首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite a white‐tailed deer (WTD) population in the United States of approximately 32 million animals extremely little is known of the prevalence and species of the protists that infect these animals. This study was undertaken to determine the presence of potential human protist pathogens in culled WTD in central Maryland. Feces from fawns to adults were examined by molecular methods. The prevalence of Enterocytozoon bieneusi, Cryptosporidium, and Giardia was determined by PCR. All PCR‐positive specimens were sequenced to determine the species and genotype(s). Of specimens from 80 WTD, 26 (32.5%) contained 17 genotypes of E. bieneusi. Four genotypes were previously reported (I, J, WL4, LW1) and 13 novel genotypes were identified and named DeerEb1‐DeerEb13. Genotypes I, J, and LW1 are known to infect humans. Ten (12.5%) specimens contained the Cryptosporidium deer genotype, and one (1.25%) contained Giardia duodenalis Assemblage A. The identification zoonotic G. duodenalis Assemblage A as well as four E. bieneusi genotypes previously identified in humans suggest that WTD could play a role in the transmission of those parasites to humans.  相似文献   

2.
Captive nonhuman primates have been identified as common hosts of Enterocytozoon bieneusi, Giardia duodenalis, Cryptosporidium hominis, and Cyclospora spp., thus are potential reservoirs of some enteric parasites in humans. However, few studies have examined the source and human-infective potential of enteric parasites in laboratory nonhuman primates. In the present work, 205 fecal specimens were collected from three groups of captive Macaca fascicularis kept in different densities in a laboratory animal facility in Guangxi, China, and examined by PCR for E. bieneusi, G. duodenalis, Cryptosporidium spp., and Cyclospora spp. The infection rates of E. bieneusi and G. duodenalis were 11.3% and 1.2% in Group 1 (young animals kept individually; n = 168), 72.2% and 11.1% in Group 2 (young animals kept in groups; n = 18), and 31.6% and 5.3% in Group 3 (adults kept in groups; n = 19), respectively. Sequence analysis of PCR products showed the presence of five E. bieneusi genotypes, with genotype D (in 16/36 genotyped specimens) and a new genotype (in 15/36 genotyped specimens) as the dominant genotypes. All five E. bieneusi genotypes belonged to the zoonotic group (Group 1). The G. duodenalis genotypes (assemblages AII and B) in five specimens and C. hominis subtype (IdA14) in one specimen were also known human-pathogens, although the Cyclospora seen in one animal appeared to be unique to macaque monkeys. The higher infection rate in younger animals reared in groups and common occurrence of zoonotic genotypes indicated that human-pathogenic E. bieneusi could be transmitted efficiently in captive nonhuman primates, and group-housing was a risk factor for transmission of zoonotic pathogens in young nonhuman primates in research facilities.  相似文献   

3.

Background

Despite their wide occurrence, cryptosporidiosis and giardiasis are considered neglected diseases by the World Health Organization. The epidemiology of these diseases and microsporidiosis in humans in developing countries is poorly understood. The high concentration of pathogens in raw sewage makes the characterization of the transmission of these pathogens simple through the genotype and subtype analysis of a small number of samples.

Methodology/Principal Findings

The distribution of genotypes and subtypes of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in 386 samples of combined sewer systems from Shanghai, Nanjing and Wuhan and the sewer system in Qingdao in China was determined using PCR-sequencing tools. Eimeria spp. were also genotyped to assess the contribution of domestic animals to Cryptosporidium spp., G. duodenalis, and E. bieneusi in wastewater. The high occurrence of Cryptosporidium spp. (56.2%), G. duodenalis (82.6%), E. bieneusi (87.6%), and Eimeria/Cyclospora (80.3%) made the source attribution possible. As expected, several human-pathogenic species/genotypes, including Cryptosporidium hominis, Cryptosporidium meleagridis, G. duodenalis sub-assemblage A-II, and E. bieneusi genotype D, were the dominant parasites in wastewater. In addition to humans, the common presence of Cryptosporidium spp. and Eimeria spp. from rodents indicated that rodents might have contributed to the occurrence of E. bieneusi genotype D in samples. Likewise, the finding of Eimeria spp. and Cryptosporidium baileyi from birds indicated that C. meleagridis might be of both human and bird origins.

Conclusions/Significance

The distribution of Cryptosporidium species, G. duodenalis genotypes and subtypes, and E. bieneusi genotypes in urban wastewater indicates that anthroponotic transmission appeared to be important in epidemiology of cryptosporidiosis, giardiasis, and microsporidiosis in the study areas. The finding of different distributions of subtypes between Shanghai and Wuhan was indicative of possible differences in the source of C. hominis among different areas in China.  相似文献   

4.
5.
Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis are common enteric pathogens that are capable of infecting humans and animals. Total of 1,005 fecal samples from captive pet birds were collected from seven locations in Henan Province, China. The results demonstrated that 9.9% (99/1,005) of the captive birds were infected with one of these three pathogens. Enterocytozoon bieneusi was the most prevalent species among the birds (45/1,005, 4.5%) followed by Gduodenalis (33/1,005, 3.3%) and Cryptosporidium spp. (21/1,005, 2.1%). Five Cryptosporidium species were identified, namely, Cbaileyi (10), Cgalli (5), Cmeleagridis (4), Candersoni (1), and Cparvum (1). Two known Ebieneusi genotypes were identified: Peru 6 (44) was identified in pigeons (34) and European turtle doves (10); whereas, the genotype PtEb I (1) was only identified in a pigeon. Only Gduodenalis assemblage E (33) was identified in some pet birds. To the best of our knowledge, this study is the first to undertake the molecular identification of Gduodenalis in birds in China. The identification of potentially zoonotic species/genotypes of the pathogens suggests that exposure to the excreta of these birds, either directly or via food and water, may pose a threat to human health.  相似文献   

6.
Non-human primates (NHPs) are confirmed as reservoirs of Cryptosporidium spp., Giardia intestinalis, and Enterocytozoon bieneusi. In this study, 197 fresh fecal samples from 8 NHP species in Qinling Mountains, northwestern China, were collected and examined using multilocus sequence typing (MLST) method. The results showed that 35 (17.8%) samples were positive for tested parasites, including Cryptosporidium spp. (3.0%), G. intestinalis (2.0%), and E. bieneusi (12.7%). Cryptosporidium spp. were detected in 6 fecal samples of Macaca mulatta, and were identified as C. parvum (n=1) and C. andersoni (n=5). Subtyping analysis showed Cryptosporidium spp. belonged to the C. andersoni MLST subtype (A4, A4, A4, and A1) and C. parvum 60 kDa glycoprotein (gp60) subtype IId A15G2R1. G. intestinalis assemblage E was detected in 3 M. mulatta and 1 Saimiri sciureus. Intra-variations were observed at the triose phosphate isomerase (tpi), beta giardin (bg), and glutamate dehydrogenase (gdh) loci, with 3, 1, and 2 new subtypes found in respective locus. E. bieneusi was found in Cercopithecus neglectus (25.0%), Papio hamadrayas (16.7%), M. mulatta (16.3%), S. sciureus (10%), and Rhinopithecus roxellana (9.5%), with 5 ribosomal internal transcribed spacer (ITS) genotypes: 2 known genotypes (D and BEB6) and 3 novel genotypes (MH, XH, and BSH). These findings indicated the presence of zoonotic potential of Cryptosporidium spp. and E. bieneusi in NHPs in Qinling Mountains. This is the first report of C. andersoni in NHPs. The present study provided basic information for control of cryptosporidiosis, giardiasis, and microsporidiosis in human and animals in this area.  相似文献   

7.
Molecular characterization of Cryptosporidium spp. and Enterocytozoon bieneusi has improved our understanding of the transmission of both organisms in humans. In this study, to infer possible infection sources, Cryptosporidium spp. and E. bieneusi in fecal specimens from 90 HIV‐infected patients attending antiretroviral clinics in Lagos, Nigeria were detected and genotyped by PCR and DNA sequencing. Cryptosporidium spp. and E. bieneusi were identified in four and five patients, respectively, including the occurrence of subtype IeA11T3G3 of Cryptosporidium hominis in two patients, subtype IIcA5G3k of Cryptosporidium parvum in one patient, and Type IV of E. bieneusi in four patients. Among the remaining positive patients, one had mixed infection of Cryptosporidium meleagridis and C. hominis and one had mixed E. bieneusi genotypes. These data highlight a possible difference in major transmission routes (anthroponotic vs. zoonotic) between Cryptosporidium spp. and E. bieneusi in HIV+ patients in the study area.  相似文献   

8.
To assess the host specificity of Enterocytozoon bieneusi and to track the sources of E. bieneusi contamination, we genotyped E. bieneusi in wildlife and stormwater from the watershed of New York City''s source water, using ribosomal internal transcribed spacer (ITS)-based PCR and sequence analyses. A total of 255 specimens from 23 species of wild mammals and 67 samples from stormwater were analyzed. Seventy-four (29.0%) of the wildlife specimens and 39 (58.2%) of the stormwater samples from streams were PCR positive. Altogether, 20 E. bieneusi genotypes were found, including 8 known genotypes and 12 new ones. Sixteen and five of the genotypes were seen in animals and stormwater from the watershed, respectively, with WL4 being the most common genotype in both animals (35 samples) and stormwater (23 samples). The 20 E. bieneusi genotypes belonged to five genogroups (groups 1, 3, 4, and 7 and an outlier), with only 23/113 (20.4%) E. bieneusi-positive samples belonging to zoonotic genogroup 1 and 3/20 genotypes ever being detected in humans. The two genogroups previously considered host specific, groups 3 and 4, were both detected in multiple groups of mammals. Thus, with the exception of the type IV, Peru11, and D genotypes, which were detected in only 7, 5, and 2 animals, respectively, most E. bieneusi strains in most wildlife samples and all stormwater samples in the watershed had no known public health significance, as these types have not previously been detected in humans. The role of different species of wild mammals in the contribution of E. bieneusi contamination in stormwater was supported by determinations of host-adapted Cryptosporidium species/genotypes in the same water samples. Data from this study indicate that the host specificity of E. bieneusi group 3 is broader than originally thought, and wildlife is the main source of E. bieneusi in stormwater in the watershed.  相似文献   

9.
Both Cryptosporidium spp. and Giardia duodenalis are enteric protozoan parasites that infect a wide variety of domestic animals as well as humans worldwide, causing diarrheal diseases. Giardia duodenalis assemblages C and D are specific to canine hosts and zoonotic assemblages A and B are also found in dogs as a reservoir host. In dogs, Cryptosporidium canis is the host-specific species while humans are infected by C. hominis and C. parvum and at least another 16 zoonotic Cryptosporidium species have been reported causing human infections, with C. meleagridis, C. viatorum, and C. ubiquitum being the most frequent. The objective of this study was to determine the prevalence of Cryptosporidium spp. and G. duodenalis from stray dogs in areas of Bangkok and to identify the species and assemblages. Fecal samples (540) were collected from dogs residing in 95 monasteries in 48 districts in the Bangkok metropolitan area. Nested Polymerase Chain Reaction (PCR) was performed using the ssu-rRNA gene for both parasites. In total, 3.0% (16/540) samples were positive for G. duodenalis, with most being G. duodenalis assemblage D (7/16) followed by assemblage C (7/16) and zoonotic assemblage A (2/16). The prevalence of Cryptosporidium spp. was 0.7% (4/540) based on the PCR results and all were the dog genotype C. canis. These results indicated that dogs residing in Bangkok monasteries poses a limited role as source of human giardiosis and cryptosporidiosis.  相似文献   

10.
Cryptosporidium and Giardia infections are common causes of diarrhea worldwide. To better understand the transmission of human cryptosporidiosis and giardiasis in Henan, China, 10 Cryptosporidium-positive specimens and 18 Giardia-positive specimens were characterized at the species/genotype and subtype levels. Cryptosporidium specimens were analyzed by DNA sequencing of the small subunit rRNA and 60 kDa glycoprotein genes. Among those genotyped, nine belonged to C. hominis and one C. felis, with the former belonging to three subtype families: Ia, Ib, and Id. The three Ib subtypes identified, IbA16G2, IbA19G2, and IbA20G2, were very different from the two common Ib subtypes (IbA9G3 and IbA10G2) found in other areas of the world. The distribution of Giardia duodenalis genotypes and subtypes was assessed by sequence analysis of the triosephosphate isomerase (tpi) gene. The assemblages A (eight belonging to A-I and four A-II) and B (belonging to six new subtypes) were found in 12 and six specimens, respectively. More systematic studies are needed to understand the transmission of Cryptosporidium and G. duodenalis in humans in China.  相似文献   

11.
The risk of disease transmission from waterborne protozoa is often dependent on the origin (e.g., domestic animals versus wildlife), overall parasite load in contaminated waterways, and parasite genotype, with infections being linked to runoff or direct deposition of domestic animal and wildlife feces. Fecal samples collected from domestic animals and wildlife along the central California coast were screened to (i) compare the prevalence and associated risk factors for fecal shedding of Cryptosporidium and Giardia species parasites, (ii) evaluate the relative importance of animal host groups that contribute to pathogen loading in coastal ecosystems, and (iii) characterize zoonotic and host-specific genotypes. Overall, 6% of fecal samples tested during 2007 to 2010 were positive for Cryptosporidium oocysts and 15% were positive for Giardia cysts. Animal host group and age class were significantly associated with detection of Cryptosporidium and Giardia parasites in animal feces. Fecal loading analysis revealed that infected beef cattle potentially contribute the greatest parasite load relative to other host groups, followed by wild canids. Beef cattle, however, shed host-specific, minimally zoonotic Cryptosporidium and Giardia duodenalis genotypes, whereas wild canids shed potentially zoonotic genotypes, including G. duodenalis assemblages A and B. Given that the parasite genotypes detected in cattle were not zoonotic, the public health risk posed by protozoan parasite shedding in cattle feces may be lower than that posed by other animals, such as wild canids, that routinely shed zoonotic genotypes.  相似文献   

12.
To determine the occurrence and genotypes of Enterocytozoon bieneusi in captive mammals at Bangladesh National Zoo and to assess their zoonotic significance, 200 fecal samples from 32 mammalian species were examined using a nested PCR and sequencing of internal transcribed spacer (ITS) gene. Enterocytozoon bieneusi was detected in 16.5% (33/200) of the samples. Seven different ITS genotypes were identified, including two known genotypes (D and J) and five new ones (BAN4 to BAN8). Genotype D was the most common genotype being observed in 19 isolates. In phylogenetic analysis, four genotypes (D, BAN4, BAN5, and BAN6), detected in 30 isolates (90.9%), belonged to Group 1 having zoonotic potential. The sequence of genotype J found in a Malayan pangolin was clustered in so‐called ruminant‐specific Group 2. The other two genotypes BAN7 and BAN8 were clustered in primate‐specific Group 5. To our knowledge, this is the first report of molecular characterization of E. bieneusi in Bangladesh, particularly in captive‐bred wildlife in this country. The potentially zoonotic genotypes of E. bieneusi are maintained in zoo mammals that may transmit among these animals and to the humans through environmental contamination or contact.  相似文献   

13.
Microsporidia are known opportunistic microorganisms and usually transmitted via the fecal–oral route. However, there is no information about human‐infecting microsporidia in wildlife in Iran. This study aimed to investigate and analyze human‐infecting microsporidia isolated from raccoons in north of Iran. Totally, 30 fecal samples were collected; then, DNA extraction was performed and specific fragments of the SSU rRNA gene of Enterocytozoon bieneusi and Encephalitozoon species were amplified. After amplification and sequencing the ITS, the results were compared to the GenBank database. Phylogenetic trees and network analysis were employed to explore probable relationships. E. bieneusi was the only detected microsporidia among samples. Genotyping showed the genotypes D, E, and RA in 15/18 (83.33%), 1/18 (5.55%), and 2/18 (11.11%) of samples, respectively. Novel genotypes RA1 and RA2 grouped together and apart from other genotypes. E. bieneusi genotypes D and E clustered with the genotypes previously reported from animals, humans, and environmental samples. Network analysis revealed six distinct sequence types among raccoon's isolates. This study demonstrated that E. bieneusi genotype D was the most prevalent microsporidia among raccoons. It seems that wildlife may play a role in dispersion of microsporidia spores.  相似文献   

14.
Non-human primates (NHPs) are commonly infected with Cryptosporidium spp. and Giardia duodenalis. However, molecular characterisation of these pathogens from NHPs remains scarce. In this study, 2,660 specimens from 26 NHP species in China were examined and characterised by PCR amplification of 18S rRNA, 70 kDa heat shock protein (hsp70) and 60 kDa glycoprotein (gp60) gene loci for Cryptosporidium; and 1,386 of the specimens by ssrRNA, triosephosphate isomerase (tpi) and glutamate dehydrogenase (gdh) gene loci for Giardia. Cryptosporidium was detected in 0.7% (19/2660) specimens of four NHP species including rhesus macaques (0.7%), cynomolgus monkeys (1.0%), slow lorises (10.0%) and Francois’ leaf monkeys (6.7%), belonging to Cryptosporidium hominis (14/19) and Cryptosporidium muris (5/19). Two C. hominis gp60 subtypes, IbA12G3 and IiA17 were observed. Based on the tpi locus, G. duodenalis was identified in 2.2% (30/1,386) of specimens including 2.1% in rhesus macaques, 33.3% in Japanese macaques, 16.7% in Assam macaques, 0.7% in white-headed langurs, 1.6% in cynomolgus monkeys and 16.7% in olive baboons. Sequence analysis of the three targets indicated that all of the Giardia-positive specimens belonged to the zoonotic assemblage B. Highest sequence polymorphism was observed at the tpi locus, including 11 subtypes: three known and eight new ones. Phylogenetic analysis of the subtypes showed that most of them were close to the so-called subtype BIV. Intragenotypic variations at the gdh locus revealed six types of sequences (three known and three new), all of which belonged to so-called subtype BIV. Three specimens had co-infection with C. hominis (IbA12G3) and G. duodenalis (BIV). The presence of zoonotic genotypes and subtypes of Cryptosporidium spp. and G. duodenalis in NHPs suggests that these animals can potentially contribute to the transmission of human cryptosporidiosis and giardiasis.  相似文献   

15.
Little is known of the occurrence and age patterns of species/genotypes and subtypes of Cryptosporidium spp. and Giardia duodenalis in calves in Egypt. In this study, 248 fecal specimens were collected from dairy calves aged 1?day to 6?months on eight farms in three provinces during March 2015 to April 2016. Cryptosporidium spp. were detected and genotyped by using PCR-RFLP analysis of the small subunit rRNA (SSU rRNA) gene, while G. duodenalis was detected and genotyped by using PCR and sequence analyses of the triose phosphate isomerase (tpi), glutamate dehydrogenase (gdh) and β-giardin (bg) genes. The overall infection rates of Cryptosporidium spp. and G. duodenalis were 9.7 and 13.3%, respectively. The highest Cryptosporidium infection rate (26.7%) was in calves of age?≤?1?month while the highest G. duodenalis infection rate (44.4%) was in calves of 2?months. Three Cryptosporidium spp. were identified, including C. parvum (n?=?16), C. bovis (n?=?5) and C. ryanae (n?=?3), with the former being almost exclusively found in calves of ≤3?months of age and the latter two being only found in calves of over 3?months. Subtyping of C. parvum by PCR-sequence analysis of the 60?kDa glycoprotein gene identified subtypes IIaA15G1R1 (n?=?15) and IIaA15G2R1 (n?=?1). The G. duodenalis identified included both assemblages E (n?=?32) and A (n?=?1), with the latter belonging to the anthroponotic subtype A2. These data provide new insights into the genetic diversity and age patterns of Cryptosporidium spp. and G. duodenalis in calves in Egypt.  相似文献   

16.
Cryptosporidium and Giardia are ubiquitous protozoan parasites that infect a broad range of hosts. The presence of Cryptosporidium spp. and G. duodenalis was detected in 355 fecal samples of laboratory experimental rats from four experimental rat rearing facilities in China by PCR amplification of the small subunit (SSU) rRNA gene. The G. duodenalis positive samples were further characterized in the β-giardin (bg), glutamate dehydrogenase (gdh), and triosephosphate isomerase (tpi) genes. The overall infection rates of Cryptosporidium spp. and G. duodenalis were 0.6% (2/355) and 9.3% (33/355), respectively, with no co-infection. Among the four facilities, only the rats in Zhengzhou1 were found positive for the two pathogens. Undetermined Cryptosporidium genotype was observed in one sample and C. ubiquitum in another sample. Assemblage G was identified in all the 33 G. duodenalis positive isolates at SSU rRNA gene, out of which 19, 20, and 21 isolates were also subtyped as assemblage G at tpi, gdh and bg gens, respectively. To our knowledge, this is the first report of Cryptosporidium and G. duodenalis infections in laboratory experimental rats in China. The infections of these pathogens in laboratory animals should be monitored routinely since they may interfere the biological experiments in these animals.  相似文献   

17.
Cryptosporidium and Giardia are protozoan parasites capable of causing gastrointestinal illness in humans and animals. The purpose of this research was to determine the occurrence, genetic characteristics, and zoonotic potential of Cryptosporidium spp. and Giardia duodenalis in captive mammals at the Bangladesh National Zoo. A total of 200 fresh fecal samples from 32 mammalian species were collected and examined for Cryptosporidium spp. using nested polymerase chain reaction (PCR) targeting the small subunit (SSU) rRNA gene and G. duodenalis targeting the β-giardin (bg), glutamate dehydrogenase (gdh), and triosephosphate isomerase (tpi) genes. The overall infection rates of Cryptosporidium and G. duodenalis among captive mammals in the zoo were 3.5% (7/200) and 5.5% (11/200), respectively. Five species/genotypes of Cryptosporidium (C. hominis, C. andersoni, C. muris, C. felis, and Cryptosporidium deer genotype) were identified. C. hominis was subtyped as IbA12G3 by sequence analysis of the glycoprotein 60 (gp60) gene. Multilocus genotyping of G. duodenalis revealed assemblages A, B, and D. Mixed infections of assemblages B and D and A and B were found in an Asiatic jackal and a Nilgiri langur, respectively. To our knowledge, this is the first report on the occurrence and genetic identity of the two parasites among zoo animals in Bangladesh. The results suggest that zoonotic Cryptosporidium spp. and G. duodenalis are maintained in and transmitted between captive mammals. Therefore, washing, cleaning, and disinfection measures should be implemented to reduce the spread of Cryptosporidium and G. duodenalis infections.  相似文献   

18.
Enterocytozoon bieneusi, the most frequently diagnosed microsporidian species in humans, is also identified in a wide range of animals. To date, few data are available on E. bieneusi in yaks (Bos grunniens). In this study, we examined the occurrence and genotype identity of E. bieneusi in yaks in four counties in Qinghai Province of China. Of 327 fecal specimens examined by nested PCR analysis of the ribosomal internal transcribed spacer, 23 (7.0%) were E. bieneusi‐positive. DNA sequence analysis of the PCR products revealed the presence of five distinct genotypes: three Group 2 genotypes previously reported in cattle as well as humans (BEB4, I and J) and two novel genotypes (CHN11 and CHN12) belonging to the large zoonotic group (Group 1). Data of the study suggest that these animals could be potential reservoirs for human E. bieneusi infection.  相似文献   

19.
Evaluation of Cryptosporidium parvum Genotyping Techniques   总被引:1,自引:0,他引:1       下载免费PDF全文
We evaluated the specificity and sensitivity of 11 previously described species differentiation and genotyping PCR protocols for detection of Cryptosporidium parasites. Genomic DNA from three species of Cryptosporidium parasites (genotype 1 and genotype 2 of C. parvum, C. muris, and C. serpentis), two Eimeria species (E. neischulzi and E. papillata), and Giardia duodenalis were used to evaluate the specificity of primers. Furthermore, the sensitivity of the genotyping primers was tested by using genomic DNA isolated from known numbers of oocysts obtained from a genotype 2 C. parvum isolate. PCR amplification was repeated at least three times with all of the primer pairs. Of the 11 protocols studied, 10 amplified C. parvum genotypes 1 and 2, and the expected fragment sizes were obtained. Our results indicate that two species-differentiating protocols are not Cryptosporidium specific, as the primers used in these protocols also amplified the DNA of Eimeria species. The sensitivity studies revealed that two nested PCR-restriction fragment length polymorphism (RFLP) protocols based on the small-subunit rRNA and dihydrofolate reductase genes are more sensitive than single-round PCR or PCR-RFLP protocols.  相似文献   

20.
To identify the animal sources for Cryptosporidium contamination, we genotyped Cryptosporidium spp. in wildlife from the watershed of the New York City drinking water supply, using a small-subunit rRNA gene-based PCR-restriction fragment length polymorphism analysis and DNA sequencing. A total of 541 specimens from 38 species of wildlife were analyzed. One hundred and eleven (20.5%) of the wildlife specimens were PCR positive. Altogether, 21 Cryptosporidium genotypes were found in wildlife samples, 11 of which were previously found in storm runoff in the watershed, and six of these 11 were from storm water genotypes of unknown animal origin. Four new genotypes were found, and the animal hosts for four storm water genotypes were expanded. With the exception of the cervine genotype, most genotypes were found in a limited number of animal species and have no major public health significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号