首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Populations of three‐spined sticklebacks Gasterosteus aculeatus originating from contrasting habitats were studied to determine if habitat can affect the ability to combine spatial cues. Previous work has shown that different species combine spatial cues in different ways, and this study showed these differences also arose within a species: all fish were able to use geometrical cues to locate a maze exit, but only fish collected from river populations combined geometric cues with a non‐geometric global landmark cue.  相似文献   

2.
Animals use different behavioral strategies to maximize their fitness in the natural environment. Learning and memory are critical in this context, allowing organisms to flexibly and rapidly respond to environmental changes. We studied how the physical characteristics of the native habitat influence the spatial learning capacity of Anabas testudineus belonging to four different populations collected from two streams and two ponds, in a linear maze. Stream fish were able to learn the route faster than pond fish irrespective of the presence or absence of landmarks in the maze. However, climbing perch collected from ponds learned the route faster in the maze provided with landmarks than in Plain maze. The results indicate that fish inhabiting a lotic ecosystem use egocentric cues in route learning rather than visual cues like landmarks. A local landmark may be a more reliable cue in route learning in a relatively stable habitat like a pond. In flowing aquatic systems, water flow may continually disrupt the visual landscape and thus landmarks as visual cues become unreliable. Spatial learning is thus a fine-tuned response to the complexity of the habitat and early rearing conditions may influence the spatial learning ability in fish.  相似文献   

3.
The capacity to learn enables animals to match their phenotypic response to a changing environment on the basis of experience but learning is likely to incur costs such as the cost of making mistakes or the energetic cost of processing information. Little is known about how animals optimize the use of learned behaviour within their natural environments such that potential costs are minimized. We investigated whether the use of local landmarks in learning orientation routes by the three-spined stickleback, Gasterosteus aculeatus, varied in response to the visual stability of their natural habitats. Sticklebacks collected from five fast-flowing rivers and five ponds were trained to locate a hidden reward in a T-maze. Locating the reward required the fish to learn a body-centred algorithmic behaviour (turn left or right) or to follow plant landmarks. Probe trials, in which these cues conflicted, revealed which spatial cue the fish was using. Pond fish appeared to rely more than river fish on visual landmarks, which is consistent with the suggestion that even within a species, learned behaviour is fine-tuned in response to local environmental conditions. Landmarks may be reliable indicators of location only in stable pond habitats. In rivers, turbulence and flow may continually disrupt the visual landscape such that river fish may benefit from learning orientation routes only if learning is constrained so that unreliable visual cues are ignored. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

4.
Following spatial disorientation, animals can reorient themselves by relying on geometric cues (metric and sense) specified both by the macroscopic surface layout of an enclosed space and prominent visual landmarks in arrays. Whether spatial reorientation in arrays of landmarks is based on explicit representation of the geometric cues is a matter of debate. Here we trained homing pigeons (Columba livia) to locate a food-reward in a rectangular array of four identical or differently coloured pipes provided with four openings, only one of which allowed the birds to have access to the reward. Pigeons were trained either with a stable or a variable position of the opening on pipes, so that they could view the array either from the same or a variable perspective. Explicit mapping of configural geometry would predict successful reorientation irrespective of access condition. In contrast, we found that a stable view of the array facilitated spatial learning in homing pigeons, likely through the formation of snapshot-like memories.  相似文献   

5.
Unlike investigations of animals’ use of spatial cues such as landmarks, studies of sensitivity to the geometry of surfaces in an enclosure have proceeded mostly as an attempt to explain a laboratory finding with few direct tests of how animals use such a cue in nature. In this brief review, I discuss the current debate over whether global or local information from the enclosure drives the typical rotational error pattern in such studies. A consideration of the form and function of geometric cues in natural settings suggests that the natural boundaries for which arena walls are considered analogous might better be thought as landmarks. With a clearer picture of what geometric information is and how it might be used in nature, the generality of findings from laboratory studies of geometry enclosure can be better assessed.  相似文献   

6.
Experiments were designed to investigate whether three-spined sticklebacks Gasterosteus aculeatus can use direction of water flow as an orientation cue. The fish had to learn the location of a food patch in a channel where water flow direction was the only reliable indicator of the food patch position. Fish from two ponds and two rivers were trained and tested in the spatial task to determine whether river three-spined sticklebacks are more adept at using water flow as a spatial cue than fish from ponds. All fish were able to use water flow to locate the food patch but one of the two river groups was significantly faster at learning the patch location. When the task was reversed so that fish that had formerly been trained to swim downstream now had to learn to swim upstream and vice versa both river groups learned the reversed task faster than the two pond groups. In a second experiment, to investigate whether fish from ponds or rivers vary in the type of spatial cue that they prefer to use, fish from one pond and one river were given a choice between two different types of spatial cue: flow direction or visual landmarks. A test trial in which these two cues were put into conflict revealed that the river population showed a strong preference for flow direction whilst the pond population preferred to use visual landmarks.  相似文献   

7.

Background

Sex differences in spatial memory function have been reported with mixed results in the literature, with some studies showing male advantages and others showing no differences. When considering estrus cycle in females, results are mixed at to whether high or low circulating estradiol results in an advantage in spatial navigation tasks. Research involving humans and rodents has demonstrated males preferentially employ Euclidean strategies and utilize geometric cues in order to spatially navigate, whereas females employ landmark strategies and cues in order to spatially navigate.

Methodology/Principal Findings

This study used the water-based snowcone maze in order to assess male and female preference for landmark or geometric cues, with specific emphasis placed on the effects of estrus cycle phase for female rat. Performance and preference for the geometric cue was examined in relation to total hippocampal and hippocampal subregions (CA1&2, CA3 and dentate gyrus) volumes and entorhinal cortex thickness in order to determine the relation between strategy and spatial performance and brain area size. The study revealed that males outperformed females overall during training trials, relied on the geometric cue when the platform was moved and showed significant correlations between entorhinal cortex thickness and spatial memory performance. No gross differences in behavioural performance was observed within females when accounting for cyclicity, and only total hippocampal volume was correlated with performance during the learning trials.

Conclusions/Significance

This study demonstrates the sex-specific use of cues and brain areas in a spatial learning task.  相似文献   

8.
Journal of Comparative Physiology B - Decreased oxygen (O2) availability (hypoxia) is common in rock pools and challenges the aerobic metabolism of fishes living in these habitats. In this study,...  相似文献   

9.
This study examined time‐of‐day associative learning to either spatial or feature information in homing pigeons in an open‐field, laboratory setting. Homing pigeons are well known for their navigational abilities and generally have been shown to rely more heavily on spatial than nonspatial cues in recognizing a goal. However, during goal localization, homing pigeons also successfully use nonspatial, feature information. Homing pigeons were divided into two groups and were trained to locate two time‐of‐day dependent, food reward sites using either discriminative spatial or feature information. Because of the importance of the hippocampus in controlling avian memory, we hypothesized that homing pigeons trained with spatial cues would be superior in learning the time‐of‐day discrimination compared to the pigeons trained with feature cues. Indeed, homing pigeons that were trained with spatial information outperformed the pigeons trained with feature information in learning the time‐of‐day discrimination task.  相似文献   

10.
How the brain combines information from different sensory modalities and of differing reliability is an important and still-unanswered question. Using the head direction (HD) system as a model, we explored the resolution of conflicts between landmarks and background cues. Sensory cue integration models predict averaging of the two cues, whereas attractor models predict capture of the signal by the dominant cue. We found that a visual landmark mostly captured the HD signal at low conflicts: however, there was an increasing propensity for the cells to integrate the cues thereafter. A large conflict presented to naive rats resulted in greater visual cue capture (less integration) than in experienced rats, revealing an effect of experience. We propose that weighted cue integration in HD cells arises from dynamic plasticity of the feed-forward inputs to the network, causing within-trial spatial redistribution of the visual inputs onto the ring. This suggests that an attractor network can implement decision processes about cue reliability using simple architecture and learning rules, thus providing a potential neural substrate for weighted cue integration.  相似文献   

11.
Among vertebrates, comparable spatial learning abilities have been found in birds, mammals, turtles and fishes, but virtually nothing is known about such abilities in amphibians. Overall, amphibians are the most sedentary vertebrates, but poison frogs (Dendrobatidae) routinely shuttle tadpoles from terrestrial territories to dispersed aquatic deposition sites. We hypothesize that dendrobatid frogs rely on learning for flexible navigation. We tested the role of experience with the local cues for poison frog way-finding by (i) experimentally displacing territorial males of Allobates femoralis over several hundred metres, (ii) using a harmonic direction finder with miniature transponders to track these small frogs, and (iii) using a natural river barrier to separate the translocated frogs from any familiar landmarks. We found that homeward orientation was disrupted by the translocation to the unfamiliar area but frogs translocated over similar distances in their local area showed significant homeward orientation and returned to their territories via a direct path. We suggest that poison frogs rely on spatial learning for way-finding in their local area.  相似文献   

12.
Foraging ants are known to use multiple sources of information to return to the nest. These cue sets are employed by independent navigational systems including path integration in the case of celestial cues and vision‐based learning in the case of terrestrial landmarks and the panorama. When cue sets are presented in conflict, the Australian desert ant species, Melophorus bagoti, will choose a compromise heading between the directions dictated by the cues or, when navigating on well‐known routes, foragers choose the direction indicated by the terrestrial cues of the panorama against the dictates of celestial cues. Here, we explore the roles of learning terrestrial cues and delays since cue exposure in these navigational decisions by testing restricted foragers with differing levels of terrestrial cue experience with the maximum (180°) cue conflict. Restricted foragers appear unable to extrapolate landmark information from the nest to a displacement site 8 m away. Given only one homeward experience, foragers can successfully orient using terrestrial cues, but this experience is not sufficient to override a conflicting vector. Terrestrial cue strength increases with multiple experiences and eventually overrides the celestial cues. This appears to be a dynamic choice as foragers discount the reliability of the terrestrial cues over time, reverting back to preferring the celestial vector when the forager has an immediate vector, but the forager's last exposure to the terrestrial cues was 24 hr in the past. Foragers may be employing navigational decision making that can be predicted by the temporal weighting rule.  相似文献   

13.
Many animals use cues for small-scale navigation, including beacons, landmarks, compasses and geometric properties. Scatter-hoarding animals are a unique system to study small-scale navigation. They have to remember and relocate many individual spatial locations, be fairly accurate in their searching and have to remember these locations for long stretches of time. In this article, we review what is known about cue use in both scatter-hoarding birds and rodents. We discuss the importance of local versus global cues, the encoding of bearings and geometric rules, the use of external compasses such as the Sun and the influence of the shape of experimental enclosures in relocating caches or hidden food. Scatter-hoarding animals are highly flexible in how and what they encode. There also appear to be differences in what scatter-hoarding birds and rodents encode, as well as what scatter-hoarding animals in general encode compared with other animals. Areas for future research with scatter-hoarding animals are discussed in light of what is currently known.  相似文献   

14.
Seventeen captive cotton‐top tamarins (Saguinus oedipus oedipus) were individually tested on their use of spatial relationships between landmarks to locate multiple hidden food items. In two experiments, the tamarins were presented with a spatial‐foraging task in which positions of hidden food rewards were fixed in relation to an array of visual cues. In Experiment 1, the cues+hidden food configuration was rotated 90° and the tamarins were successful in locating the food items significantly above chance levels (P<0.01). In Experiment 2 the cues+hidden food configuration was translated (up, down or sideways) from the previously learned configuration, and the monkeys successfully localized the hidden food items (P<0.001). Results indicate that the tamarins relied on the spatial relationship between the multiple landmarks to locate hidden food items rather than on an associative or beacon strategy. The results of these experiments support the contention that when contextually appropriate these captive New World monkeys have the capacity to rely on the spatial relationship or positions of several cues as an array to localize points in their environment. Am. J. Primatol. 71:316–323, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The aim of these experiments was to investigate the type of cues used in homing processes by young Blattella germanica L. larvae. Several types of stimuli were tested: path integration with kinesthetic cues and visual orientation with landmark cues. Tests measured the escape direction of larvae from the food box after disturbance. Either type of cue alone, path integration or visual landmarks, was sufficient to allow larvae to orient towards their shelters, but they oriented more precisély when both types of cue were used. When several landmark cues (proximal and distal) were present, their relative angular position seemed important in the orientation process. Macroscopic shapes in the environment appeared to be used as a global image, memorized to reach the shelter.  相似文献   

16.
1. Understanding factors that regulate the assembly of communities is a main focus of ecology. Human‐engineered habitats, such as reservoirs, may provide insight into these assembly processes because they represent novel habitats that are subjected to colonization by fishes from the surrounding river basin or transported by humans. By contrasting community similarity within and among reservoirs from different drainage basins to nearby stream communities, we can test the relative constraints of reservoir habitats and regional species pools in determining species composition of reservoirs. 2. We used a large spatial database that included intensive collections from 143 stream and 28 reservoir sites within three major river basins in the Great Plains, U.S.A., to compare patterns of species diversity and community structure between streams and reservoirs and to characterize variation in fish community structure within and among major drainage basins. We expected reservoir fish faunas to reflect the regional species pool, but would be more homogeneous that stream communities because similar species are stocked and thrive in reservoirs (e.g. planktivores and piscivores), and they lack obligate stream organisms that are not shared among regional species pools. 3. We found that fish communities from reservoirs were a subset of fishes collected from streams and dominant taxa had ecological traits that would be favoured in lentic environments. Although there were regional differences in reservoir fish communities, species richness, patterns of rank abundance and community structure in reservoir communities were more homogonous across three major drainage basins than for stream communities. 4. The general pattern of convergence of reservoir fish community structure suggests their assembly is constrained by local factors such as habitat and biotic interactions, and facilitated by the introduction of species among basins. Because there is a reciprocal transfer of biota between reservoirs and streams, understanding factors structuring both habitats is necessary to evaluate the long‐term dynamics of impounded river networks.  相似文献   

17.
This study investigated the ability of the dusky damselfish Stegastes fuscus to associate conditioned and unconditioned stimuli (single CS–US) and to find a specific place in a clueless ambiece (spatial learning). After tested for colour preference and showing no specific colour attractively, the fish were trained to associate a colour cue with a stimulus fish (conspecific). Fish were then challenged to locate the exact place where the stimulus fish was presented. Stegastes fuscus spent most time close to the zone where stimulus was presented, even without obvious marks for orientation. The results confirm that S. fuscus show single CS–US learning and suggest the fish ability for spatial orientation. Stegastes fuscus appears to use multiple senses (sight and lateral line) for cues association and recall, and appear to perform relational learning similar to mammals. These data suggest the importance of cognitive skill for reef fishes that may have contributed to their establishment and evolutionary success in such complex environment.  相似文献   

18.
Prey fishes, like many organisms under fluctuating predation threat, rely on multiple sources of information to accurately gauge current risk. This includes the use of chemical cues such as alarm cues from damaged conspecifics or familiar heterospecifics, as well as the odour of known predators. While each fish is well equipped with its own array of sensory abilities, they should also be alert to the behaviours of nearby neighbours who may have information they lack. In the present study, we tested the ability of fathead minnows to use social cues in combination with the odour of damaged conspecifics and heterospecifics to mediate the assessment of predation risk. Specifically, we tested whether the presence of a shoal of conspecifics or familiar heterospecifics would significantly change a minnow's antipredator behaviour when exposed to the odour of a damage‐release cue from a conspecific or ecologically similar heterospecific. The results of our study showed a significant interaction between the damage‐release cues to which the minnows were exposed and the presence/absence of shoalmates. These findings have important implications for the design of future investigations of antipredator responses because most studies of group‐living prey have been conducted on solitary subjects.  相似文献   

19.
Roberts and Van Veldhuizen's [Roberts, W.A., Van Veldhuizen, N., 1985. Spatial memory in pigeons on the radial maze. J. Exp. Psychol.: Anim. Behav. Proc. 11, 241-260] study on pigeons in the radial maze sparked research on landmark use by pigeons in lab-based tasks as well as variants of the radial-maze task. Pigeons perform well on open-field versions of the radial maze, with feeders scattered on the laboratory floor. Pigeons can also be trained to search precisely for buried food. The search can be based on multiple landmarks, but is sometimes controlled by just one or two landmarks, with the preferred landmarks varying across individuals. Findings are similar in landmark-based searching on a computer monitor and on a lab floor, despite many differences between the two kinds of tasks. A number of general learning principles are found in landmark-based searching, such as cue competition, generalization and peak shift, and selective attention. Pigeons also learn the geometry of the environment in which they are searching. Neurophysiological studies have implicated the hippocampal formation (HF) in avian spatial cognition, with the right hippocampus hypothesized to play a more important role in the spatial recognition of goal locations. Most recently, single-cell recording from the pigeon's hippocampal formation has revealed cells with different properties from the classic 'place' cells of rats, as well as differences in the two sides of the hippocampus.  相似文献   

20.
Monkeys have strong abilities to remember the visual properties of potential food sources for survival in the nature. The present study demonstrated the first observations of rhesus monkeys learning to solve complex spatial mazes in which routes were guided by visual cues. Three monkeys were trained in a maze (6 m x 6 m) included of four different mazes. We recorded the cue and cup errors, latencies, and pathway for each trial. The data showed that monkeys learned the target place after three days in the first maze and spent a shorter time in learning the following mazes. The maze was an efficient method to measure the ability and proceeding of spatial memory in monkeys. Moreover, working memory can also be tested by using the maze. MK-801 at 0.02 mg/kg but not at 0.005 mg/kg impaired monkeys' retrieval of spatial memory after they learned all four mazes. The present maze may provide an efficient method to help bridging the gap in cognition between nonhuman primates and humans, and in particular to gain insight into human cognitive function and dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号