首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two distinct isoforms of a Type II calcium/calmodulin-dependent protein kinase were separated from high-speed supernates (cytosol) of rat neonatal [postnatal day 10 (P10)] and adult [postnatal day 40 (P40)] cerebellum using cation-exchange chromatography. The isoenzymes contained variable amounts of three subunits of apparent Mr's of 50 kDa (alpha), 58 kDa (beta'), and 60 kDa (beta). The specific activity of calmodulin-dependent kinase (CaM kinase II) in crude homogenates increased sixfold between P10 and P40 using exogenous MAP 2 as substrate. Cytosol from cerebellum at P40 contained a predominant isoform (approximately 40% of total cytosolic activity) with a 1:5 molar ratio of alpha:beta',beta subunits that eluted with 150 mM NaCl (designated 150) and a less abundant isoform (approximately 20% of total cytosolic activity) containing a 1:8 molar ratio of alpha:beta',beta subunits that eluted with 350 mM NaCl (designated 350). In neonatal cerebellum at P10, the relative abundance of the two isoforms was reversed such that approximately 50% of the cytosolic calmodulin-dependent kinase activity was recovered in the 350 isoform, whereas only 20% of the total cytosolic kinase activity was recovered in the 150 isoform. Previous studies indicate that cerebellar granule cells may contain an all beta',beta isoform of CaM kinase II that lacks alpha subunit. Thus, to assess the cell-specific localization of kinase isoforms within cerebellum, cytosol prepared from primary cultures of rat cerebellar granule cells was applied to cation-exchange chromatography and analyzed for calmodulin-dependent kinase activity. The cells contained both isoforms of the kinase that were present in fresh tissue suggesting that granule cell-enriched cultures express all three kinase subunits. The data demonstrate that rat cerebellum contains unique mixtures of CaM kinase II isoenzymes and that their expression is developmentally regulated.  相似文献   

2.
3.
Replication-dependent H3.1 and H3.2 histones are encoded by 11 genes. The H3 mRNA levels in brain astrocytomas using real-time RT-PCR assay was examined. The sequence of primers and probe used in amplification was designed basing on the reference sequence GenBank accession no. The H3 mRNA levels correlated with tumor grade (R=0.56, P=0.0012), Ki-67 proliferative antigen labeling index (R=0.58, P=0.0008) and patient survival time (R=-0.50, P=0.005), discriminating low-grade and high-grade tumors. Quantification of H3 mRNA with real-time RT-PCR using the proposed pair of primers may supplement classic proliferative tests and predictive factors in brain astrocytomas.  相似文献   

4.
Summary The expression of epidermal growth factor receptor (EGFR) was determined in cryosections of 42 human gliomas using biotinylated epidermal growth factor (B-EGF) and two monoclonal antibodies (mAb) against EGFR. All gliomas were found to express EGFR when examined with B-EGF, whereas 33 expressed EGFR when examined with the two mAbs. The highly malignant gliomas (glioblastomas and anaplastic astrocytomas) had a more heterogeneous staining pattern and a larger proportion of tumour cells staining strongly with B-EGF than did the low-grade gliomas (astrocytomas, oligodendrogliomas, mixed gliomas, and ependymomas). This indicates that high-grade gliomas contain more tumour cells rich in EGFR than do the low-grade gliomas. Reactive astrocytes, ependymal cells, and many types of nerve cells (cerebral cortical pyramidal cells, pyramidal and granular hippocampal cells, Purkinje cells, cerebellar granular cells and neurons in the molecular layer of the cerebellum) expressed EGFR, whereas small neurons and normal glial cells were not found to express EGFR.  相似文献   

5.
Summary 1. Cellular expression and distribution of the stress response small heat shock protein 27 (hsp27) in 39 high-grade astrocytomas (27 glioblastoma multiformes, 12 anaplastic astrocytomas) and in 27 low-grade astrocytomas (grade I–II) were analyzed immunohistochemically.2. The correlation between hsp27 expression and tumor growth fractions of the astrocytomas was examined following Ki-67 immunostaining.3. The hsp27 staining was cell cytoplasmic. The hsp27 immunopositive rate was significantly higher in high-grade astrocytomas; the rates were 74% for glioblastomas, 58% for anaplastic astrocytomas, and 37% for low-grade astrocytomas. The small and large tumor cells, especially in glioblastomas, multinucleated tumor giant cells, tumor cells in the pseudopalisading and necrotic areas, cells of the microvascular endothelial proliferations, and tumor vascular smooth muscles were usually hsp27 positive. The mean percentage of hsp27-positive cells was significantly higher in the glioblastomas alone and in the combined high-grade astrocytomas, compared to the low-grade, and in recurrent rather than in primary high-grade astrocytomas.4. The high-grade astrocytomas had a highly statistical significant Ki-67 labeling index. The Ki-67 labeling indices were significantly higher in the hsp27-positive than the hsp27-negative astrocytomas, irrespective of the histological grade. In the high-grade astrocytomas with a Ki-67 labeling index of five and above, 81% of those tumors were hsp27 positive.5. Thus, a large number of human astrocytomas express hsp27, and hsp27 expression correlates with histological grades of astrocytoma and with tumor growth fractions. This being the case, hsp27 is likely to have a role in the growth of human astrocytomas.  相似文献   

6.
Receptor tyrosine kinase aberrations are implicated in the genesis of gliomas. We investigated expression and amplification of KIT, PDGFRA, VEGFR2, and EGFR in 87 gliomas consisting of astrocytomas, anaplastic astrocytomas, oligodendrogliomas, or oligoastrocytomas in tumor samples collected at the time of the diagnosis and in samples of the same tumors at tumor recurrence. Gene amplifications were investigated using either chromogenic in situ hybridization or fluorescence in situ hybridization, and protein expression using immunohistochemistry. In samples collected at glioma diagnosis, KIT and PDGFRA amplifications were more frequent in anaplastic astrocytomas than in astrocytomas, oligodendrogliomas, and oligoastrocytomas [28% versus 5% (P = 0.012) and 33% versus 2% (P = 0.0008), respectively]. VEGFR2 amplifications occurred in 6% to 17% of the gliomas at diagnosis, and EGFR amplifications in 0% to 12%. Amplified KIT was more frequently present in recurrent gliomas than in newly diagnosed gliomas (P = 0.0066). KIT amplification was associated with KIT protein expression and with presence of PDGFRA and EGFR amplifications both at the time of the first glioma diagnosis and at tumor recurrence, and with VEGFR2 amplification at tumor recurrence. Three (4%) primary gliomas and 10 (14%) recurrent gliomas that were evaluable for coamplification of KIT, PDGFRA, and VEGFR2 showed amplification of at least two of these genes; the amplicon contained amplified KIT in all 13 cases. In conclusion, besides glioblastoma, amplified KIT, PDGFRA, and VEGFR may also occur in lower-grade gliomas and in their recurrent tumors. It is currently not known whether specific tyrosine kinase inhibitors are effective in the treatment of such gliomas.  相似文献   

7.
Tyrosine protein kinase present in the membrane fraction of bovine cerebral cortex were extracted and chromatographically fractionated. The activity associated with tyrosine protein kinases was fully extracted from the membranes by 1% sodium cholate and eluted in two peaks (I and II) during chromatography of protein extracts on DEAE-Toyopearl in the presence of sodium cholate. The predominant in cerebral cortex membrane tyrosine protein kinase of peak I (about 75% of the total activity) was purified 1930-fold by gel filtration on Sephacryl S-300, chromatography on hexyl- and phenyl-Sepharose and by rechromatography on DEAE-Toyopearl. The amount of the enzyme prepared from 250 g of bovine brain was 20 micrograms, the enzyme yield and specific activity being 3.8% and 3.9 nmol/mg protein/min, respectively. The purified protein kinase of peak I represents a protein with Mr of 62-63,000 (p62) capable of being autophosphorylated in the presence of [gamma-32P]. Protein kinase p62 phosphorylates enolase, tubulin and calpactin I as well as model substrates in the series: histone H5 greater than poly(G, T)n greater than or equal to histone H2A greater than poly(G, A, T)n, histone H4 greater than caseins, histones H1 and H2B, poly(G, A, L, T)n. The enzyme is specific for Mn2+ at the optimal concentration about 1 mM. The KmMn-ATP is 0.3 microM; Km for histone H5 and poly(G, T)n are 0.45 mg/ml and 0.06 mg/ml, respectively. The protein kinase p62 activity is inhibited by NaCl (IC50 approximately 75-100 mM) as well as by quercetin, adriamycin and lasalocid (IC50 approximately 14-34, 23 and 90 microM, respectively). It is concluded that protein kinase p62 is analogous to the c-src gene protein kinase.  相似文献   

8.
The presence and subcellular localization of the Ca2+-dependent protein kinase C (PKC) isoforms and were investigated in freshly isolated adult rat cardiac ventricular myocytes. PKC activity was measured in cytosolic and particulate fractions prepared from control myocytes and those treated with either phorbol ester (phorbol 12-myristate 13-acetate, PMA) or a permeant synthetic diacylglycerol analog (1-oleoyl-2-acetylglycerol, OAG) in the absence or presence of an inhibitor of diacylglycerol kinase activity, compound R59022. Preliminary studies detected no Ca2+-/phospholipid-dependent histone kinase activity in either subcellular fraction. To reproducibly observe Ca2+-/phospholipid-dependent protein kinase activity, partial purification using a MonoQ HR 5/5 column and the presence of the peptide inhibitor of the cAMP-dependent protein kinase were essential. MonoQ chromatography of cytosolic and particulate fractions resulted in three peaks of Ca2+/phospholipid-dependent protein kinase activity. In the cytosolic fraction a large peak of activity eluted at 230-300 mM NaCl. Isoform-specific antisera indicated both PKC and PKC were present. In the particulate fraction two peak of Ca2+-/phospholipid-dependent protein kinase activity, both containing PKCa immunoreactivity, were observed. The larger peak eluted at 230-300 mM NaCl. In addition, a peak eluting at lower salt concentrations contained a Ca2+-/phospholipid-independent histone kinase activity. This peak of kinase activity contained PKC immunoreactive bands of 80- and 50-kDa. The 80-kDa band was the holoenzyme of PKC whereas the band of lower molecular mass was likely a proteolytic fragment. In both cytosolic and particulate fractions, the peak of kinase activity eluting at 230-300 mM NaCl contained PKC in the form of an 80-kDa doublet; this suggested the presence of autophosphorylated PKC. Incubation of the myocytes with PMA, but not OAG, resulted in translocation of PKC from the cytosolic to the particulate fraction. Curiously, a transient decrease in PKC activity was observed in both subcellular fractions following treatment with either OAG or ethanol (1%). Results from this study show that freshly isolated adult rat cardiac ventricular myocytes contain both PKC and PKC, and that these isoforms translocate to the particulate fraction in response to treatment with PMA, but not OAG. (Mol Cell Biochem 166: 11-23, 1997)  相似文献   

9.
Aurora A is critical for mitosis and is overexpressed in several neoplasms. Its overexpression transforms cultured cells, and both its overexpression and knockdown cause genomic instability. In transgenic mice, Aurora A haploinsufficiency, not overexpression, leads to increased malignant tumor formation. Aurora A thus appears to have both tumor-promoting and tumor-suppressor functions. Here, we report that Aurora A protein, measured by quantitative protein gel blotting, is differentially expressed in major glioma types in lineage-specific patterns. Aurora A protein levels in WHO grade II oligodendrogliomas (n = 16) and grade III anaplastic oligodendrogliomas (n = 16) are generally low, similar to control epilepsy cerebral tissue (n = 11). In contrast, pilocytic astrocytomas (n = 6) and ependymomas (n = 12) express high Aurora A levels. Among grade II to grade III astrocytomas (n = 7, n = 14, respectively) and grade IV glioblastomas (n = 31), Aurora A protein increases with increasing tumor grade. We also found that Aurora A expression is induced by hypoxia in cultured glioblastoma cells and is overexpressed in hypoxic regions of glioblastoma tumors. Retrospective Kaplan-Meier analysis revealed that both lower Aurora A protein measured by quantitative protein gel blot (n = 31) and Aurora A mRNA levels measured by real-time quantitative RT-PCR (n = 58) are significantly associated with poorer patient survival in glioblastoma. Furthermore, we report that the selective Aurora A inhibitor MLN8237 is potently cytotoxic to glioblastoma cells, and that MLN8237 cytotoxicty is potentiated by ionizing radiation. MLN8237 also appeared to induce senescence and differentiation of glioblastoma cells. Thus, in addition to being significantly associated with survival in glioblastoma, Aurora A is a potential new drug target for the treatment of glioblastoma and possibly other glial neoplasms.  相似文献   

10.
Glial tumours are the most common type of brain neoplasm in humans. Tumour classification and grading represent key factors for patient management. However, current grading schemes are still limited by subjective histological criteria. In this context, gliosis has been linked to increases in monoamine oxidase B (MAO-B) activity. Thus, in the present study, MAO-B activity in membranes of glial tumours (n=20), meningiomas (n=12) and non-pathological human brains (n=15) was quantified by [14C]PEA oxidation. MAO-B activity was significantly greater in glioblastoma multiformes than in postmortem control brains (p<0.01) or meningiomas (p<0.001). There were no significant differences in MAO-B activity between glioblastoma multiformes (n=11) and low-grade astrocytomas (n=3) or anaplastic astrocytomas (n=6). In conclusion, the present results demonstrate a significant and selective increase in MAO-B activity in human gliomas when compared with meningiomas or non-tumoural tissue. These results suggest that the quantification of MAO-B activity may be a useful diagnostic tool for differentiating glial tumours from other types of brain tumours or surrounding normal brain tissue.  相似文献   

11.
We employed the calcium (Ca++)-sensitive, intracellular dye QUIN-2 to examine the role of cytosolic Ca++ in the stimulation of PTH release by high extracellular potassium (K+) concentrations. Addition of 55 mM KCl to cells incubated with 115 mM NaCl and 5 mM KCl lowered cytosolic Ca++ at either low (0.5 mM) extracellular Ca++ (from 194±14 to 159±9 nM, p<.01, N=6) or high (1.5 mM) extracellular calcium (from 465±38 to 293±20 nM, p<.01, N=10). This reduction in cytosolic Ca++ was due to high K+perse and not to changes in tonicity since addition of 55 mM NaCl was without effect while a similar decrease in cytosolic Ca++ occurred when cells were resuspended in 60 mM NaCl and 60 mM KCl. PTH release was significantly (p<.01) greater at 0.5 and 1.5 mM Ca++ in QUIN-2-loaded cells incubated with 60 mM NaCl and 60 mM KCl than in those exposed to 115 mM NaCl and 5 mM KCl. In contrast to most secretory cells, therefore, stimulation of PTH release by high K+ is associated with a decrease rather than an increase in cytosolic Ca++.  相似文献   

12.
A human erythrocyte cytosolic phosphatidylinositol-4-phosphate 5-kinase (PIP kinase) and a membrane-bound PIP kinase have been purified by phosphocellulose chromatography. Fractionation of the membrane-bound PIP kinase activities by phosphocellulose separated activity into two peaks, which eluted at 0.6 M NaCl (type I PIP kinase) and 1.0 M NaCl (type II PIP kinase). The cytosolic PIP kinase and the membrane-bound type II PIP kinase are 53 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, have indistinguishable 125I-peptide maps, and are immunochemically indistinguishable, suggesting that they are sequence identical. Antibodies raised to the cytosolic PIP kinase inhibit activity of both the membrane-bound type II and the cytosolic PIP kinases. The type I PIP kinase appears to be distinct from the cytosolic and membrane-bound type II PIP kinase; it is not immunocross-reactive, and antibodies toward type II PIP kinases do not inhibit type I PIP kinase. Further, membrane-bound type II PIP kinase can be removed from type I PIP kinase without loss of activity. Functional characterization of the PIP kinases demonstrates that the type I kinase has a 10-fold lower Km for PIP and a 5-fold higher Km for ATP compared with the type II enzymes. The type I and type II (membrane-bound or cytosolic) PIP kinases are modulated differentially by spermine and heparin. Finally, the type I PIP kinase phosphorylates intrinsic PIP on isolated erythrocyte membranes, whereas the type II PIP kinases have no activity toward native membranes.  相似文献   

13.
An analysis of the effects of polyamines on protein phosphorylation in cytosolic fractions of the pupal brain of Manduca sexta showed that spermine elicited an increase in casein phosphorylation in a dose-dependent manner (maximum three- to fourfold at 2.0 mM), whereas spermidine was less effective and putrescine was without effect. In contrast, with phosvitin as the exogenous substrate, higher doses of polyamines, especially spermine, inhibited phosphorylation. High salt conditions abolished the polyamine response. Cytosol protein kinase activity eluted from DEAE-cellulose at 0.2-0.3 M NaCl. This activity was enhanced in the presence of spermine, and inhibited in the presence of heparin (IC50 approximately equal to 30 ng/ml). The enzyme was characterized by a sedimentation coefficient of 6.5S, and a Stokes radius of 49 A, consistent with a Mr of 130,000. Both GTP (Km, 55 microM) and ATP (Km, 34 microM) were utilized as phosphoryl donors (Vmax for ATP being four-fold higher than that observed for GTP). These results indicate the presence in the insect brain of an enzyme very similar to vertebrate casein kinase II. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography demonstrated that low concentrations of spermine (100 microM) strongly enhanced the phosphorylation of three high-molecular-weight cytosolic proteins (305,000, 340,000, and 360,000) localized in the insect nervous system.  相似文献   

14.

Background

Functional magnetic resonance imaging (fMRI) continues to develop as a clinical tool for patients with brain cancer, offering data that may directly influence surgical decisions. Unfortunately, routine integration of preoperative fMRI has been limited by concerns about reliability. Many pertinent studies have been undertaken involving healthy controls, but work involving brain tumor patients has been limited. To develop fMRI fully as a clinical tool, it will be critical to examine these reliability issues among patients with brain tumors. The present work is the first to extensively characterize differences in activation map quality between brain tumor patients and healthy controls, including the effects of tumor grade and the chosen behavioral testing paradigm on reliability outcomes.

Method

Test-retest data were collected for a group of low-grade (n = 6) and high-grade glioma (n = 6) patients, and for matched healthy controls (n = 12), who performed motor and language tasks during a single fMRI session. Reliability was characterized by the spatial overlap and displacement of brain activity clusters, BOLD signal stability, and the laterality index. Significance testing was performed to assess differences in reliability between the patients and controls, and low-grade and high-grade patients; as well as between different fMRI testing paradigms.

Results

There were few significant differences in fMRI reliability measures between patients and controls. Reliability was significantly lower when comparing high-grade tumor patients to controls, or to low-grade tumor patients. The motor task produced more reliable activation patterns than the language tasks, as did the rhyming task in comparison to the phonemic fluency task.

Conclusion

In low-grade glioma patients, fMRI data are as reliable as healthy control subjects. For high-grade glioma patients, further investigation is required to determine the underlying causes of reduced reliability. To maximize reliability outcomes, testing paradigms should be carefully selected to generate robust activation patterns.  相似文献   

15.
16.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) between cytosol and membrane fractions was examined in bovine adrenal glomerulosa cells treated with angiotensin II or potassium. Protein kinase C was isolated from cytosol and from detergent-solubilized particulate fractions by DEAE-cellulose chromatography. A major peak of activity for both the soluble and particulate forms of adrenal glomerulosa protein kinase C was eluted at 0.05-0.09 M NaCl. The soluble and particulate forms were found to constitute about 95 and 5%, respectively, of the total enzyme activity in unstimulated cells. A second peak of kinase activity was eluted with 0.15-0.19 M NaCl, which was not dependent on the presence of phospholipids. Exposure of isolated cells for 20 min to 10(-8) M angiotensin II resulted in a decrease in cytosolic activity to 30-40% of control values, and in a corresponding increase in protein kinase C activity associated with the particulate fraction. This hormone-induced redistribution was found to be dose-dependent with an ED50 of 2 nM for angiotensin II, and it occurred rapidly, reaching a plateau within 5-10 min. It was prevented by the specific antagonist [Sar1,Ala8]angiotensin II. By contrast, stimulation with 12 mM KCl did not change the subcellular distribution of protein kinase C activity. These results suggest that redistribution of protein kinase C represents an early step in the post-receptor activation cascade following angiotensin II, but not potassium stimulation of adrenal glomerulosa cells.  相似文献   

17.
Cyclic AMP-dependent protein kinase of Neurospora crassa   总被引:3,自引:0,他引:3  
Neurosporacrassa was surveyed for cyclic AMP-dependent protein kinase activity. Two peaks (I and II) of protein kinase activity were demonstrated by DEAE-cellulose chromatography of wild type Neurospora extracts. Peak I was stimulated by cyclic AMP, eluted below 60 mM NaCl and had high activity using histone H2B as substrate. Peak II eluted at 200–250 mM NaCl; its activity was not cyclic AMP stimulated and was highest with dephosphorylated casein as a substrate. Cyclic AMP binding to a protein associated with the protein kinase is specifically inhibited by certain cyclic AMP analogs.  相似文献   

18.
S. Sato, Y. Sato, K. Marutsuka, H. Takeshima and Y. Asada Characteristics of tumour vessels in cytological squash smears of astrocytic tumours Objective: Smear preparations are useful tools from which to diagnose brain tumours intraoperatively. Although vascular proliferation is histologically a key feature of high‐grade astrocytoma, the characteristics of tumour vessels in smear preparations have not been determined. Methods: We examined the density and morphological parameters (area, width, nuclear layer and branches of vessel wall) of tumour vessels in squash smears of 43 primary astrocytomas (grade II diffuse astrocytomas, n = 9; grade III anaplastic astrocytomas, n = 13; grade IV glioblastomas, n = 21) and normal brain tissues (n = 11). Results: Vessel density and all morphological parameters were significantly higher in grade IV than in the other grades of tumours and in normal brain tissue. Vessel area, width and nuclear layer were greater in grade III than in normal brain tissue. The sensitivity and specificity of these vessel parameters for astrocytomas were 75–100% and 82–100%, respectively. Conclusions: Tumour vessel evaluations from squash smears provide useful information for the intraoperative diagnosis and grading of astrocytic tumours.  相似文献   

19.
Gliomas, the most frequent tumors originating in the human nervous system, are divided into various subtypes. Currently, microscopic examination alone is insufficient for classification and grading so that genetic profiles are increasingly being emphasized in recognition of the emerging role of molecular diagnostic approaches to glioma classification. Glioblastomas (WHO grade IV) may develop de novo (primary glioblastomas) or through progression from lower-grade astrocytomas (secondary glioblastomas), while both glioblastomas show similar histological features. In contrast, they do constitute distinct disease entities that evolve through different genetic pathways, and are likely to differ in prognosis and response to therapy. Oligodendrogliomas (WHO grade II) account for 2.7% of brain tumors and 5-18% of all gliomas. Since this tumor is recognized as a particular subtype of glioma that shows remarkable responses to chemotherapy, a correct diagnosis is of prime importance. The difficulty is that histological differentiation of oligodendrogliomas from diffuse astrocytomas is highly subjective in cases without typical morphological features and there is a lack of reliable immunohistochemical markers. While histological distinction of low-grade gliomas from reactive astrocytes is also often difficult, reactive astrocytes usually lack genetic alterations. More biological and molecular approaches to glioma classification thus appear warranted to provide improved means to achieve correct diagnoses.  相似文献   

20.
Diffuse infiltrating gliomas are the most common tumors of the central nervous system. Gliomas are classified by the WHO according to their histopathological and clinical characteristics into four classes: grade I (pilocytic astrocytoma), grade II (diffuse astrocytoma), grade III (anaplastic astrocytoma), and grade IV (glioblastoma multiforme). Several genes have already been correlated with astrocytomas, but many others are yet to be uncovered. By analyzing the public SAGE data from 21 patients, comprising low malignant grade astrocytomas and glioblastomas, we found COL6A1 to be differentially expressed, confirming this finding by real time RT-PCR in 66 surgical samples. To the best of our knowledge, COL6A1 has never been described in gliomas. The expression of this gene has significantly different means when normal glia is compared with low-grade astrocytomas (grades I and II) and high-grade astrocytomas (grades III and IV), with a tendency to be greater in higher grade samples, thus rendering it a powerful tumor marker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号