首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Cyclic GMP is rapidly formed a few seconds after binding of chemotactic signalling molecules to specific receptors on the cell surface of Dictyostelium amoebae. This phenomenon could be mimicked by addition of a pulse of Ca2+ to permeabilised amoebae. The concentration of Ca2+ for half-maximal response was 60 microM. Other ions (K+, Na+, Mg+ or Mn+) had no effect. A pulse of 5 microM IP3 produced a cyclic GMP response of similar magnitude but IP2 elicited no response. The data provide strong support for the hypothesis that cell surface receptor binding induces cyclic GMP formation by liberating Ca2+ from internal stores.  相似文献   

2.
Signal transduction for chemotaxis in Dictyostelium amoebae   总被引:1,自引:0,他引:1  
The signal for chemotaxis in D. discoideum is cyclic AMP. This molecule binds to cell surface receptors and triggers the production of inositol (1,4,5)trisphosphate which releases Ca2+ from non-mitochondrial stores. The subsequent chain of signal transduction events brings about the polymerization of cytoskeletal actin (associated with pseudopodium formation) within five seconds and the formation of a peak of cyclic GMP within 10 s. Evidence from streamer F mutants indicates that the cyclic GMP regulates the association of myosin with the cytoskeleton that occurs at 25-50 s and that this phenomenon is concerned with elongation of the amoebae during chemotactic movement.  相似文献   

3.
The cell surface cyclic AMP receptor of Dictyostelium discoideum is under study in a number of laboratories with respect to both its role in development of the organism and the physiology of excitation-response coupling. We report here that when starved amoebae are exposed to the chaotrope guanidine hydrochloride at 1.8 M, they shed a particulate cyclic AMP binding activity into the medium. This activity is due to membrane vesicles which originate from the cell surface. The vesicles are enriched up to 150-fold in cyclic AMP binding activity and up to 14-fold in phospholipid content when compared to the starting amoebae. The cyclic AMP binding activity of the membrane vesicles is identical to that of the cell surface receptor with respect to the following properties; (i) it is lacking in preparations from unstarved, vegetative amoebae; (ii) it is not inhibited by cyclic GMP and is stimulated by calcium ions; (iii) it has very rapid rates of association and dissociation of bound cyclic AMP; (iv) it has two classes of binding sites with dissociation constants similar to those of the surface receptors of whole amoebae. The binding activity of the isolated membranes is stable for several days at 4 degrees C and the lower affinity binding sites are stable up to several months when stored at -80 degrees C. Due to enrichment and stability of the receptor in this preparation, it should be highly suitable for many types of studies. The usefulness is enhanced by the fact that the preparation does not contain detectable cyclic AMP phosphodiesterase activity.  相似文献   

4.
Evidence is presented for Ca2+ and cyclic GMP being involved in signal transduction between the cell surface cyclic AMP receptors and cytoskeletal myosin II involved in chemotactic cell movement. Ca2+ is shown to be required for chemotactic aggregation of amoebae. The evidence for uptake and/or eflux of this ion being regulated by the nucleotide cyclic GMP is discussed. The connection between Ca2+, cyclic GMP and chemotactic cell movement has been explored using “streamer F” mutants. The primary defect in these mutants is in the structural gene for the cyclic GMP-specific phosphodiesterase which results in the mutants producing an abnormally prolonged peak of accumulation of cyclic GMP in response to stimulation with the chernoattractant cyclic AMP. While events associated with production and relay of cyclic AMP signals are normal, certain events associated with movement are (like the cyclic GMP response) abnormally prolonged in the mutants. These events include Ca2+ uptake, myosin II association with the cytoskeleton and inhibition of myosin heavy and light chain phosphorylation. These changes can be correlated with the amoebae becoming elongated and transiently decreasing their locomotive speed after chemotactic stimulation. Other mutants studied in which the accumulation of cyclic GMP in response to cyclic AMP stimulation was absent produced no myosin II responses. Models are described in which cyclic GMP (directly or indirectly via Ca2+) regulates accumulation of myosin II on the cytoskeleton by inhibiting phosphorylation of the myosin heavy and light chain kinases.  相似文献   

5.
Activation of surface folate receptors or cyclic AMP (cAMP) receptor (cAR) 1 in Dictyostelium triggers within 5-10 s an influx of extracellular Ca2+ that continues for 20 s. To further characterize the receptor-mediated Ca2+ entry, we analyzed 45Ca2+ uptake in amoebas overexpressing cAR2 or cAR3, cARs present during multicellular development. Both receptors induced a cAMP-dependent Ca2+ uptake that had comparable kinetics, ion selectivity, and inhibitor profiles as folate- and cAR1-mediated Ca2+ uptake. Analysis of mutants indicated that receptor-induced Ca2+ entry does not require G protein alpha subunits G alpha 1, G alpha 2, G alpha 3, G alpha 4, G alpha 7, or G alpha 8. Overexpression of cAR1 or cAR3 in g alpha 2- cells did not restore certain G alpha 2-dependent events, such as aggregation, or cAMP-mediated activation of adenylate and guanylate cyclases, but these strains displayed a cAMP-mediated Ca2+ influx with kinetics comparable to wild-type aggregation-competent cells. These results suggest that a plasma membrane-associated Ca(2+)-influx system may be activated by at least four distinct chemoreceptors during Dictyostelium development and that the response may be independent of G proteins.  相似文献   

6.
This review is concerned with the roles of cyclic GMP and Ca2+ ions in signal transduction for chemotaxis ofDictyostelium. These molecules are involved in signalling between the cell surface cyclic AMP receptors and cytoskeletal myosin II involved in chemotactic cell movement. Evidence is presented for uptake and/or eflux of Ca2+ being regulated by cyclic GMP. The link between Ca2+, cyclic GMP and chemotactic cell movement has been explored using streamer F mutants whose primary defect is in the structural gene for the cyclic GMP-specific phosphodiesterase. This mutation causes the mutants to produce an abnormally prolonged peak of cyclic GMP accumulation in response to stimulation with the chemoattractant cyclic AMP. The production and relay of cyclic AMP signals is normal in these mutants, but certain events associated with movement are (like the cyclic GMP response) abnormally prolonged in the mutants. These events include Ca2+ uptake, myosin II association with the cytoskeleton and regulation of both myosin heavy and light chain phosphorylation. These changes can be correlated with changes in the shape of the amoebae after chemotactic stimulation. Other mutants in which the accumulation of cyclic GMP in response to cyclic AMP stimulation was absent produced no myosin II responses.A model is described in which cyclic GMP (directly or indirectly via Ca2+) regulates accumulation of myosin II on the cytoskeleton by regulating phosphorylation of the myosin heavy and light chain kinases.  相似文献   

7.
During aggregation of Dictyostelium discoideum, amoebae move towards collecting centres emitting cyclic AMP. Previous work has indicated that Ca(2+) can affect the operation of various parts of the chemotactic mechanism but there are contradictory reports about the role or requirement for Ca(2+) during aggregation of intact amoebae. In this study we show that there is a requirement for Ca(2+) during this aggregation process. Addition of EGTA (7 mM) and in some cases extensive washing with EGTA is needed to see inhibition of aggregation. Considerable stores of Ca(2+) present within cells may explain the failure of some previous attempts to see a Ca(2+) requirement during aggregation.  相似文献   

8.
Transport of Ca2+ into amoebae of Dictyostelium discoideum was studied using 45Ca and a lanthanum stopping technique. Ca2 uptake was found to be rapid and showed saturation kinetics. No difference was found in Ca2+ uptake between vegetative and aggregation competent cells, the V(max) for unstimulated amoebae being approx. 10 nmol/10(7) cells per min. Ca2+ uptake had the characteristics of passive facilitated diffusion using a saturatable carrier and NaN3 and ouabain were not inhibitory. The chemoattractants cAMP and folate, previously reported to stimulate the uptake of Ca2+ into amoebae, did not stimulate the rate of Ca2+ uptake by this carrier but increased the extent of Ca2+ taken up over the period 10-30 s after chemotactic stimulation. The significance of these findings for the function of Ca2+ in chemotactic signalling is discussed.  相似文献   

9.
Mutants of Dictyostelium discoideum that developed huge aggregation streams in expanding clones were investigated using optical and biochemical techniques. Representatives of the six complementation groups previously identified (stmA-stmF) were found to be similar to the parental wild-type strain XP55 in both the extent and timing of their ability to initiate and relay chemotactic signals and in the formation of cyclic AMP receptors and phosphodiesterases. The mutants differed from the wild-type in producing an abnormal chemotactic (movement) response visible using both dark-field optics with synchronously aggregating amoebae on solid substrata and light scattering techniques with oxygenated cell suspensions. Mutants of complementation group stmF showed chemotactic movement responses lasting up to 520 s, rather than 100 s as seen in the parental and other strains. Measurements of cyclic GMP formed intracellularly in response to chemotactic pulses of cyclic AMP in stmF mutants showed that abnormally high concentrations of this nucleotide were formed within 10 s and were not rapidly degraded. A causal correlation between defective cyclic GMP metabolism and the altered chemotactic response is suggested, and a model is proposed that accounts for the formation of huge aggregation streams in clones of these mutants.U  相似文献   

10.
We used a Ca++-sensitive electrode to measure changes in extracellular Ca++ concentration in cell suspensions of Dictyostelium discoideum during differentiation and attractant stimulation. The cells maintained an external level of 3-8 microM Ca++ until the beginning of aggregation and then started to take up Ca++. The attractants, folic acid, cyclic AMP, and cyclic GMP, induced a transient uptake of Ca++ by the cells. The response was detectable within 6 s and peaked at 30 s. Half-maximal uptake occurred at 5 nM cyclic AMP or 0.2 microM folic acid, respectively. The apparent rate of uptake amounted to 2 X 10(7) Ca++ per cell per min. Following uptake, Ca++ was released by the cells with a rate of 5 X 10(6) ions per cell per min. Specificity studies indicated that the induced uptake of Ca++ was mediated by cell surface receptors. The amount of accumulated Ca++ remained constant as long as a constant stimulus was provided. No apparent adaptation occurred. The cyclic AMP-induced uptake of Ca++ increased during differentiation and was dependent on the external Ca++ concentration. Saturation was found above 10 microM external Ca++. The time course and magnitude of the attractant-induced uptake of external Ca++ agree with a role of Ca++ during contraction. During development the extracellular Ca++ level oscillated with a period of 6-11 min. The change of the extracellular Ca++ concentration during one cycle would correspond to a 30-fold change of the cellular free Ca++ concentration.  相似文献   

11.
Cyclic AMP (cAMP)is a natural chemoattractant of the social amoeba Dictyostelium discoideum. It is detected by cell surface cAMP receptors. Besides a signalling cascade involving phosphatidylinositol 3,4,5-trisphosphate (PIP3), Ca2+ signalling has been shown to have a major role in chemotaxis. Previously, we have shown that arachidonic acid (AA) induces an increase in the cytosolic Ca2+ concentration by causing the release of Ca2+ from intracellular stores and activating influx of extracellular Ca2+. Here we report that AA is a chemoattractant for D. discoideum cells differentiated for 8-9 h. Motility towards a glass capillary filled with an AA solution was dose-dependent and qualitatively comparable to cAMP-induced chemotaxis. Ca2+ played an important role in AA chemotaxis of wild-type Ax2 as ethyleneglycol-bis(b-aminoethyl)-N,N,N',N'-tetraacetic acid (EGTA) added to the extracellular buffer strongly inhibited motility. In the HM1049 mutant whose iplA gene encoding a putative Ins(1,4,5)P3 -receptor had been knocked out, chemotaxis was only slightly affected by EGTA. Chemotaxis in the presence of extracellular Ca2+ was similar in both strains. Unlike cAMP, addition of AA to a cell suspension did not change cAMP or cGMP levels. A model for AA chemotaxis based on the findings in this and previous work is presented.  相似文献   

12.
In Dictyostelium discoideum amoebae, binding of cyclic AMP (cAMP) to surface receptors elicits numerous responses including chemotaxis, cyclic GMP (cGMP) accumulation, and activation of adenylate cyclase. The specificity of the surface cAMP receptor which mediates activation of adenylate cyclase and cAMP secretion was determined by testing the relative effectiveness of a series of 10 cAMP analogs. Each of the 10 analogs elicited cAMP secretion, chemotaxis, and cGMP accumulation in the same dose range. The order of potency for eliciting these responses (cAMP greater than 2'-H-cAMP greater than N1-O-cAMP greater than cAMPS(Sp) greater than 6-Cl-cAMP greater than cAMPN(CH3)2(Sp) greater than 3'-NH-cAMP greater than 8-Br-cAMP greater than cAMPS(Rp) greater than cAMPN(CH3)2(Rp] matches that for binding to the major cell surface cAMP binding sites and differs from that of the cell surface phosphodiesterase and the major intracellular cAMP binding protein.  相似文献   

13.
Streamer F mutants have been found to be useful tools for studying the pathway of signal transduction leading to chemotactic cell movement. The primary defect in these mutants is in the structural gene for the cyclic GMP specific phosphodiesterase. This defect allows a larger and prolonged peak of cyclic GMP to be formed in response to the chemotactic stimulus, cyclic AMP. This characteristic aberrant pattern of cyclic GMP accumulation in the streamer F mutants has been correlated with similar patterns of changes in the influx of calcium from the medium, myosin II association with the cytoskeleton, myosin phosphorylation and a decrease in speed of movement of the amoebae. From these studies a sequence of events can be deduced that leads from cell surface cyclic AMP stimulation to cell polarization prior to movement of the amoebae in response to the chemotactic stimulus.  相似文献   

14.
The study of cell surface cyclic adenosine 3':5'-monophosphate binding to Dictyostelium discoideum amoebae indicates that Ca2+ increases the number of binding sites without significantly affecting their affinity constant(s). The effects of the ion are observed immediately (within 4 s after addition) and appear to be readily reversible. Ca2+ effects are observed at various temperatures and pH values and are not blocked by the presence of various metabolic inhibitors. Increases, and decreases, in the apparent number of cyclic nucleotide binding sites could also be effected by concanavalin A treatments which respectively stimulate, and inhibit cell differentiation.  相似文献   

15.
Developmental decisions in Dictyostelium discoideum.   总被引:5,自引:0,他引:5       下载免费PDF全文
A few hours after the onset of starvation, amoebae of Dictyostelium discoideum start to form multicellular aggregates by chemotaxis to centers that emit periodic cyclic AMP signals. There are two major developmental decisions: first, the aggregates either construct fruiting bodies directly, in a process known as culmination, or they migrate for a period as "slugs." Second, the amoebae differentiate into either prestalk or prespore cells. These are at first randomly distributed within aggregates and then sort out from each other to form polarized structures with the prestalk cells at the apex, before eventually maturing into the stalk cells and spores of fruiting bodies. Developmental gene expression seems to be driven primarily by cyclic AMP signaling between cells, and this review summarizes what is known of the cyclic AMP-based signaling mechanism and of the signal transduction pathways leading from cell surface cyclic AMP receptors to gene expression. Current understanding of the factors controlling the two major developmental choices is emphasized. The weak base ammonia appears to play a key role in preventing culmination by inhibiting activation of cyclic AMP-dependent protein kinase, whereas the prestalk cell-inducing factor DIF-1 is central to the choice of cell differentiation pathway. The mode of action of DIF-1 and of ammonia in the developmental choices is discussed.  相似文献   

16.
Phosphodiesterase activities of horse (and dog) thyroid soluble fraction were compared with either cyclic AMP (adenosine 3':3'-monophosphate) or cyclic GMP (guanosine 3':5'-monophosphate) as substrate. Optimal activity for cyclic AMP hydrolysis was observed at pH 8, and at pH 7.6 for cyclic GMP. Increasing concentrations of ethyleneglycol bis(2-aminoethyl)-N,N'-tetraacetic acid inhibited both phosphodiesterase activities; in the presence of exogenous Ca2+, this effect was shifted to higher concentrations of the chelator. In a dialysed supernatant preparation, Ca2+ had no significant stimulatory effect, but both Mg2+ and Mn2+ increased cyclic nucleotides breakdown. Mn2+ promoted the hydrolysis of cyclic AMP more effectively than that of cyclic GMP. For both substrates, substrate velocity curves exhibited a two-slope pattern in a Hofstee plot. Cyclic GMP stimulated cyclic AMP hydrolysis, both nucleotides being at micromolar concentrations. Conversely, at no concentration had cyclic AMP any stimulatory effect on cyclic GMP hydrolysis. 1-Methyl-3-isobutylxanthine and theophylline blocked the activation by cyclic GMP of cyclic GMP of cyclic AMP hydrolysis, whereas Ro 20-1724 (4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone), a non-methylxanthine inhibitor of phosphodiesterases, did not alter this effect. In dog thyroid slices, carbamoylcholine, which promotes an accumulation of cyclic GMP, inhibits the thyrotropin-induced increase in cyclic AMP. This inhibitory effect of carbamoylcholine was blocked by theophylline and 1-methyl-3-isobutylxanthine, but not by Ro 20-1724. It is suggested that the cholinergic inhibitory effect on cyclic AMP accumulation is mediated by cyclic GMP, through a direct activation of phosphodiesterase activity.  相似文献   

17.
Evidence is available to suggest that Ca2+-calmodulin and cyclic nucleotides are involved in the regulation of ion transport in rabbit ileum. Since both Ca2+-calmodulin and cyclic nucleotides exert many of their effects by phosphorylation, the effects of Ca2+-calmodulin and cyclic nucleotides on phosphorylation of purified microvillus membrane from rabbit ileal mucosa were evaluated. Ca2+-calmodulin increased phosphorylation of five microvillus-membrane peptides, with Mr values of 137000, 77000, 58000, 53000 and 50000. The increases in phosphorylation caused by Ca2+-calmodulin were: Mr-137000 peptide, 111 +/- 26%; Mr-77000 peptide, 71 +/- 17%; Mr-58000 peptide, 51 +/- 8%; Mr-53000 peptide, 113 +/- 20%. These increases were maximal at 1 microM-calmodulin and 0.3-0.9 microM free Ca2+; concentrations of Ca2+ causing half-maximal effects on phosphorylation for the different peptides were 0.06-0.12 microM. Cyclic AMP and cyclic GMP increased phosphorylation of two peptides, of Mr 137000 and 85000. The concentrations of cyclic nucleotides giving half-maximal phosphorylation of the Mr-137000 peptide were 0.3 microM-cyclic AMP and 4.6 microM-cyclic GMP, and for the Mr-85000 peptide, 3.9 microM-cyclic AMP and 0.05 microM-cyclic GMP. The maximal increase in phosphorylation of the Mr-137000 peptide was 200% for cyclic AMP and 95% for cyclic GMP, and that of the Mr-85000 peptide was 220% for cyclic AMP and 120% for cyclic GMP. These studies demonstrate the existence of Ca2+-calmodulin-, cyclic AMP- and cyclic GMP-dependent protein kinases and substrate proteins in purified rabbit ileal microvillus membranes and that Ca2+ can regulate phosphorylation of these proteins over the presumed physiological concentration range of cytosol free Ca2+.  相似文献   

18.
Cyclic nucleotide phosphodiesterase activity towards cyclic AMP and cyclic GMP was studied in extracts of rat islets of Langerhans. Biphasic Eadie plots [Eadie (1942) J. Biol. Chem. 146, 85-93] were obtained with either substrate suggesting the presence of both 'high'- and 'low'-Km components. The apparent Km values were 6.2 +/- 0.5 (n = 8) microM and 103.4 +/- 13.5 (6) microM for cyclic AMP and 3.6 +/- 0.3 (12) microM and 61.4 +/- 7.5 (13) microM for cyclic GMP. With cyclic AMP as substrate, phosphodeisterase activity was increased by calmodulin and Ca2+ and decreased by trifluoperazine, a specific inhibitor of calmodulin. With cyclic GMP as substrate, phosphodiesterase activity was decreased by omission of Ca2+ or addition of trifluoperazine. Addition of exogenous calmodulin had no effect on activity. The data suggest that Ca2+ may influence the islet content of cyclic AMP and cyclic GMP via effects on calmodulin-dependent cyclic nucleotide phosphodiesterase(s).  相似文献   

19.
The intracellular free calcium concentration, [Ca2+]i, has been measured in dog thyroid cells using the fluorescent Ca2+-indicator, quin2. Acetylcholine or its non-hydrolyzable analog, carbamylcholine rapidly increased [Ca2+]i by 40 +/- 4% (mean +/- SE) over the basal level of 81 +/- 2 nM. This increase was totally abolished by atropine, a muscarinic cholinergic receptor blocker, but was not influenced by verapamil, a voltage dependent-calcium channel blocker. Depletion of extracellular Ca2+ by the addition of EGTA, diminished but did not abolish the response to carbamylcholine. These data suggest that cholinergic effectors increase [Ca2+]i by mobilization of Ca2+ from intracellular stores rather than from an influx of Ca2+. Addition of TSH, isoproterenol, phorbol ester, dibutyryl cyclic GMP or cyclic AMP did not elicit any change in [Ca2+]i suggesting that their action may not involve any mobilization of intracellular Ca2+. These data provide direct evidence that in the thyroid cell, cholinergic agents act via their receptors to cause a rapid increase in [Ca2+]i, which may mediate their metabolic effects.  相似文献   

20.
Aggregation in Dictyostelium discoideum was shown in previous studies employing EGTA to require Ca2+, but the intra- or extracellular site of action of this ion and its role in chemotaxis were not determined [1]. In this investigation we show that the intracellular Ca2+ immobilising agent TMB-8 does not affect binding of the signalling nucleotide, cAMP, to the cell surface receptors but abolishes the rapid accumulation of intracellular cGMP and subsequent chemotactic aggregation. We infer that movement of Ca2+ from membrane-bound stores is triggered by binding of cAMP to the cell-surface receptor and that this plays a primary role in stimulating cGMP formation and chemotaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号