首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of luminous structures and the acquisition of luminescence competence during the ontogeny of the velvet belly lantern shark Etmopterus spinax, a deep‐sea squalid species, were investigated. The sequential appearance of nine different luminous zones during shark embryogenesis were established, and a new terminology for them given. These zones form the complex luminous pattern observed in free‐swimming animals. The organogenesis of photophores (photogenic organs) from the different luminous zones was followed, and photophore maturation was marked by the appearance of green fluorescent vesicles inside the photocytes (photogenic cells). Peroxide‐induced light emissions as well as spontaneous luminescence analysis indicated that the ability of E. spinax to produce light was linked to the presence of these fluorescent vesicles and occured prior to birth. The size of photogenic organs, as well as the percentage of ventral body surface area occupied by the luminous pattern and covered by photophores increased sharply during embryogenesis but remained relatively stable in free‐swimming animals. All these results strongly suggest camouflage by counter‐illumination in juvenile E. spinax.  相似文献   

2.
I. Preciado    J. E. Cartes    A. Serrano    F. Velasco    I. Olaso    F. Sánchez    I. Frutos 《Journal of fish biology》2009,75(6):1331-1355
The feeding habits of birdbeak dogfish Deania calcea, velvet belly lantern shark Etmopterus spinax and blackmouth catshark Galeus melastomus at Le Danois Bank, Cantabrian Sea, south Bay of Biscay were studied in relation to their bathymetric distribution. Deep‐sea sharks were collected during two multidisciplinary surveys carried out in October 2003 and April 2004 at the Le Danois Bank. Two different habitats were defined: (1) the top of the bank, ranging from 454 to 642 m depth and covered by fine‐sand sediments with a low percentage of organic matter, and (2) the inner basin located between the bank and the Cantabrian Sea's continental shelf, at depths of 810–1048 m, which was characterized by a high proportion of silt and organic matter. Deania calcea was not present at the top of the bank but was abundant below 642 m, while E. spinax was abundant in the shallower top of the bank but was not found in the deeper inner basin. There was almost no bathymetric overlap between these two deep‐sea shark species. Galeus melastomus was found over the whole depth range. There seemed to be an ontogenetic segregation with depth for this species, however, since 80% of the specimens collected at the top of the bank were < 600 mm total length (LT) (mean 510 mm LT), whereas larger individuals (mean 620 mm LT) inhabited deeper zones. Galeus melastomus exhibited a significantly higher feeding intensity than both E. spinax at the top of the bank and D. calcea in the inner basin. Little dietary overlap between D. calcea and G. melastomus in the inner basin was found, with D. calcea being an ichthyophagous predator while the diet of G. melastomus at these depths was composed of a variety of meso‐bathypelagic shrimps (e.g. Acantephyra pelagica, Pasiphaea spp. and Sergia robusta), cephalopods and fishes. The diets of E. spinax and G. melastomus at the top of the bank showed a high dietary overlap of euphausiids, which represented the main prey taxa for both species. Euphausiids declined in abundance with depth which was reflected in the diet of G. melastomus. The cluster analysis of prey affinities among hauls depicted two major groups, corresponding to the two different habitats (top of the bank and inner basin). Redundancy analysis also indicated top–basin segregation, with euphausiids representing the main prey taxa at the top of the bank and bathypelagic shrimps in the inner basin. Euphausiids and Micromesistius poutassou were key prey within the Le Danois Bank ecosystem since they were positively selected by the three deep‐sea shark species. These results show that the feeding ecology of these predators in Le Danois Bank ecosystem is highly influenced by depth‐related variables, as a result of changes in prey availability. Overall results were analysed in relation to the deep‐sea Le Danois ecosystem structure and functioning.  相似文献   

3.
李云凯  徐敏  贡艺 《生态学报》2022,42(13):5295-5302
物种对食物资源利用方式的差异,即营养生态位分化是物种共存的先决条件之一,对种间营养生态位的比较研究有助于了解同域分布物种的共存机制。脂肪酸组成可反映生物较长时间尺度的摄食信息,对探讨物种间营养生态位分化具有重要指示作用。热带东太平洋主要栖息有8种大型中上层鲨鱼,大青鲨(Prionace glauca)、大眼长尾鲨(Alopias superciliosus)、镰状真鲨(Carcharhinus falciformis)、长鳍真鲨(Carcharhinus longimanus)、浅海长尾鲨(Alopias pelagicus)、尖吻鲭鲨(Isurus oxyrinchus)、路氏双髻鲨(Sphyrna lewini)和锤头双髻鲨(Sphyrna zygaena),通过比较其肌肉脂肪酸组成,分析种间食性差异,营养关系及营养生态位分化。结果表明,尖吻鲭鲨营养级相对较高,大青鲨相对较低。3种鼠鲨与5种真鲨存在食性差异或栖息地隔离。浅海长尾鲨与大眼长尾鲨营养生态位重叠程度较高,存在激烈的资源竞争。大青鲨与镰状真鲨生态位宽度较大,表征其对环境的可塑性较强;尖吻鲭鲨和路氏双髻鲨生态位宽度较小,表现为其食性的特化。本研究解释了脂肪酸组成分析在鲨鱼摄食研究中的潜在应用,对分析大洋性鲨鱼的营养生态位分化,资源分配方式及同域共存机制有一定的应用价值。  相似文献   

4.
Deep water sharks are commonly caught as by-catch of longlines targeting bony fishes and trawlers targeting crustaceans in deep water off the southern Portuguese coast. Due to low or no commercial value, these species are most of the times discarded at sea, with only the larger specimens of some species commercialized at very low prices. In this study we present size distributions, maturity distributions, and sex ratios of 2,138 specimens belonging to four different species, namely the lantern sharks Etmopterus pusillus and Etmopterus spinax and the catsharks Galeus melastomus and Galeus atlanticus, caught with these two gears. Trawls generally caught smaller-sized specimens, in a wider length range than longlines. Trawls caught mostly immature specimens of all species, namely 83.7% immature of E. pusillus, 84.3% of E. spinax, 89.5% of G. melastomus, and 95.5% of G. atlanticus, while longlines caught mostly immature E. pusillus (69.2%) and G. melastomus (78.6%) and mostly mature E. spinax (88.2%) and G. atlanticus (87.2%). Trawls tended to catch more males than females of all species except E. spinax, while longlines caught more females than males of E. spinax and G. melastomus and more males than females of the other two species. The main conclusion of this work is that trawls are catching smaller-sized and mostly immature specimens when compared to longlines, meaning that they are probably having a more detrimental effect on these shark populations. The data presented here have significant implications for the conservation of these shark populations since sizes, sexes, and the immature and mature components of the populations are being affected differently by these two fishing gears. Guest editors: J. Davenport, G. Burnell, T. Cross, M. Emmerson, R. McAllen, R. Ramsay & E. Rogan Challenges to Marine Ecosystems  相似文献   

5.
Multiple paternity seems common within elasmobranchs. Focusing on two deep-sea shark species, the velvet belly lanternshark (Etmopterus spinax) and the slendertail lanternshark (Etmopterus molleri) we inferred the paternity in 31 E. spinax litters from Norway (three to 18 embryos per litter) and six E. molleri litters from Japan (three to six embryos), using 21 and 10 specific microsatellites, respectively. At least two E. spinax litters were sired from multiple fathers each, with highly variable paternal skew (1:1 to 9:1). Conversely, no clear signal of genetic polyandry was found in E. molleri.  相似文献   

6.
7.
Patterns associated with the evolution of parasite diversity, speciation and diversification were analysed using Dactylogyrus species (gill monogeneans) and their cyprinid hosts as a model. The aim of this study was to use this highly specific host–parasite systems to review: (1) the diversity and distribution of Dactylogyrus species, (2) the patterns of organization and structure of Dactylogyrus communities, (3) the evolution and determinants of host specificity and (4) the mode of Dactylogyrus speciation and co‐evolutionary patterns in this Dactylogyrus–cyprinid systems. Dactylogyrus are a highly diverse group of parasites, with their biogeography and distribution clearly linked to the evolutionary history of their cyprinid hosts. The coexistence of several Dactylogyrus species on one host is facilitated by increasing niche distances and the differing morphology of their reproductive organs. The positive interspecific and intraspecific interactions seem to be the most important factors determining the structure of Dactylogyrus communities. Host specificity is partially constrained by parasite phylogeny. Being a strict specialist is an ancestral character for Dactylogyrus, being the intermediate specialists or generalists are the derived characters. The evolution of attachment organ morphology is associated with both parasite phylogeny and host specificity. Considering larger and long‐lived hosts or hosts with several ecological characters as the measures of resource predictability, specialists with larger anchors occurred on larger or longer‐living fish species. Intra‐host speciation, a mode of speciation not often recorded in parasites, was observed in Dactylogyrus infecting sympatric cyprinids. Sister parasite species coexisting on the same host occupied niches that differed in at least one niche variable. Intra‐host speciation, however, was not observed in Dactylogyrus species of congeneric hosts from geographically isolated areas, which suggested association by descent and host‐switching events.  相似文献   

8.
Hatchery‐reared fish are commonly stocked into freshwaters to enhance recreational angling. As these fishes are often of high trophic position and attain relatively large sizes, they potentially interact with functionally similar resident fishes and modify food‐web structure. Hatchery‐reared barbel Barbus barbus are frequently stocked to enhance riverine cyprinid fish communities in Europe; these fish can survive for over 20 years and exceed 8 kg. Here, their trophic consequences for resident fish communities were tested using cohabitation studies, mainly involving chub Squalius cephalus, a similarly large‐bodied, omnivorous and long‐lived species. These studies were completed over three spatial scales: pond mesocosms, two streams and three lowland rivers, and used stable isotope analysis. Experiments in mesocosms over 100 days revealed rapid formation of dietary specializations and discrete trophic niches in juvenile B. barbus and S. cephalus. This niche partitioning between the species was also apparent in the streams over 2 years. In the lowland rivers, where fish were mature individuals within established populations, this pattern was also generally apparent in fishes of much larger body sizes. Thus, the stocking of these hatchery‐reared fish only incurred minor consequences for the trophic ecology of resident fish, with strong patterns of trophic niche partitioning and diet specialization. Application of these results to decision‐making frameworks should enable managers to make objective decisions on whether cyprinid fish should be stocked into lowland rivers according to ecological risk.  相似文献   

9.
The freshwater turtles of the genus Emys and some leech species of the family Glossiphoniidae are the only Palaearctic representatives of primarily Nearctic taxa, which jointly colonized Eurasia and the Maghreb during the Miocene. The strict trophic relationships occurring between the glossiphoniid parasite leech Placobdella costata and its host, the emydid Emys orbicularis, make them a prime example of host–parasite cophylogenetic evolution. In the light of the discovery of the Sicilian cryptic endemic species Emys trinacris, which is the sister species to the widespread Palaearctic E. orbicularis, the possible cophylogenetic divergence of the turtle hosts and their leech parasites was investigated. In spite of the deep divergence scored between the two pond turtle species and of their allopatric distribution, their leech parasites proved to be conspecific and indistinguishable based on the implemented molecular marker. This unexpected decoupling might likely be ascribed to the different dispersal abilities of the two taxa and/or to the recent, human‐mediated introduction of the leech parasites in Sicily. If this last scenario is confirmed, the long‐term effects of the introduced leech parasite on the endemic Sicilian pond turtle Emys trinacris should be carefully monitored. In the frame of this study, representatives of the widely spread predatory leech Helobdella stagnalis were observed on E. trinacris. Molecular analyses of their stomach content allowed to rule out the possibility of the existence of a trophic relationships between these two taxa, in contrast to what was previously suspected, and suggest that H. stagnalis specimens were rather attached to the turtles for non‐nutritional reasons.  相似文献   

10.
Sea‐ice coverage is a key abiotic driver of annual environmental conditions in Arctic marine ecosystems and could be a major factor affecting seabird trophic dynamics. Using stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in eggs of thick‐billed murres (Uria lomvia), northern fulmars (Fulmarus glacialis), glaucous gulls (Larus hyperboreus), and black‐legged kittiwakes (Rissa tridactyla), we investigated the trophic ecology of prebreeding seabirds nesting at Prince Leopold Island, Nunavut, and its relationship with sea‐ice conditions. The seabird community of Prince Leopold Island had a broader isotopic niche during lower sea‐ice conditions, thus having a more divergent diet, while the opposite was observed during years with more extensive sea‐ice conditions. Species' trophic position was influenced by sea ice; in years of lower sea‐ice concentration, gulls and kittiwakes foraged at higher trophic levels while the opposite was observed for murres and fulmars. For murres and fulmars over a longer time series, there was no evidence of the effect of sea‐ice concentration on species' isotopic niche. Results suggest a high degree of adaptation in populations of high Arctic species that cope with harsh and unpredictable conditions. Such different responses of the community isotopic niche also show that the effect of variable sea‐ice conditions, despite being subtle at the species level, might have larger implications when considering the trophic ecology of the larger seabird community. Species‐specific responses in foraging patterns, in particular trophic position in relation to sea ice, are critical to understanding effects of ecosystem change predicted for a changing climate.  相似文献   

11.
The ecological roles and trophic interactions of two commercially important mesopredatory shark species, Squalus acanthias and Mustelus punctulatus that co‐occur on the continental shelf of the north‐central Adriatic Sea were investigated. Both shark species are dietary specialists, with a significant dietary overlap recorded only during the spring season. They showed different patterns of feeding as they grew: S. acanthias extended its trophic niche with an increase in size, while M. punctulatus developed a more specialized diet. These two sharks partition food resources and reduce niche overlap by foraging at different trophic levels. Mustelus punctulatus is a crustacean feeder, specialized in foraging on scavenging malacostracans frequently found along trawl tracks or on discards in the Adriatic fishing zone. Conversely, S. acanthias prefers small pelagic fishes, which are commercially exploited and in decline. The different foraging strategies adopted by these two species suggest that they should be managed separately. Dietary specialization, direct competition with humans for prey and their higher intrinsic vulnerability make S. acanthias particularly susceptible to the effects of anthropogenic perturbations.  相似文献   

12.
While most studies have focused on the timing and nature of ontogenetic niche shifts, information is scarce about the effects of community structure on trophic ontogeny of top predators. We investigated how community structure affects ontogenetic niche shifts (i.e., relationships between body length, trophic position, and individual dietary specialization) of a predatory fish, brown trout (Salmo trutta). We used stable isotope and stomach content analyses to test how functional characteristics of lake fish community compositions (competition and prey availability) modulate niche shifts in terms of (i) piscivorous behavior, (ii) trophic position, and (iii) individual dietary specialization. Northern Scandinavian freshwater fish communities were used as a study system, including nine subarctic lakes with contrasting fish community configurations: (i) trout‐only systems, (ii) two‐species systems (brown trout and Arctic charr [Salvelinus alpinus] coexisting), and (iii) three‐species systems (brown trout, Arctic charr, and three‐spined sticklebacks [Gasterosteus aculeatus] coexisting). We expected that the presence of profitable small prey (stickleback) and mixed competitor–prey fish species (charr) supports early piscivory and high individual dietary specialization among trout in multispecies communities, whereas minor ontogenetic shifts were expected in trout‐only systems. From logistic regression models, the presence of a suitable prey fish species (stickleback) emerged as the principal variable determining the size at ontogenetic niche shifts. Generalized additive mixed models indicated that fish community structure shaped ontogenetic niche shifts in trout, with the strongest positive relationships between body length, trophic position, and individual dietary specialization being observed in three‐species communities. Our findings revealed that the presence of a small‐sized prey fish species (stickleback) rather than a mixed competitor–prey fish species (charr) was an important factor affecting the ontogenetic niche‐shift processes of trout. The study demonstrates that community structure may modulate the ontogenetic diet trajectories of and individual niche specialization within a top predator.  相似文献   

13.
A re‐assessment of the diet of the Atlantic sharpnose shark Rhizoprionodon terraenovae was conducted to provide an update on their trophic level. Rhizoprionodon terraenovae primarily consume teleosts, but previously unreported loggerhead sea turtles Caretta caretta were also found in the diet. Analysis suggests that calculated trophic level may depend on diet and geographic area.  相似文献   

14.
The stable coexistence of very similar species has perplexed ecologists for decades and has been central to the development of coexistence theory. According to modern coexistence theory, species can coexist stably (i.e. persist indefinitely with no long‐term density trends) as long as species' niche differences exceed competitive ability differences, even if these differences are very small. Recent studies have directly quantified niche and competitive ability differences in experimental communities at small spatial scales, but provide limited information about stable coexistence across spatial scales in heterogeneous natural communities. In this study, we use experimental and observational approaches to explore evidence for niche and competitive ability differences between two closely related, ecologically similar and widely coexisting annual forbs: Trachymene cyanopetala and T. ornata. We experimentally tested for stabilizing niche differences and competitive ability differences between these species by manipulating species' frequencies, under both well‐watered and water‐stressed conditions. We considered these experimental results in light of extensive field observations to explore evidence of niche segregation at a range of spatial scales. We found little evidence of intra‐specific stabilization or competitive ability differences in laboratory experiments while observational studies suggested niche segregation across pollinator assemblages and small‐scale microclimate heterogeneity. Though we did not quantify long‐term stabilization of coexisting populations of these species, results are consistent with expectations for stable coexistence of similar species via a spatial storage effect allowing niche differences to overcome even small (to absent) competitive ability differences.  相似文献   

15.
16.
Multiple anthropogenic pressures including the widespread introductions of non‐native species threaten biodiversity and ecosystem functioning notably by modifying the trophic structure of communities. Here, we provided a global evaluation of the impacts of non‐native species on the isotopic structure (δ13C and δ15N) of freshwater fish communities. We gathered the stable isotope values (n = 4030) of fish species in 496 fish communities in lentic (lakes, backwaters, reservoirs) and lotic (running waters such as streams, rivers) ecosystems throughout the world and quantified the isotopic structure of communities. Overall, we found that communities containing non‐native species had a different isotopic structure than communities without non‐native species. However, these differences varied between ecosystem types and the trophic positions of non‐native species. In lotic ecosystems, communities containing non‐native species had a larger total isotopic niche than communities without non‐native species. This was primarily driven by the addition of non‐native predators at the top of the food chain that increased δ15N range without modifying the isotopic niche size of native species. In lentic ecosystems, non‐native primary consumers increased δ15N range and this was likely driven by an increase of resource availability for species at higher trophic levels, increasing food chain length. The introduction of non‐native secondary consumers at the centre of the isotopic niche of recipient communities decreased the core isotopic niche size, the δ13C range of recipient communities and the total isotopic niche of coexisting native species. These results suggested a modified contribution of the basal resources consumed (e.g. multi‐chain omnivory) and an increase level of competition with native species. Our results notably imply that, by affecting the isotopic structure of freshwater fish communities at a global scale, non‐native species represent an important source of perturbations that should be accounted for when investigating macro‐ecological patterns of community structure and biotic interactions.  相似文献   

17.
Trophic niche overlap in native and alien fish species can lead to competitive interactions whereby non‐native fishes outcompete indigenous individuals and eventually affect the viability of natural populations. The species Erythroculter mongolicus and Erythroculter ilishaeformis (belonging to the Culterinae), which are two commercially important fish species in the backwater bay of the Pengxi River in the Three Gorges Reservoir (TGR), were threatened by competition from the non‐native Coilia ectenes (lake anchovy). The latter is an alien species introduced into the lower reaches of the Yangtze River in China and now widespread in the TGR. The trophic consequences of non‐native lake anchovy invasion for E. mongolicus and E. ilishaeformis were assessed using stable isotope analysis (δ13C and δ15N) and associated metrics including the isotopic niche, measured as the standard ellipse area. The trophic niche of native E. mongolicus had little overlap (<15%) with the alien fish species and was significantly reduced in size after invasion by lake anchovy. This suggests that E. mongolicus shifted to a more specialized diet after invasion by lake anchovy. In contrast, the trophic niche overlap of native fish E. ilishaeformis with the alien fish species was larger (>50%) and the niche was obviously increased, implying that fish in this species exploited a wider dietary base to maintain their energetic requirements. Thus, marked changes for the native E. mongolicus and E. ilishaeformis were detected as the trophic consequences of invasion of non‐native lake anchovy.  相似文献   

18.
Understanding the mechanisms maintaining local species richness is a major topic in tropical ecology. In ecological communities of Madagascar, primates represent a major part of mammalian diversity and, thus, are a suitable taxon to study these mechanisms. Previous research suggested that ecological niche differentiation facilitates the coexistence of lemurs. However, detailed data on all species making up diverse local primate assemblages is rarely available, hampering community‐wide tests of niche differentiation among Malagasy mammals. Here, we took an indirect approach and used stable isotopes as long‐term indicators of individuals' diets to answer the question of whether trophic patterns and food‐related mechanisms stabilize coexistence in a species‐rich lemur community. We analyzed stable carbon and nitrogen isotopes in hair collected from eight syntopic lemurs in Kirindy Forest. We found that lemur species were well separated into trophic niches and ranged over two trophic levels. Furthermore, species were densely packed in isotopic space suggesting that past competitive interactions between species are a major structuring force of this dry forest lemur community. Results of other comparative studies on primates and our findings underline that—in contrast to communities worldwide—the structure and composition of lemur communities follow predictions of ecological niche theory. Patterns of competitive interactions might be more clearly revealed in Malagasy primate communities than elsewhere because lemurs represent a large fraction of ecologically interacting species in these communities. The pronounced trophic niche differentiation among lemurs is most likely due to intense competition in the past as is characteristic for adaptive radiations. Am J Phys Anthropol 153:249–259, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Quantifying diet is essential for understanding the functional role of species with regard to energy processing, transfer, and storage within ecosystems. Recently, variance structure in the stable isotope composition of consumer tissues has been touted as a robust tool for quantifying trophic niche width, a task that has previously proven difficult due to bias in direct dietary analyses and difficulties in integrating diet composition over time. We used carbon and nitrogen stable isotope analyses to examine trophic niche width of two sympatric aquatic snakes, banded watersnakes Nerodia fasciata and black swamp snakes Seminatrix pygaea inhabiting an isolated wetland where seasonal migrations of amphibian prey cause dramatic shifts in resource availability. Specifically, we characterized snake and prey isotope compositions through time, space, and ontogeny and examined isotope values in relation to prey availability and snake diets assessed by gut content analysis. We determined that prey cluster into functional groups based on similarity of isotopic composition and seasonal availability. Isotope variance structure indicated that the trophic niche width of the banded watersnake was broader (more generalist) than that of the black swamp snake. Banded watersnakes also exhibited seasonal variation in isotope composition, suggesting seasonal diet shifts that track amphibian prey availability. Conversely, black swamp snakes exhibited little seasonal variation but displayed strong ontogenetic shifts in carbon and nitrogen isotope composition that closely paralleled ontogenetic shifts in their primary prey, paedomorphic mole salamanders Ambystoma talpoideum. Although niche dimensions are often treated as static, our results demonstrate that seasonal shifts in niche dimensions can lead to changes in niche overlap between sympatric species. Such short‐term fluctuations in niche overlap can influence competitive interactions and consequently the composition and dynamics of communities and ecosystems.  相似文献   

20.
Identifying and characterizing top predators’ use of trophic resources provides important information about animal ecology and their response to changing conditions. Information from sources such as stable isotopes can be used to infer changes in resource use as direct observations in the wild are difficult to obtain, particularly in the marine environment. Stable carbon and nitrogen isotope values were recovered from the canine teeth of grey seals collected from haul outs in the central North Sea in the 1970/1980s (n = 44) and 2000s (n = 25), spanning a period of marked ecosystem changes in the region. Extracting material deposited during juvenile and adult life‐stages, we reconstructed a multi‐decadal record of δ15N and δ13C variation. Using established correlations between stable isotope ratios and sea bottom temperature we created a proxy for baseline isotopic variability to account for this source of temporal change. We found 1) a significant long‐term decline in juvenile grey seal δ15N values, suggesting trophic position has decreased over time; 2) a decline in adult δ15N values and contraction in stable isotopic niche space after the North Sea regime shift, signifying both a decline in trophic position and change in foraging habits over the 20th century; and 3) evidence for dietary segregation between juvenile and adult animals, showing juvenile individuals feeding at a lower trophic position and in more nearshore areas than adults. Our results demonstrate the efficacy of mining archived biological samples to address ecological questions and imply important ontogenetic and long‐term shifts in the feeding ecology of a top predator. Long‐term changes in grey seal trophic dynamics may be partly in response to well documented ecosystem changes in the North Sea. Such indirect monitoring of marine predators may have utility when set in the context of ecosystem assessments where paucity of long‐term monitoring data is prevalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号