, and the etiological agent of Aujeszky's disease. This review describes the contributions of PRV research to herpesvirus biology, neurobiology, and viral pathogenesis by focusing on (i) the molecular biology of PRV, (ii) model systems to study PRV pathogenesis and neurovirulence, (iii) PRV transsynaptic tracing of neuronal circuits, and (iv) veterinary aspects of pseudorabies disease. The structure of the enveloped infectious particle, the content of the viral DNA genome, and a step-by-step overview of the viral replication cycle are presented. PRV infection is initiated by binding to cellular receptors to allow penetration into the cell. After reaching the nucleus, the viral genome directs a regulated gene expression cascade that culminates with viral DNA replication and production of new virion constituents. Finally, progeny virions self-assemble and exit the host cells. Animal models and neuronal culture systems developed for the study of PRV pathogenesis and neurovirulence are discussed. PRV serves as a self-perpetuating transsynaptic tracer of neuronal circuitry, and we detail the original studies of PRV circuitry mapping, the biology underlying this application, and the development of the next generation of tracer viruses. The basic veterinary aspects of pseudorabies management and disease in swine are discussed. PRV infection progresses from acute infection of the respiratory epithelium to latent infection in the peripheral nervous system. Sporadic reactivation from latency can transmit PRV to new hosts. The successful management of PRV disease has relied on vaccination, prevention, and testing.  相似文献   

11.
Pseudorabies virus (PRV) is a herpesvirus of swine, a member of the Alphaherpesvirinae subfamily, and the etiological agent of Aujeszky's disease. This review describes the contributions of PRV research to herpesvirus biology, neurobiology, and viral pathogenesis by focusing on (i) the molecular biology of PRV, (ii) model systems to study PRV pathogenesis and neurovirulence, (iii) PRV transsynaptic tracing of neuronal circuits, and (iv) veterinary aspects of pseudorabies disease. The structure of the enveloped infectious particle, the content of the viral DNA genome, and a step-by-step overview of the viral replication cycle are presented. PRV infection is initiated by binding to cellular receptors to allow penetration into the cell. After reaching the nucleus, the viral genome directs a regulated gene expression cascade that culminates with viral DNA replication and production of new virion constituents. Finally, progeny virions self-assemble and exit the host cells. Animal models and neuronal culture systems developed for the study of PRV pathogenesis and neurovirulence are discussed. PRV serves asa self-perpetuating transsynaptic tracer of neuronal circuitry, and we detail the original studies of PRV circuitry mapping, the biology underlying this application, and the development of the next generation of tracer viruses. The basic veterinary aspects of pseudorabies management and disease in swine are discussed. PRV infection progresses from acute infection of the respiratory epithelium to latent infection in the peripheral nervous system. Sporadic reactivation from latency can transmit PRV to new hosts. The successful management of PRV disease has relied on vaccination, prevention, and testing.  相似文献   

12.
Many alphaherpesviruses establish a latent infection in the peripheral nervous systems of their hosts. This life cycle requires the virus to move long distances in axons toward the neuron's cell body during infection and away from the cell body during reactivation. While the events underlying entry of the virion into neurons during infection are understood in principle, no such consensus exists regarding viral egress from neurons after reactivation. In this study, we challenged two different models of viral egress from neurons by using pseudorabies virus (PRV) infection of the rat retina: does PRV egress solely from axon terminals, or can the virus egress from axon shafts as well as axon terminals? We took advantage of PRV gD mutants that are not infectious as extracellular particles but are capable of spreading by cell-cell contact. We observed that both wild-type virus and a PRV gD null mutant are capable of spreading from axons to closely apposed nonneuronal cells within the rat optic nerve after intravitreal infection. However, infection does not spread from these infected nonneuronal cells. We suggest that viral egress can occur sporadically along the length of infected axons and is not confined solely to axon terminals. Moreover, it is likely that extracellular particles are not involved in nonneuronal cell infections. Taking these together with previous data, we suggest a model of viral egress from neurons that unifies previous apparently contradictory data.  相似文献   

13.
The Us9 gene is highly conserved among the alphaherpesviruses sequenced to date, yet its function remains unknown. In this report, we demonstrate that the pseudorabies virus (PRV) Us9 protein is present in infected cell lysates as several phosphorylated polypeptides ranging from 17 to 20 kDa. Synthesis is first detected at 6 h postinfection and is sensitive to the DNA synthesis inhibitor phosphonoacetic acid. Unlike the herpes simplex virus type 1 Us9 homolog, which was reported to be associated with nucleocapsids in the nuclei of infected cells (M. C. Frame, D. J. McGeoch, F. J. Rixon, A. C. Orr, and H. S. Marsden, Virology 150:321–332, 1986), PRV Us9 localizes to the secretory pathway (predominately to the Golgi apparatus) and not to the nucleus. By fusing the enhanced green fluorescent protein (EGFP) reporter molecule to the carboxy terminus of Us9, we demonstrated that Us9 not only is capable of targeting a Us9-EGFP fusion protein to the Golgi compartment but also is able to direct efficient incorporation of such chimeric molecules into infectious viral particles. Moreover, through protease digestion experiments with Us9-EGFP-containing viral particles, we demonstrated that the Us9 protein is inserted into the viral envelope as a type II, tail-anchored membrane protein.  相似文献   

14.
On entering a host cell, genomic components of human immunodeficiency virus (HIV) are translocated from plasma membrane to cell nucleus where the key events of the infectious process—virus genome integration into cell chromosomes and provirus formation—take place. After provirus expression, viral components move in the opposite direction, i.e., from nucleus to plasma membrane, for virus assembly. HIV translocation is provided by transport machinery of the host cell, which is strictly controlled by viral and cell proteins. Their functional activities are closely interrelated, while their interactions promote recognition and expression of translocation signals. The aim of this review is to consider functional capabilities of one of the main regulatory matrix proteins, MA. This virus-specific protein exhibits membranotropic and nucleophilic activities and controls intracellular movements of HIV throughout its life cycle. A hypothesis on the existence of two forms of MA and their functional roles is proposed. In-depth studies of intracellular targeting of HIV virions may shed additional light on intracellular transport pathways of HIV and identify new targets for anti-HIV drugs.  相似文献   

15.
In the corn smut fungus Ustilago maydis, pathogenic development is initiated when two compatible haploid cells fuse and form the infectious dikaryon. Mating is dependent on pheromone recognition by compatible cells. In this report, we set out to evaluate the relationship between the cell cycle and the pheromone response in U. maydis. To achieve this, we designed a haploid pheromone-responsive strain that is able to faithfully reproduce the native mating response in nutrient-rich medium. Addition of synthetic pheromone to the responsive strain induces the formation of mating structures, and this response is abolished by mutations in genes encoding components of the pheromone signal transduction cascade. After recognition of pheromone, U. maydis cells arrest the cell cycle in a postreplicative stage. Visualization of the nucleus and microtubule organization indicates that the arrest takes place at the G2 phase. Chemical-induced cell cycle arrest and release in the presence of pheromone further support this conclusion.  相似文献   

16.
Coronavirus nucleoproteins (N proteins) localize to the cytoplasm and the nucleolus, a subnuclear structure, in both virus-infected primary cells and in cells transfected with plasmids that express N protein. The nucleolus is the site of ribosome biogenesis and sequesters cell cycle regulatory complexes. Two of the major components of the nucleolus are fibrillarin and nucleolin. These proteins are involved in nucleolar assembly and ribosome biogenesis and act as chaperones for the import of proteins into the nucleolus. We have found that fibrillarin is reorganized in primary cells infected with the avian coronavirus infectious bronchitis virus (IBV) and in continuous cell lines that express either IBV or mouse hepatitis virus N protein. Both N protein and a fibrillarin-green fluorescent protein fusion protein colocalized to the perinuclear region and the nucleolus. Pull-down assays demonstrated that IBV N protein interacted with nucleolin and therefore provided a possible explanation as to how coronavirus N proteins localize to the nucleolus. Nucleoli, and proteins that localize to the nucleolus, have been implicated in cell growth-cell cycle regulation. Comparison of cells expressing IBV N protein with controls indicated that cells expressing N protein had delayed cellular growth. This result could not to be attributed to apoptosis. Morphological analysis of these cells indicated that cytokinesis was disrupted, an observation subsequently found in primary cells infected with IBV. Coronaviruses might therefore delay the cell cycle in interphase, where maximum translation of viral mRNAs can occur.  相似文献   

17.
The molecular mechanisms responsible for long-distance, directional spread of alphaherpesvirus infections via axons of infected neurons are poorly understood. We describe the use of red and green fluorescent protein (GFP) fusions to capsid and tegument components, respectively, to visualize purified, single extracellular virions and axonal assemblies after pseudorabies virus (PRV) infection of cultured neurons. We observed heterogeneity in GFP fluorescence when GFP was fused to the tegument component VP22 in both single extracellular virions and discrete puncta in infected axons. This heterogeneity was observed in the presence or absence of a capsid structure detected by a fusion of monomeric red fluorescent protein to VP26. The similarity of the heterogeneous distribution of these fluorescent protein fusions in both purified virions and in axons suggested that tegument-capsid assembly and axonal targeting of viral components are linked. One possibility was that the assembly of extracellular and axonal particles containing the dually fluorescent fusion proteins occurred by the same process in the cell body. We tested this hypothesis by treating infected cultured neurons with brefeldin A, a potent inhibitor of herpesvirus maturation and secretion. Brefeldin A treatment disrupted the neuronal secretory pathway, affected fluorescent capsid and tegument transport in the cell body, and blocked subsequent entry into axons of capsid and tegument proteins. Electron microscopy demonstrated that in the absence of brefeldin A treatment, enveloped capsids entered axons, but in the presence of the inhibitor, unenveloped capsids accumulated in the cell body. These results support an assembly process in which PRV capsids acquire a membrane in the cell body prior to axonal entry and subsequent transport.  相似文献   

18.
Herpesvirus DNA is packaged into capsids in the nuclei of infected cells in a process requiring at least six viral proteins. Of the proteins required for encapsidation of viral DNA, UL15 and UL28 are the most conserved among herpes simplex virus type 1 (HSV), varicella-zoster virus, and equine herpesvirus 1. The subcellular distribution of the pseudorabies virus (PRV) UL28 protein was examined by in situ immunofluorescence. UL28 was present in the nuclei of infected cells; however, UL28 was limited to the cytoplasm in the absence of other viral proteins. When cells expressing variant forms of UL28 were infected with a PRV UL28-null mutant, UL28 entered the nucleus, provided the carboxyl-terminal 155 amino acids were present. Additionally, PRV UL28 entered the nucleus in cells infected with HSV. Two HSV packaging proteins were tested for the ability to affect the subcellular distribution of UL28. Coexpression of HSV UL15 enabled PRV UL28 to enter the nucleus in a manner that required the carboxyl-terminal 155 amino acids of UL28. Coexpression of HSV UL25 did not affect the distribution of UL28. We propose that an interaction between UL15 and UL28 facilitates the transport of a UL15-UL28 complex to the infected-cell nucleus.  相似文献   

19.
Borna disease virus (BDV) is a nonsegmented, negative-stranded RNA virus characterized by noncytolytic persistent infection and replication in the nuclei of infected cells. To gain further insight on the intracellular trafficking of BDV components during infection, we sought to generate recombinant BDV (rBDV) encoding fluorescent fusion viral proteins. We successfully rescued a virus bearing a tetracysteine tag fused to BDV-P protein, which allowed assessment of the intracellular distribution and dynamics of BDV using real-time live imaging. In persistently infected cells, viral nuclear inclusions, representing viral factories tethered to chromatin, appeared to be extremely static and stable, contrasting with a very rapid and active trafficking of BDV components in the cytoplasm. Photobleaching (fluorescence recovery after photobleaching [FRAP] and fluorescence loss in photobleaching [FLIP]) imaging approaches revealed that BDV components were permanently and actively exchanged between cellular compartments, including within viral inclusions, albeit with a fraction of BDV-P protein not mobile in these structures, presumably due to its association with viral and/or cellular proteins. We also obtained evidence for transfer of viral material between persistently infected cells, with routing of the transferred components toward the cell nucleus. Finally, coculture experiments with noninfected cells allowed visualization of cell-to-cell BDV transmission and movement of the incoming viral material toward the nucleus. Our data demonstrate the potential of tetracysteine-tagged recombinant BDV for virus tracking during infection, which may provide novel information on the BDV life cycle and on the modalities of its interaction with the nuclear environment during viral persistence.  相似文献   

20.
Of 73 wild and domestic mammals tested from an area endemic for pseudorabies in swine, 16 showed natural pseudorabies virus infection, 8 from farms with no pseudorabies history. In transmission experiments with swine and raccoons (Procyon lotor), pseudorabies was not transmitted between raccoons but was transmitted reciprocally between raccoons and swine by contact and when either consumed infected carrion of the other. The fluorescent antibody tissue section test proved valuable in diagnosis of pseudorabies, especially when employed with the virus isolation test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号