首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
T cell exhaustion and loss of memory potential occur during many chronic viral infections and cancer. We investigated when during chronic viral infection virus-specific CD8 T cells lose the potential to form memory. Virus-specific CD8 T cells from established chronic infection were unable to become memory CD8 T cells if removed from infection. However, at earlier stages of chronic infection, these virus-specific CD8 T cells retained the potential to partially or fully revert to a memory differentiation program after transfer to infection-free mice. Conversely, effector CD8 T cells primed during acute infection were not protected from exhaustion if transferred to a chronic infection. We also tested whether memory and exhausted CD8 T cells arose from different subpopulations of effector CD8 T cells and found that only the KLRG1(lo) memory precursor subset gave rise to exhausted CD8 T cells. Together, these studies demonstrate that CD8 T cell exhaustion is a progressive developmental process. Early during chronic infection, the fate of virus-specific CD8 T cells remains plastic, while later, exhausted CD8 T cells become fixed in their differentiation state. Moreover, exhausted CD8 T cells arise from the memory precursor and not the terminally differentiated subset of effector CD8 T cells. These studies have implications for our understanding of senescence versus exhaustion and for therapeutic interventions during chronic infection.  相似文献   

3.
During infection with lymphocytic choriomeningitis virus, CD8(+) T cells differentiate rapidly into effectors (CD62L(low)CD44(high)) that differentiate further into the central memory phenotype (CD62L(high)CD44(high)) gradually. To evaluate whether this CD8(+) T cell differentiation program operates in all infection models, we evaluated CD8(+) T cell differentiation during infection of mice with recombinant intracellular bacteria, Listeria monocytogenes (LM) and Mycobacterium bovis (BCG), expressing OVA. We report that CD8(+) T cells primed during infection with the attenuated pathogen BCG-OVA differentiated primarily into the central subset that correlated to reduced attrition of the primed cells subsequently. CD8(+) T cells induced by LM-OVA also differentiated into central phenotype cells first, but the cells rapidly converted into effectors in contrast to BCG-OVA. Memory CD8(+) T cells induced by both LM-OVA as well as BCG-OVA were functional in that they produced cytokines and proliferated extensively in response to antigenic stimulation after adoptive transfer. During LM-OVA infection, if CD8(+) T cells were guided to compete for access to APCs, then they received reduced stimulation that was associated with increased differentiation into the central subset and reduced attrition subsequently. Similar effect was observed when CD8(+) T cells encountered APCs selectively during the waning phase of LM-OVA infection. Taken together, our results indicate that the potency of the pathogen can influence the differentiation and fate of CD8(+) T cells enormously, and the extent of attrition of primed CD8(+) T cells correlates inversely to the early differentiation of CD8(+) T cells primarily into the central CD8(+) T cell subset.  相似文献   

4.
Independent studies have shown that CD27, 4-1BB, and OX40 can all promote survival of activated CD8+ T cells. We have therefore compared their impact on CD8+ memory T cell formation and responsiveness within one, physiologically relevant model system. Recombinant mice, selectively lacking input of one or two receptors, were challenged intranasally with influenza virus, and the immunodominant virus-specific CD8+ T cell response was quantified at priming and effector sites. Upon primary infection, CD27 and (to a lesser extent) 4-1BB made nonredundant contributions to accumulation of CD8+ virus-specific T cells in draining lymph nodes and lung, while OX40 had no effect. Interestingly though, in the memory response, accumulation of virus-specific CD8+ T cells in spleen and lung critically depended on all three receptor systems. This was explained by two observations: 1) CD27, 4-1BB, and OX40 were collectively responsible for generation of the same memory CD8+ T cell pool; 2) CD27, 4-1BB, and OX40 collectively determined the extent of secondary expansion, as shown by adoptive transfers with standardized numbers of memory cells. Surprisingly, wild-type CD8+ memory T cells expanded normally in primed OX40 ligand- or 4-1BB ligand-deficient mice. However, when wild-type memory cells were generated in OX40 ligand- or 4-1BB ligand-deficient mice, their secondary expansion was impaired. This provides the novel concept that stimulation of CD8+ T cells by OX40 and 4-1BB ligand during priming imprints into them the capacity for secondary expansion. Our data argue that ligand on dendritic cells and/or B cells may be critical for this.  相似文献   

5.
Despite the rapid accumulation of quantitative data on the dynamics of CD8(+) T cell responses following acute viral or bacterial infections of mice, the pathways of differentiation of naive CD8(+) T cells into memory during an immune response remain controversial. Currently, three models have been proposed. In the "stem cell-associated differentiation" model, following activation, naive T cells differentiate into stem cell-like memory cells, which then convert into terminally differentiated short-lived effector cells. In the "linear differentiation" model, following activation, naive T cells first differentiate into effectors, and after Ag clearance, effectors convert into memory cells. Finally, in the "progressive differentiation" model, naive T cells differentiate into memory or effector cells depending on the amount of specific stimulation received, with weaker stimulation resulting in formation of memory cells. This study investigates whether the mathematical models formulated from these hypotheses are consistent with the data on the dynamics of the CD8(+) T cell response to lymphocytic choriomeningitis virus during acute infection of mice. Findings indicate that two models, the stem cell-associated differentiation model and the progressive differentiation model, in which differentiation of cells is strongly linked to the number of cell divisions, fail to describe the data at biologically reasonable parameter values. This work suggests additional experimental tests that may allow for further discrimination between different models of CD8(+) T cell differentiation in acute infections.  相似文献   

6.
The memory CD4+ T cell response to the respiratory syncytial virus (RSV) attachment (G) protein in the lungs of primed BALB/c mice undergoing challenge pulmonary RSV infection is dominated by effector T cells expressing a single Vbeta-chain, Vbeta14. We have used Vbeta14 expression to examine the kinetics of the activation, accumulation, and acquisition of the effector activity of memory CD4+ T cells responding to pulmonary infection. This analysis revealed that proliferative expansion and effector CD4+ T cell differentiation preferentially occur in the respiratory tract following rapid activation within and egress from the lymph nodes draining the respiratory tract. These findings suggest that, in response to natural infection at a peripheral mucosal site such as the lungs, memory CD4+ T cell expansion and differentiation into activated effector T cells may occur predominantly in the peripheral site of infection rather than exclusively in the lymph nodes draining the site of infection.  相似文献   

7.
8.
Professional APCs of hemopoietic-origin prime pathogen-specific naive CD8 T cells. The primed CD8 T cells can encounter Ag on infected nonhemopoietic cell types. Whether these nonhemopoietic interactions perpetuate effector T cell expansion remains unknown. We addressed this question in vivo, using four viral and bacterial pathogens, by comparing expansion of effector CD8 T cells in bone marrow chimeric mice expressing restricting MHC on all cell types vs mice that specifically lack restricting MHC on nonhemopoietic cell types or radiation-sensitive hemopoietic cell types. Absence of Ag presentation by nonhemopoietic cell types allowed priming of naive CD8 T cells in all four infection models tested, but diminished their sustained expansion by approximately 10-fold during lymphocytic choriomeningitis virus and by < or =2-fold during vaccinia virus, vesicular stomatitis virus, or Listeria monocytogenes infections. Absence of Ag presentation by a majority (>99%) of hemopoietic cells surprisingly also allowed initial priming of naive CD8 T cells in all the four infection models, albeit with delayed kinetics, but the sustained expansion of these primed CD8 T cells was markedly evident only during lymphocytic choriomeningitis virus, but not during vaccinia virus, vesicular stomatitis virus, or L. monocytogenes. Thus, infected nonhemopoietic cells can amplify effector CD8 T cell expansion during infection, but the extent to which they can amplify is determined by the pathogen. Further understanding of mechanisms by which pathogens differentially affect the ability of nonhemopoietic cell types to contribute to T cell expansion, how these processes alter during acute vs chronic phase of infections, and how these processes influence the quality and quantity of memory cells will have implications for rational vaccine design.  相似文献   

9.
Ag presentation to CD8(+) T cells often commences immediately after infection, which facilitates their rapid expansion and control of infection. Subsequently, the primed cells undergo rapid contraction. We report that this paradigm is not followed during infection with virulent Salmonella enterica, serovar Typhimurium (ST), an intracellular bacterium that replicates within phagosomes of infected cells. Although susceptible mice die rapidly (approximately 7 days), resistant mice (129 x 1SvJ) harbor a chronic infection lasting approximately 60-90 days. Using rOVA-expressing ST (ST-OVA), we show that T cell priming is considerably delayed in the resistant mice. CD8(+) T cells that are induced during ST-OVA infection undergo delayed expansion, which peaks around day 21, and is followed by protracted contraction. Initially, ST-OVA induces a small population of cycling central phenotype (CD62L(high)IL-7Ralpha(high)CD44(high)) CD8(+) T cells. However, by day 14-21, majority of the primed CD8(+) T cells display an effector phenotype (CD62L(low)IL-7Ralpha(low)CD44(high)). Subsequently, a progressive increase in the numbers of effector memory phenotype cells (CD62L(low)IL-7Ralpha(high)CD44(high)) occurs. This differentiation program remained unchanged after accelerated removal of the pathogen with antibiotics, as majority of the primed cells displayed an effector memory phenotype even at 6 mo postinfection. Despite the chronic infection, CD8(+) T cells induced by ST-OVA were functional as they exhibited killing ability and cytokine production. Importantly, even memory CD8(+) T cells failed to undergo rapid expansion in response to ST-OVA infection, suggesting a delay in T cell priming during infection with virulent ST-OVA. Thus, phagosomal lifestyle may allow escape from host CD8(+) T cell recognition, conferring a survival advantage to the pathogen.  相似文献   

10.
In hepatitis C virus (HCV) infection the immune response is ineffective, leading to chronic hepatitis and liver damage. Primed CD8 T cells are critical for antiviral immunity and subsets of circulating CD8 T cells have been defined in blood but these do not necessarily reflect the clonality or differentiation of cells within tissue. Current models divide primed CD8 T cells into effector and memory cells, further subdivided into central memory (CCR7+, L-selectin+), recirculating through lymphoid tissues and effector memory (CCR7-, L-selectin-) mediating immune response in peripheral organs. We characterized CD8 T cells derived from organ donors and patients with end-stage HCV infection to show that: 1) all liver-infiltrating CD8 T cells express high levels of CD11a, indicating the effective absence of naive CD8 T cells in the liver. 2) The liver contains distinct subsets of primed CD8+ T cells including a population of CCR7+ L-selectin- cells, which does not reflect current paradigms. The expression of CCR7 by these cells may be induced by the hepatic microenvironment to facilitate recirculation. 3) The CCR7 ligands CCL19 and CCL21 are present on lymphatic, vascular, and sinusoidal endothelium in normal liver and in patients with HCV infection. We suggest that the recirculation of CCR7+/L-selectin- intrahepatic CD8 T cells to regional lymphoid tissue will be facilitated by CCL19 and CCL21 on hepatic sinusoids and lymphatics. This centripetal pathway of migration would allow restimulation in lymph nodes, thereby promoting immune surveillance in normal liver and renewal of effector responses in chronic viral infection.  相似文献   

11.
Apoptosis plays an essential role in the removal of activated CD8 T cells that are no longer required during or postinfection. The Bim-dependent intrinsic pathway of apoptosis removes effector CD8 T cells upon clearance of viral infection, which is driven by withdrawal of growth factors. Binding of Fas ligand to Fas mediates activation-induced T cell death in vitro and cooperates with Bim to eliminate CD8 T cells during chronic infection in vivo, but it is less clear how this pathway of apoptosis is initiated. In this study, we show that the costimulatory TNFR CD27 provides a dual trigger that can enhance survival of CD8 T cells, but also removal of activated CD8 T cells through Fas-driven apoptosis. Using in vitro stimulation assays of murine T cells with cognate peptide, we show that CD27 increases T cell survival after stimulation with low doses of Ag, whereas CD27 induces Fas-driven T cell apoptosis after stimulation with high doses of Ag. In vivo, the impact of constitutive CD70-driven stimulation on the accumulation of memory and effector CD8 T cells is limited by Fas-driven apoptosis. Furthermore, introduction of CD70 signaling during acute infection with influenza virus induces Fas-dependent elimination of influenza-specific CD8 T cells. These findings suggest that CD27 suppresses its costimulatory effects on T cell survival through activation of Fas-driven T cell apoptosis to maintain T cell homeostasis during infection.  相似文献   

12.
13.
The obligate intracellular bacterium Chlamydia trachomatis is the most common cause of bacterial sexually transmitted disease in the United States and the leading cause of preventable blindness worldwide. Prior exposure to C. trachomatis has been shown to provide incomplete protection against subsequent infection. One possible explanation for the limited immunity afforded by prior C. trachomatis infection is poor activation of Chlamydia-specific memory CD8+ T cells. In this study, we examined the development of CD8+ memory T cell responses specific for the Chlamydia Ag CrpA. The percentage of CrpA63-71-specific T cells expressing an effector memory T cell phenotype (IL-7R+ CD62low) was dramatically diminished in mice immunized with C. trachomatis, compared with mice immunized with vaccinia virus expressing the CrpA protein. These alterations in memory T cell development were correlated with a significant reduction in the capacity of convalescent mice to mount an enhanced recall response to Chlamydia Ags, compared with the primary response. CrpA-specific memory T cells primed during VacCrpA infection also failed to respond to a challenge with Chlamydia. We therefore investigated whether C. trachomatis infection might have a global inhibitory effect on CD8+ T cell activation by coinfecting mice with C. trachomatis and Listeria monocytogenes and we found that the activation of Listeria-specific naive and memory CD8+ T cells was reduced in the presence of C. trachomatis. Together, these results suggest that Chlamydia is able to alter the development of CD8+ T cell responses during both primary and secondary infection, perhaps accounting for the incomplete protection provided by prior Chlamydia infection.  相似文献   

14.
15.
In response to infection, CD8(+) T cells integrate multiple signals and undergo an exponential increase in cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in the formation of short-lived effector cells (SLECs; CD127(low)KLRG1(high)) and memory precursor effector cells (CD127(high)KLRG1(low)) from an early effector cell that is CD127(low)KLRG1(low) in phenotype. CD8(+) T cell differentiation during vesicular stomatitis virus infection differed significantly than during Listeria monocytogenes infection with a substantial reduction in early effector cell differentiation into SLECs. SLEC generation was dependent on Ebi3 expression. Furthermore, SLEC differentiation during vesicular stomatitis virus infection was enhanced by administration of CpG-DNA, through an IL-12-dependent mechanism. Moreover, CpG-DNA treatment enhanced effector CD8(+) T cell functionality and memory subset distribution, but in an IL-12-independent manner. Population dynamics were dramatically different during secondary CD8(+) T cell responses, with a much greater accumulation of SLECs and the appearance of a significant number of CD127(high)KLRG1(high) memory cells, both of which were intrinsic to the memory CD8(+) T cell. These subsets persisted for several months but were less effective in recall than memory precursor effector cells. Thus, our data shed light on how varying the context of T cell priming alters downstream effector and memory CD8(+) T cell differentiation.  相似文献   

16.
Infection with Listeria monocytogenes elicits expansion in numbers of Ag-specific CD8+ T cells, which then undergo programmed contraction. The remaining cells undergo further phenotypic and functional changes with time, eventually attaining the qualities of memory CD8+ T cells. In this study, we show that L. monocytogenes-specific CD8+ T cell populations primed in antibiotic-pretreated mice undergo brief effector phase, but rapidly develop phenotypic (CD127(high), CD43(low)) and functional (granzyme B(low), IL-2-producing) characteristics of memory CD8+ T cells. These early memory CD8+ T cells were capable of substantial secondary expansion in response to booster challenge at day 7 postinfection, resulting in significantly elevated numbers of secondary effector and memory CD8+ T cells and enhanced protective immunity compared with control-infected mice. Although early expansion in numbers is similar after L. monocytogenes infection of antibiotic-pretreated and control mice, the absence of sustained proliferation coupled with decreased killer cell lectin-like receptor G-1 up-regulation on responding CD8+ T cells may explain the rapid effector to memory CD8+ T cell transition. In addition, antibiotic treatment 2 days post-L. monocytogenes challenge accelerated the generation of CD8+ T cells with memory phenotype and function, and this accelerated memory generation was reversed in the presence of CpG-induced inflammation. Together, these data show that the rate at which Ag-specific CD8+ T cell populations acquire memory characteristics after infection is not fixed, but rather can be manipulated by limiting inflammation that will in turn modulate the timing and extent to which CD8+ T cells proliferate and up-regulate killer cell lectin-like receptor G-1 expression.  相似文献   

17.
CD8 T cells are critical for the clearance of intracellular pathogens. Upon infection, naive CD8 T cells differentiate into effector cells that target and eliminate infected cells. Following clearance of the pathogen, most effector cells die, although a small fraction survives to establish a memory population. Subsequent exposure to the same pathogen induces a rapid response of memory T cells and efficient elimination of the pathogen. Although much is known about the CD8 T cell response, the precise microenvironment location of effector and memory CD8 T cells in secondary lymphoid organs is not well characterized. In this study, we present an in situ analysis of the localization of effector and memory CD8 T cells during the murine immune response to lymphocytic choriomenginits virus. We identified the location of these cells using a transgenic mouse model system in which CD8 T cells are irreversibly tagged with yellow fluorescent protein (YFP) after activation. After infection, YFP+ CD8 T cells were initially observed within T cell zones. Later, these cells were found in the red pulp and a disruption of all CD8 T cell zones was observed. After resolution of the immune response, YFP+ memory CD8 T cells were observed primarily in T cells zones. Thus, in the spleens of mice, effector CD8 T cells localize to the red pulp and memory CD8 T cells localize to the T cell zones. Upon rechallenge, memory CD8 T cells rapidly proliferate and the secondary effector CD8 T cells are found in the red pulp.  相似文献   

18.
Stimulation of the costimulatory receptor CD27 by its ligand CD70 has proved important for the generation of primary and memory CD8(+) T cell responses in various models of antigenic challenge. CD27/CD70-mediated costimulation promotes the survival of primed T cells and thereby increases the size of effector and memory populations. In this paper, we reveal molecular mechanisms underlying the prosurvival effect of CD27. CD27 signaling upregulated expression of the antiapoptotic Bcl-2 family member Bcl-x(L). However, genetic reconstitution of Cd27(-/-) CD8(+) T cells with Bcl-x(L) alone or in combination with the related protein Mcl-1 did not compensate for CD27 deficiency in the response to influenza virus infection. This suggested that CD27 supports generation of the CD8(+) effector T cell pool not only by counteracting apoptosis via Bcl-2 family members. Genome-wide mRNA expression profiling indicated that CD27 directs expression of the Pim1 gene. Pim-1 is a serine/threonine kinase that sustains survival of rapidly proliferating cells by antiapoptotic and prometabolic effects that are independent of the mammalian target of rapamycin (mTOR) pathway. In TCR-primed CD8(+) T cells, CD27 could increment Pim-1 protein expression and promote cell survival throughout clonal expansion independent of the mTOR and IL-2R pathways. In addition, introduction of the Pim1 gene in Cd27(-/-) CD8(+) T cells partially corrected their defect in clonal expansion and formation of an effector pool. We conclude that CD27 may contribute to the survival of primed CD8(+) T cells by the upregulation of antiapoptotic Bcl-2 family members but also calls the Pim-1 kinase survival pathway into action.  相似文献   

19.
20.
We have shown that CD8(+) CTLs are the key mediators of accelerated rejection, and that CD8(+) T cells represent the prime targets of CD154 blockade in sensitized mouse recipients of cardiac allografts. However, the current protocols require CD154 blockade at the time of sensitization, whereas delayed treatment fails to affect graft rejection in sensitized recipients. To elucidate the mechanisms of costimulation blockade-resistant rejection and to improve the efficacy of CD154-targeted therapy, we found that alloreactive CD8(+) T cells were activated despite the CD154 blockade in sensitized hosts. Comparative CD8 T cell activation study in naive vs primed hosts has shown that although both naive and primed/memory CD8(+) T cells relied on the CD28 costimulation for their activation, only naive, not primed/memory, CD8(+) T cells depend on CD154 signaling to differentiate into CTL effector cells. Adjunctive therapy was designed accordingly to deplete primed/memory CD8(+) T cells before the CD154 blockade. Indeed, unlike anti-CD154 monotherapy, transient depletion of CD8(+) T cells around the time of cardiac engraftment significantly improved the efficacy of delayed CD154 blockade in sensitized hosts. Hence, this report provides evidence for 1) differential requirement of CD154 costimulation signals for naive vs primed/memory CD8(+) T cells, and 2) successful treatment of clinically relevant sensitized recipients to achieve stable long term graft acceptance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号