首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The organizational relationship between the recently identified alpha 3 chain of basement membrane collagen (Butkowski, R.J., Langeveld, J.P.M., Wieslander, J., Hamilton, J., and Hudson, B.G. (1987) J. Biol. Chem. 262, 7874-7877) and collagen IV was determined. This was accomplished by the identification of subunits in hexamers of the NC1 domain of collagen IV that were immunoprecipitated with antibodies prepared against subunits M1, corresponding to alpha 1(IV)NC1 and alpha 2(IV)NC1, and M2, corresponding to alpha 3NC1, and by amino acid sequence analysis. The presence of at least two distinct types of hexamers was revealed, one enriched in M1 and the other enriched in M2, but in both types, M1 and M2 coexist. Evidence was also obtained for the existence of heterodimers comprised of M1 and M2. These results indicate that M2 is an integral component of the NC1 hexamer of collagen IV. The amino acid sequence of the NH2-terminal region of M2 was found to be highly related to the collagenous-NC1 junctional region of the alpha 1 chain of collagen IV. Therefore, M2 is designated alpha 3(IV)NC1 and its parent chain alpha 3(IV). These findings lead to a new concept about the structure of collagen IV: namely, 1) collagen IV is comprised of a third chain (alpha 3) together with the two classical ones (alpha 1 and alpha 2); the alpha 3(IV) chain exists within the same triple-helical molecule together with the alpha 1(IV) and alpha 2(IV) chains and/or within a separate triple-helical molecule, exclusive of alpha 1(IV) and alpha 2(IV) chains, but connected through the NC1 domains to the classical triple-helical molecule comprised of alpha 1(IV) and alpha 2(IV) chains. Additionally, a portion of those triple-helical molecules exclusive of alpha 1(IV) and alpha 2(IV) chains may be connected to each other through their NC1 domains; and 3) the epitope to which the major reactivity of autoantibodies are targeted in glomerular basement membrane in patients with Goodpasture syndrome is localized to the NC1 domain of the alpha 3(IV) chain.  相似文献   

2.
We have determined the nucleotide and amino acid sequences of mouse alpha 2(IV) collagen which is 1707 amino acids long. The primary structure includes a putative 28-residue signal peptide and contains three distinct domains: 1) the 7 S domain (residues 29-171), which contains 5 cysteine and 8 lysine residues, is involved in the cross-linking and assembly of four collagen IV molecules; 2) the triple-helical domain (residues 172-1480), which has 24 sequence interruptions in the Gly-X-Y repeat up to 24 residues in length; and 3) the NC1 domain (residues 1481-1707), which is involved in the end-to-end assembly of collagen IV and is the most highly conserved domain of the protein. Alignment of the primary structure of the alpha 2(IV) chain with that of the alpha 1(IV) chain reported in the accompanying paper (Muthukumaran, G., Blumberg, B., and Kurkinen, M. (1989) J. Biol. Chem. 264, 6310-6317) suggests that a heterotrimeric collagen IV molecule contains 26 imperfections in the triple-helical domain. The proposed alignment is consistent with the physical data on the length and flexibility of collagen IV.  相似文献   

3.
The autoantibodies of patients with Goodpasture syndrome are primarily targeted to the noncollagenous (NC1) domain of the alpha 3(IV) chain of basement membrane collagen (Saus, J., Wieslander, J., Langeveld, J. P. M., Quinones, S., and Hudson, B. G. (1988) J. Biol. Chem. 263, 13374-13380). In the present study, the location of the Goodpasture epitope in human alpha 3NC1 was determined, and its structure was partially characterized. This was achieved by identification of regions of alpha 3NC1 which are candidates for the epitope and which are structurally unique among the five known homologous NC1 domains (alpha 1-alpha 5); amino acids that are critical for Goodpasture antibody binding, by selective chemical modifications; and regions that are critical for Goodpasture antibody binding, by synthesis of 12 alpha 3NC1 peptides and measurement of their antibody binding capacity. The carboxyl-terminal region, residues 198-233, was identified as the most likely region for the epitope. By experiment, lysine and cysteine were identified as critical amino acids for antibody binding. Three synthetic peptides were found to inhibit Goodpasture antibody binding to alpha 3NC1 markedly: a 36-mer (residues 198-233), a 12-mer (residues 222-233), and a 5-mer (residues 229-233). Together, these results strongly indicate that the Goodpasture epitope is localized to the carboxyl-terminal region of alpha 3NC1, encompassing residues 198-233 as the primary antibody interaction site and that its structure is discontinuous. These findings provide a conceptual framework for future studies to elucidate a more complete epitope structure by sequential replacement of residues encompassing the epitope using cDNA expression products and peptides synthesized chemically.  相似文献   

4.
Goodpasture's (GP) disease is caused by autoantibodies that target the alpha3(IV) collagen chain in the glomerular basement membrane (GBM). Goodpasture autoantibodies bind two conformational epitopes (E(A) and E(B)) located within the non-collagenous (NC1) domain of this chain, which are sequestered within the NC1 hexamer of the type IV collagen network containing the alpha3(IV), alpha4(IV), and alpha5(IV) chains. In this study, the quaternary organization of these chains and the molecular basis for the sequestration of the epitopes were investigated. This was accomplished by physicochemical and immunochemical characterization of the NC1 hexamers using chain-specific antibodies. The hexamers were found to have a molecular composition of (alpha3)(2)(alpha4)(2)(alpha5)(2) and to contain cross-linked alpha3-alpha5 heterodimers and alpha4-alpha4 homodimers. Together with association studies of individual NC1 domains, these findings indicate that the alpha3, alpha4, and alpha5 chains occur together in the same triple-helical protomer. In the GBM, this protomer dimerizes through NC1-NC1 domain interactions such that the alpha3, alpha4, and alpha5 chains of one protomer connect with the alpha5, alpha4, and alpha3 chains of the opposite protomer, respectively. The immunodominant Goodpasture autoepitope, located within the E(A) region, is sequestered within the alpha3alpha4alpha5 protomer near the triple-helical junction, at the interface between the alpha3NC1 and alpha5NC1 domains, whereas the E(B) epitope is sequestered at the interface between the alpha3NC1 and alpha4NC1 domains. The results also reveal the network distribution of the six chains of collagen IV in the renal glomerulus and provide a molecular explanation for the absence of the alpha3, alpha4, alpha5, and alpha6 chains in Alport syndrome.  相似文献   

5.
We have isolated and characterized overlapping cDNA clones which code for a previously unidentified human collagen chain. Although the cDNA-derived primary structure of this new polypeptide is very similar to the basement membrane collagen alpha 1(IV) and alpha 2(IV) chains, the carboxyl-terminal collagenous/non-collagenous junction sequence does not correspond to the junction sequence in either of the newly described alpha 3(IV) or alpha 4(IV) chains (Butkowski, R.J., Langeveld, J.P.M., Wieslander, J., Hamilton, J., and Hudson, B. G. (1987) J. Biol. Chem. 262, 7874-7877). Thus the protein presented here has been designated the alpha 5 chain of type IV collagen. Four clones encode an open reading frame of 1602 amino acids that cover about 95% of the entire chain including half of the amino-terminal 7S domain and all of the central triple-helical region and carboxyl-terminal NC1 domain. The collagenous region of the alpha 5(IV) chain contains 22 interruptions which are in most cases identical in distribution to those in both the alpha 1(IV) and alpha 2(IV) chains. Despite the relatively low degree of conservation among the amino acids in the triple-helical region of the three type IV collagen chains, analysis of the sequences clearly showed that alpha 5(IV) is more related to alpha 1(IV) than to alpha 2(IV). This similarity between the alpha 5(IV) and alpha 1(IV) chains is particularly evident in the NC1 domains where the two polypeptides are 83% identical in contrast to the alpha 5(IV) and alpha 2(IV) identity of 63%. In addition to greatly increasing the complexity of basement membranes, the alpha 5 chain of type IV collagen may be responsible for specialized functions of some of these extracellular matrices. In this regard, it is important to note that we have recently assigned the alpha 5(IV) gene to the region of the X chromosome containing the locus for a familial type of hereditary nephritis known as Alport syndrome (Myers, J.C., Jones, T.A., Pohjalainen, E.-R., Kadri, A.S., Goddard, A.D., Sheer, D., Solomon, E., and Pihlajaniemi, T. (1990) Am. J. Hum. Genet. 46, 1024-1033). Consequently, the newly discovered alpha 5(IV) collagen chain may have a critical role in inherited diseases of connective tissue.  相似文献   

6.
A third chain, alpha 3(IV), of basement membrane collagen was recently discovered and was identified as the primary target for the autoantibodies of patients with Goodpasture syndrome (Saus, J., Wieslander, J., Langeveld, J. P. M., Quinones, S., and Hudson, B. G. (1988) J. Biol. Chem. 263, 13374-13380). In the present study, this chain was excised in the form of a truncated promoter by cleavage of basement membrane with Pseudomonas aeruginosa elastase and characterized. The triple helical structure and NC1 domain were retained. Elastase selectively cleaved at a site within the triple helical domain of the alpha 3 chain that is distinct from the cleavage site of the alpha 1 and alpha 2 chains. The truncated alpha 3 chain was found to contain 1460 residues, of which 1225 comprise the collagenous domain, and is cross-linked within this domain by disulfide bonds, forming a high Mr complex (greater than 300,000). Truncated protomers with a length of 340 nm corresponding to the theoretical length for the truncated alpha 3 chain were observed by electron microscopy as suprastructures in which the triple helical domains of three protomers were interwined. These protomers were also connected to each other and to the 140-nm protomers that appear to be comprised of the alpha 1 and alpha 2 chains. These results extended the known length of the alpha 3 chain by about 1000 residues and suggested that protomers of this chain self-associate through interactions between their triple helical domains and between their NC1 domains.  相似文献   

7.
The Goodpasture (GP) autoantigen has been identified as the alpha3(IV) collagen chain, one of six homologous chains designated alpha1-alpha6 that comprise type IV collagen (Hudson, B. G., Reeders, S. T., and Tryggvason, K. (1993) J. Biol. Chem. 268, 26033-26036). In this study, chimeric proteins were used to map the location of the major conformational, disulfide bond-dependent GP autoepitope(s) that has been previously localized to the noncollagenous (NC1) domain of alpha3(IV) chain. Fourteen alpha1/alpha3 NC1 chimeras were constructed by substituting one or more short sequences of alpha3(IV)NC1 at the corresponding positions in the non-immunoreactive alpha1(IV)NC1 domain and expressed in mammalian cells for proper folding. The interaction between the chimeras and eight GP sera was assessed by both direct and inhibition enzyme-linked immunosorbent assay. Two chimeras, C2 containing residues 17-31 of alpha3(IV)NC1 and C6 containing residues 127-141 of alpha3(IV)NC1, bound autoantibodies, as did combination chimeras containing these regions. The epitope(s) that encompasses these sequences is immunodominant, showing strong reactivity with all GP sera and accounting for 50-90% of the autoantibody reactivity toward alpha3(IV)NC1. The conformational nature of the epitope(s) in the C2 and C6 chimeras was established by reduction of the disulfide bonds and by PEPSCAN analysis of overlapping 12-mer peptides derived from alpha1- and alpha3(IV)NC1 sequences. The amino acid sequences 17-31 and 127-141 in alpha3(IV)NC1 have thus been shown to contain the critical residues of one or two disulfide bond-dependent conformational autoepitopes that bind GP autoantibodies.  相似文献   

8.
Goodpasture (GP) disease is an autoimmune disorder in which autoantibodies against the alpha3(IV) chain of type IV collagen bind to the glomerular and alveolar basement membranes, causing progressive glomerulonephritis and pulmonary hemorrhage. Two major conformational epitope regions have been identified on the noncollagenous domain of type IV collagen (NC1 domain) of the alpha3(IV) chain as residues 17-31 (E(A)) and 127-141 (E(B)) (Netzer, K.-O. et al. (1999) J. Biol. Chem. 274, 11267-11274). To determine whether these regions are two distinct epitopes or form a single epitope, three GP sera were fractionated by affinity chromatography on immobilized NC1 chimeras containing the E(A) and/or the E(B) region. Four subpopulations of GP antibodies with distinct epitope specificity for the alpha3(IV)NC1 domain were thus separated and characterized. They were designated GP(A), GP(B), GP(AB), and GP(X), to reflect their reactivity with E(A) only, E(B) only, both regions, and neither, respectively. Hence, regions E(A) and E(B) encompass critical amino acids that constitute three distinct epitopes for GP(A), GP(B), and GP(AB) antibodies, respectively, whereas the epitope for GP(X) antibodies is located in a different unknown region. The GP(A) antibodies were consistently immunodominant, accounting for 60-65% of the total immunoreactivity to alpha3(IV)NC1; thus, they probably play a major role in pathogenesis. Regions E(A) and E(B) are held in close proximity because they jointly form the epitope for Mab3, a monoclonal antibody that competes for binding with GP autoantibodies. All GP epitopes are sequestered in the hexamer configuration of the NC1 domain found in tissues and are inaccessible for antibody binding unless dissociation of the hexamer occurs, suggesting a possible mechanism for etiology of GP disease. GP antibodies have the capacity to extract alpha3(IV)NC1 monomers, but not dimers, from native human glomerular basement membrane hexamers, a property that may be of fundamental importance for the pathogenesis of the disease.  相似文献   

9.
We cloned three overlapping cDNAs covering 2,452 base pairs encoding a new basement membrane collagen chain, alpha 4(IV), from rabbit corneal endothelial cell RNA. Nucleotide sequence analysis demonstrated that the clones encoded a triple-helical domain of 392 1/3 amino acid residues and a carboxyl non-triple-helical (NC1) domain of 231 residues. We also isolated a genomic DNA fragment for the human alpha 4(IV) chain, which contained two exons encoding from the carboxyl end of the triple-helical domain to the amino end of the NC1 domain. Identification of the clones was based on the amino acid sequence identity between the cDNA-deduced amino acid sequence and the reported amino acid sequence obtained from a fragment of the alpha 4(IV) collagen polypeptide M28+ (Butkowski, R. J., Shen, G.-Q., Wieslander, J., Michael, A. F., and Fish, A. J. (1990) J. Lab. Clin. Med. 115, 365-373). When compared with four other type IV collagen chains, the NC1 domain contained 12 cysteinyl residues in positions identical to those of the residues in those chains. The domain demonstrated 61, 70, 55, and 60% amino acid similarity with human alpha 1, human alpha 2, bovine alpha 3, and human alpha 5 chains, respectively. The human genomic DNA fragment allowed us to map the alpha 4(IV) gene (COL4A4) to the 2q35-2q37.1 region of the human genome.  相似文献   

10.
The noncollagenous (NC1) domain hexamer of glomerular basement membrane (GBM) collagen is composed of a multiplicity of monomeric and dimeric subunits, and specific subunits are the targets for anti-GBM autoantibodies of patients with Goodpasture (GP) syndrome. The identity of GBM monomers has been established and the alpha 3(IV)NC1 monomer identified as the one that binds GP antibodies (Gunwar, S., Saus, J., Noelken, M. E., and Hudson, B. G. (1990) J. Biol. Chem. 265, 5466-5469). In the present study, the chain origin of 25 dimeric components and the identity of those that bound the anti-GBM antibodies from two GP patients were determined. This was accomplished by NH2-terminal sequence analysis and immunoblotting analysis of dimeric components that were resolved by two-dimensional electrophoresis in combination with high pressure liquid chromatography. The results revealed that (a) the components are mainly homodimers of the NC1 domains of alpha 1, alpha 2, alpha 3, alpha 4, and probably alpha 5 chains of collagen IV, reflecting a specificity of promoter-promoter association and (b) each homodimer had several size and charge isoforms. The GP antibodies bound exclusively to both alpha 3(IV)NC1 monomers and dimers and not to other basement membrane constituents. These findings provided new insights about the structure of GBM collagen and together with our previous findings firmly established the alpha 3(IV) chain as the target for the anti-GBM antibodies that mediate glomerulonephritis and pulmonary hemorrhage in patients with Goodpasture syndrome.  相似文献   

11.
We recently cloned and sequenced alpha 1 (VIII) collagen cDNAs and demonstrated that type VIII collagen is a short-chain collagen that contains both triple helical and carboxyl-terminal non-triple helical domains similar to those of type X collagen (Yamaguchi, N., Benya, P., van der Rest, M., and Ninomiya, Y. (1989) J. Biol. Chem. 264, 16022-16029). We report here on the structural organization of the gene encoding the rabbit alpha 1 (VIII) collagen chain. The alpha 1 (VIII) gene contains four exons, whose sizes are 69, 120, 331, and 2278 base pairs. The first and second exons encode only 5'-untranslated sequences, whereas the third exon codes for a very short (3 nucleotides) stretch of 5'-untranslated sequence, the signal peptide, and almost the entire amino-terminal non-triple helical (NC2) domain (109 1/3 codons). Interestingly, the last exon encodes the rest of the translated region, including 7 2/3 codons of the NC2 domains, the complete triple helical domain (COL1, 454 amino acid residues), the entire carboxyl-terminal non-triple helical domain (NC1, 173 amino acid residues), and the 3'-untranslated region. This exon-intron structure is in stark contrast to the multi-exon structure of the fibrillar collagen (types I, II, III, V, and XI) genes, but it is remarkably similar to that of the type X collagen gene (LuValle, P., Ninomiya, Y., Rosenblum, N. D., and Olsen, B. R. (1988) J. Biol. Chem. 263, 18278-18385). The data suggest that the alpha 1 (VIII) and the alpha 1 (X) genes belong to the same subclass within the collagen family and that they arose from a common evolutionary precursor.  相似文献   

12.
Collagens comprise a large superfamily of extracellular matrix proteins that play diverse roles in tissue function. The mechanism by which newly synthesized collagen chains recognize each other and assemble into specific triple-helical molecules is a fundamental question that remains unanswered. Emerging evidence suggests a role for the non-collagenous domain (NC1) located at the C-terminal end of each chain. In this study, we have investigated the molecular mechanism underlying chain selection in the assembly of collagen IV. Using surface plasmon resonance, we have determined the kinetics of interaction and assembly of the alpha1(IV) and alpha2(IV) NC1 domains. We show that the differential affinity of alpha2(IV) NC1 domain for dimer formation underlies the driving force in the mechanism of chain discrimination. Given its characteristic domain recognition and affinity for the alpha1(IV) NC1 domain, we conclude that the alpha2(IV) chain plays a regulatory role in directing chain composition in the assembly of (alpha1)(2)alpha2 triple-helical molecule. Detailed crystal structure analysis of the [(alpha1)(2)alpha2](2) NC1 hexamer and sequence alignments of the NC1 domains of all six alpha-chains from mammalian species revealed the residues involved in the molecular recognition of NC1 domains. We further identified a hypervariable region of 15 residues and a beta-hairpin structural motif of 13 residues as two prominent regions that mediate chain selection in the assembly of collagen IV. To our knowledge, this report is the first to combine kinetics and structural data to describe molecular basis for chain selection in the assembly of a collagen molecule.  相似文献   

13.
We previously showed concordance between Goodpasture syndrome antibody binding and production of experimental glomerulonephritis using human chimeric proteins. We now examine a more limited amino-terminal region of alpha3(IV) non-collagenous domain (NC1) and the impact of single amino acid (AA) mutations of this region on glomerulonephritis induction. Rats were immunized with collagenase-solubilized glomerular basement membrane (csGBM), D3, an alpha1(IV)NC1 chimeric protein with 69 AA of alpha3(IV)NC1 (binds Goodpasture sera), D4, the D3 construct shortened by 4 AA (non-binding), P9, P10, single AA mutants (non-binding), and S2, alpha1(IV)NC1 with 9 AA of alpha3(IV)NC1 (binding). All rats immunized with csGBM and S2 and 50% of D3 rats developed glomerulonephritis. csGBM rats had intense GBM-bound IgG deposits, but S2 and D3 rats had minimal deposits. None of the D4, P9, or P10 rats developed glomerulonephritis. Lymphocytes from nephritic rats proliferated with csGBM, S2, and D3, but not with D4, P9, or P10. Discrete segments of alpha3(IV)NC1 within the alpha1(IV)NC1 backbone can induce glomerulonephritis. Single AA mutations within that epitope render the antigen unresponsive to Goodpasture sera and incapable of inducing glomerulonephritis. These studies support the concordance of glomerulonephritis inductivity and Goodpasture serum binding. Further, they define a critical limited AA sequence within alpha3(IV)NC1 of nine or fewer AA, which confers nephritogenicity to the nonnephritogenic alpha1(IV)NC1 without in vivo antibody binding. This region may be a T-cell epitope responsible for induction of glomerulonephritis in this model in rats and Goodpasture syndrome in man.  相似文献   

14.
Goodpasture disease is a prototype autoimmune disease characterized by the formation of autoantibodies against the heterotrimeric basement membrane collagen type IV, which causes a rapidly progressive glomerulonephritis. The pathogenic antibody response is directed to the non-collagenous (NC1) domain of the alpha3 chain of type IV collagen (alpha3(IV)NC1), but not to the homologous region of the alpha1(IV)NC1. To identify the conformation-dependent immunodominant epitope on the alpha3(IV)NC1, a variety of recombinant NC1 domains were constructed by replacing single residues of alpha3(IV) with the corresponding amino acids from the nonreactive alpha1(IV) chain. Replacement mutations were identified that completely destroyed the Goodpasture epitope in the alpha3(IV) chain. Based on the identification of these critical positions, the epitope was finally reconstructed within the frame of the alpha1(IV) chain. The substitution of nine discontinuous positions in the alpha1(IV)NC1 with amino acid residues from the alpha3 chain resulted in a recombinant construct that was recognized by all patients' sera (n = 20) but by none of the sera from healthy controls (n = 10). This provides, for the first time, the molecular characterization of a single immunodominant conformational epitope recognized by pathogenic autoantibodies in a human autoimmune disease, representing the basis for the development of new epitope-specific strategies in the treatment of Goodpasture disease.  相似文献   

15.
Collagen IV networks are present in all metazoans as components of basement membranes that underlie epithelia. They are assembled by the oligomerization of triple-helical protomers, composed of three alpha-chains. The trimeric noncollagenous domains (NC1) of each protomer interact forming a hexamer structure. Upon exposure to acidic pH or denaturants, the hexamer dissociates into monomer and dimer subunits, the latter reflect distinct interactions that reinforce/cross-link the quaternary structure of hexamer. Recently, the cross-link site of the alpha1alpha1alpha2 network was identified, on the basis of x-ray crystal structures at 1.9-A resolution, in which the side chains of Met93 and Lys211 were proposed to be connected by a novel thioether bond (Than, M. E., Henrich, S., Huber, R., Ries, A., Mann, K., Kuhn, K., Timpl, R., Bourenkov, G. P., Bartunik, H. D., and Bode, W. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 6607-6612); however, at the higher resolution of 1.5 A, we found no evidence for this cross-link (Vanacore, R. M., Shanmugasundararaj, S., Friedman, D. B., Bondar, O., Hudson, B. G., and Sundaramoorthy, M. (2004) J. Biol. Chem. 279, 44723-44730). Given this discrepancy in crystallographic findings, we sought chemical evidence for the location and nature of the reinforcement/cross-link site. Trypsin digestion of monomer and dimer subunits excised a approximately 5,000-Da complex that distinguished dimers from monomers; the complex was characterized by mass spectrometry, Edman degradation, and amino acid composition analyses. The tryptic complex, composed of two peptides of 44 residues derived from two alpha1 NC1 monomers, contained Met93 and Lys211 post-translationally modified to hydroxylysine (Hyl211). Truncation of the tryptic complex with post-proline endopeptidase reduced its size to 14 residues to facilitate characterization by tandem mass spectrometry, which revealed a covalent linkage between Met93 and Hyl211. The novel cross-link, termed S-hydroxylysyl-methionine, reflects at least two post-translational events in its formation: the hydroxylation of Lys211 to Hyl211 within the NC1 domain during the biosynthesis of alpha-chains and the connection of Hyl211 to Met93 between the trimeric NC1 domains of two adjoining triple-helical protomers, reinforcing the stability of collagen IV networks.  相似文献   

16.
Type VIII collagen is a major component of Descemet's membrane, the specialized basement membrane of corneal endothelial cells. Sequence analysis of a cDNA isolated from a library made with mRNA from rabbit corneal endothelial cells has indicated that type VIII molecules contain a polypeptide chain, alpha 1(VIII), consisting of a short triple-helical domain of 454 amino acid residues flanked by non-triple-helical domains of 117 and 173 amino acid residues at the amino and carboxyl ends, respectively (Yamaguchi, N., Benya, P. D., van der Rest, M., and Ninomiya, Y. (1989) J. Biol. Chem. 264, 16022-16029). The sequence of alpha 1(VIII) is strikingly similar to that of alpha 1(X) collagen, a product of hypertrophic chondrocytes. Also, characterization of the alpha 1(VIII) and alpha 1(X) collagen genes has shown that they are quite similar in their exon organization. It has been concluded, therefore, that they are homologous members of a distinct subclass of collagen genes (Yamaguchi, N., Mayne, R., and Ninomiya, Y. (1991) J. Biol. Chem. 266, 4508-4513). We have given this subclass the name short chain collagens because of the relatively small size of the triple-helical domain. In the present study, we report on the identification and characterization of a collagen gene encoding a polypeptide which is co-expressed with the alpha 1(VIII) chain in corneal endothelial cells. This collagen chain contains a triple-helical and a carboxyl non-triple-helical domain encoded by a single, large exon both in mice and humans. We conclude, therefore, that the genes encodes a novel member of the short chain collagen family, and we have given this chain the designation alpha 2(VIII) collagen. By in situ hybridization we demonstrate that the alpha 2(VIII) gene is located in the p32.3-p34.3 region of the short arm of chromosome 1.  相似文献   

17.
We have determined the primary structure of the alpha 1(IV)-chain of human type IV collagen by nucleotide sequencing of overlapping cDNA clones that were isolated from a human placental cDNA library. The present data provide the sequence of 295 amino acids not previously determined. Altogether, the alpha 1(IV)-chain contains 1642 amino acids and has a molecular mass of 157625 Da. There are 1413 residues in the collagenous domain and 229 amino acids in the carboxy-terminal globular domain. The human alpha 1(IV)-chain contains a total of 21 interruptions in the collagenous Gly-X-Y repeat sequence. These interruptions vary in length between two and eleven residues. The alpha 1(IV)-chain contains four cysteine residues in the triple-helical domain, four cysteines in the 15-residue long noncollagenous sequence at the amino-terminus and 12 cysteines in the carboxy-terminal NC-domain.  相似文献   

18.
We have isolated two overlapping cDNA clones covering 2425 base pairs encoding a short type VIII collagen chain synthesized by rabbit corneal endothelial cells. The cDNAs encode an open reading frame of 744 amino acid residues containing a triple-helical domain of 454 residues flanked by 117- and 173-residue amino and carboxyl non-triple-helical domains (called NC2 and NC1, respectively). Based on the identity between the DNA-derived amino acid sequence and the amino acid sequence of a type VIII collagen CNBr peptide obtained from rabbit corneal Descemet's membrane, we conclude that the cDNAs code for a type VIII collagen chain. We give this chain the designation alpha 1(VIII). The alpha 1(VIII) triple-helical domain contains eight imperfections in the Gly-X-Y repeated structure with Gly-X instead of a full triplet. The length of the triple-helical domain and number and relative locations of these imperfections are remarkably similar to those of chicken alpha 1(X) collagen. The amino acid sequence of the carboxyl three-quarters of the NC1 domain has high sequence similarity to that of alpha 1(X) collagen. These data suggest that the triple-helix coding portions and carboxyl three-quarters of the NC1 domains of the alpha 1(VIII) and alpha 1(X) genes have a common evolutionary origin.  相似文献   

19.
Type IV collagen alpha1-alpha6 chains have important roles in the assembly of basement membranes and are implicated in the pathogenesis of Goodpasture syndrome, an autoimmune disorder, and Alport syndrome, a hereditary renal disease. We report comparative sequence analyses and structural predictions of the noncollagenous C-terminal globular NC1 domain (28 sequences). The inferred tree verified that type IV collagen sequences fall into two groups, alpha1-like and alpha2-like, and suggested that vertebrate alpha3/alpha4 sequences evolved before alpha1/alpha2 and alpha5/alpha6. About one fifth of NC1 residues were identified to confer either the alpha1 or alpha2 group-specificity. These residues accumulate opposite charge in subdomain B of alpha1 (positive) and alpha2 (negative) sequences and may play a role in the stoichiometric chain selection upon type IV collagen assembly. Neural network secondary structure prediction on multiple aligned sequences revealed a subdomain core structure consisting of six hydrophobic beta-strands and one short alpha-helix with a significant hydrophobic moment. The existence of opposite charges in the alpha-helices may carry implications for intersubdomain interactions. The results provide a rationale for defining the epitope that binds Goodpasture autoantibodies and a framework for understanding how certain NC1 mutations may lead to Alport syndrome. A search algorithm, based entirely on amino acid properties, yielded a possible similarity of NC1 to tissue inhibitor of metalloproteinases (TIMP) and prompted an investigation of a possible functional relationship. The results indicate that NC1 preparations decrease the activity of matrix metalloproteinases 2 and 3 (MMP-2, MMP-3) toward a peptide substrate, though not to [14C]-gelatin. We suggest that an ancestral NC1 may have been incorporated into type IV collagen as an evolutionarily mobile domain carrying proteinase inhibitor function.  相似文献   

20.
The NC1 domains of human type IV collagen, in particular alpha3NC1, are inhibitors of angiogenesis and tumor growth (Petitclerc, E., Boutaud, A., Prestayko, A., Xu, J., Sado, Y., Ninomiya, Y., Sarras, M. P., Jr., Hudson, B. G., and Brooks, P. C. (2000) J. Biol. Chem. 275, 8051-8061). The recombinant alpha3NC1 domain contained a RGD site as part of a short collagenous sequence at the N terminus, designated herein as RGD-alpha3NC1. Others, using synthetic peptides, have concluded that this RGD site is nonfunctional in cell adhesion, and therefore, the anti-angiogenic activity is attributed exclusively to alpha(v)beta(3) integrin interactions with non-RGD motifs of the RGD-alpha3NC1 domain (Maeshima, Y., Colorado, P. C., and Kalluri, R. (2000) J. Biol. Chem. 275, 23745-23750). This nonfunctionality is surprising given that RGD is a binding site for alpha(v)beta(3) integrin in several proteins. In the present study, we used the alpha3NC1 domain with or without the RGD site, expressed in HEK 293 cells for native conformation, as an alternative approach to synthetic peptides to assess the functionality of the RGD site and non-RGD motifs. Our results demonstrate a predominant role of the RGD site for endothelial adhesion and for binding of alpha(v)beta(3) and alpha(v)beta(5) integrins. Moreover, we demonstrate that the two non-RGD peptides, previously identified as the alpha(v)beta(3) integrin-binding sites of the alpha3NC1 domain, are 10-fold less potent in competing for integrin binding than the native protein, indicating the importance of additional structural and/or conformational features of the alpha3NC1 domain for integrin binding. Therefore, the RGD site, in addition to non-RGD motifs, may contribute to the mechanisms of endothelial cell adhesion in the human vasculature and the anti-angiogenic activity of the RGD-alpha3NC1 domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号