首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global climate change is expected to have major effects on host-parasite dynamics, with potentially enormous consequences for entire ecosystems. To develop an accurate prognostic framework, theoretical models must be supported by empirical research. We investigated potential changes in host-parasite dynamics between a fish parasite, the eyefluke Diplostomum baeri, and an intermediate host, the European perch Perca fluviatilis, in a large-scale semi-enclosed area in the Baltic Sea, the Biotest Lake, which since 1980 receives heated water from a nuclear power plant. Two sample screenings, in two consecutive years, showed that fish from the warmer Biotest Lake were now less parasitized than fish from the Baltic Sea. These results are contrasting previous screenings performed six years after the temperature change, which showed the inverse situation. An experimental infection, by which perch from both populations were exposed to D. baeri from the Baltic Sea, revealed that perch from the Baltic Sea were successfully infected, while Biotest fish were not. These findings suggest that the elevated temperature may have resulted, among other outcomes, in an extremely rapid evolutionary change through which fish from the experimental Biotest Lake have gained resistance to the parasite. Our results confirm the need to account for both rapid evolutionary adaptation and biotic interactions in predictive models, and highlight the importance of empirical research in order to validate future projections.  相似文献   

2.
This study assessed the major histocompatibility complex (MHC) and neutral genetic variation and structure in two percid species, perch Perca fluviatilis and zander Sander lucioperca, in a unique brackish ecosystem, the Baltic Sea. In addition, to assess the importance of MHC diversity to disease susceptibility in these populations, comparisons were made to an introduced, disease susceptible, P. fluviatilis population in Australia. Eighty‐three MHC class II B exon 2 variants were amplified: 71 variants from 92 P. fluviatilis samples, and 12 variants from 82 S. lucioperca samples. Microsatellite and MHC data revealed strong spatial genetic structure in S. lucioperca, but not P. fluviatilis, across the Baltic Sea. Both microsatellite and MHC data showed higher levels of genetic diversity in P. fluviatilis from the Baltic Sea compared to Australia, which may have facilitated the spread of an endemic virus, EHNV in the Australian population. The relatively high levels of genetic variation in the Baltic Sea populations, together with spatial genetic structure, however, suggest that there currently seems to be little risk of disease epidemics in this system. To ensure this remains the case in the face of ongoing environmental changes, fisheries and habitat disturbance, the conservation of local‐scale genetic variation is recommended.  相似文献   

3.
Characteristics important in identification of Heterocapsa species (i.e., thecal plate pattern, body scale structure, and shape and position of the nucleus and pyrenoid) are practically identical in the dinoflagellate investigated here and in Heterocapsa arctica T. Horig. described from the Canadian Arctic. Analysis of internal transcribed spacer (ITS) sequences confirms that the two dinoflagellates are very closely related; however, there is a clear difference in their size and shape. Our experiments show that the low‐salinity Baltic Sea brackish water does not reduce the size of the marine H. arctica to match that of the Baltic Sea morphotype. On the basis of these dissimilarities in general morphology and its geographic isolation in the Baltic Sea, we consider our material sufficiently differentiated from the typical H. arctica to warrant the status of a new subspecies, H. arctica subsp. frigida subsp. nov. Being of a distinct cell shape, the occurrence of subsp. frigida has been recorded in Algaline phytoplankton monitoring data collected since 1993. Although it has never been responsible for high biomass blooms, it commonly occurs in spring in the Northern Baltic Proper and in the western Gulf of Finland, when the water temperatures are <5°C.  相似文献   

4.
The potentially toxic dinoflagellate Prorocentrum minimum (Pavillard) Schiller has successfully established in the Baltic Sea in the last two decades. A review of the invasion history is presented as well as new data on the spatial and inter-annual variability of this species and its relation to salinity, temperature, and nutrient concentrations. A short literature review of the morphological characters of the Baltic P. minimum is also included.From 1993 to 2002, P. minimum was a regular component of the summer and autumn plankton flora of the Baltic Sea proper and the Gulf of Finland. Its abundance varied considerably inter-annually and did not show any clear trends during the period. Abundance of P. minimum was significantly higher in the nutrient-enriched Bay of Mecklenburg (German coast) and the southern Baltic proper than in the central and northern Baltic proper and the Gulf of Finland, where its abundance was mostly sparse. In coastal waters P. minimum occasionally reached densities of several million cells per litre and dominated phytoplankton biomass (>90%).Abundance of the Baltic P. minimum was generally not related to salinity or temperature. It could be a dominant species at both high and low salinity (over 15 and 4.8 PSU), and its temperature range was broad (from 2.7 to 26.4 °C). However, dense populations usually occurred from July to October at temperatures above 10 °C.Further, there appears to be a positive correlation between the success of P. minimum in the Baltic Sea and high concentrations of total phosphorus and nitrogen.This tolerant and morphologically variable dinoflagellate seems to be a morphospecies without subtaxa, which can expand its range in the Baltic Sea, especially in nutrient-rich coastal waters.  相似文献   

5.
Effects of stress and disturbance on morphology, reproductive effort, size and sex ratio were studied for Fucus vesiculosus populations from the Baltic Sea at Askö and the North Sea on the west coast of Sweden at Tjäm[otilde]. High morphological variation was found between Fucus populations, with significant differences in length and weight of individuals, thallus breadth, number of branches and receptacles and receptacle weight, not only between Baltic and North Sea populations but also between populations within the same area, differing in wave exposure. With increasing disturbance, individuals in both studied populations were smaller and less branched. Differences were observed in plant size, with longer, broader and more branched plants being found in Askö compared with Tjärnö. Fucus populations at Tjämö allocated more biomass to reproduction and had longer, heavier receptacles than at Askö. Although the observed morphological changes may be partly explained by differences in wave exposure and salinity between the two sites, it is not possible to rule out genetic differences between the Baltic and North Sea populations. However, it is unlikely that the variations observed within the populations and between populations from the same area are genetically determined.  相似文献   

6.
Between and within‐lake variations in morphology of perch Perca fluviatilis were studied in four humic lakes in eastern Finland. Perca fluviatilis were more streamlined and smaller headed in a lake with the highest abundance of cyprinids, but lowest abundance of predators (Lake Tuopanjärvi), indicating adaptation to planktivorous feeding and low predator density. Highest bodied fish were found from a lake with the lowest cyprinid but highest predator abundance (Lake Koppelojärvi), which conversely indicates adaptation to more effective predator avoidance. Furthermore, the length of the paired fins was longest in Lake Kinnasjärvi and Lake Tuopanjärvi, where the abundance of benthic macroinvertebrates was lowest, suggesting selection for more effective benthivory. Clear morphological differences of P. fluviatilis between habitats were found only in Lake Kinnasjärvi, whereas in Lake Koppelojärvi and Lake Tuopanjärvi only the length of the paired fins differed and in Lake Harkkojärvi no differences were found. Taken together, these results suggest that inter and intrapopulation morphological differences are probably highly dependent on different biotic factors (i.e. predation risk, resource availability and competition). Spatial and temporal variations in these factors may have a great effect on body morphology of P. fluviatilis.  相似文献   

7.
Stable isotope analysis of Baltic Sea cod from the Bornholm Sea (ICES‐SD 25) and western Baltic (Belt Sea, ICES‐SD 22) revealed significant differences in the δ15N and δ13C values of the dorsal muscle, as well as in the δ18O values of otoliths. The method pledges to become especially appropriate to the Baltic due to the high variability in oxygen isotope ratios associated with its estuarine nature.  相似文献   

8.
The diet of whiting Merlangius merlangus in the western Baltic Sea was investigated and compared to the diet in the southern North Sea. Clupeids were important prey in both areas, but especially in the western Baltic Sea where they constituted up to 90% of the diet of larger individuals. Gobies, brown shrimps and polychaetes were the main prey of juveniles in the western Baltic Sea, while a wider range of species were consumed in the North Sea. The shift to piscivory occurred at smaller sizes in the western Baltic Sea and the fish prey consumed was proportionately larger than in the southern North Sea. Estimates of prey abundance and food intake of M. merlangus are required to evaluate its predatory significance in the western Baltic Sea, but its diet suggests that it could be just as significant a fish predator here as in the southern North Sea.  相似文献   

9.
10.
The populations of brook lamprey Lampetra planeri of Portuguese Rivers were analysed phylogeographically using a fragment of 644 bp of the mitochondrial control region of 158 individuals from six populations. Samples representing L. planeri and migratory lampreys Lampetra fluviatilis of rivers draining to the North Sea and the Baltic Sea were also included to assess the relationships of Portuguese samples. The data support a clear differentiation of all the populations studied. Several populations, which are isolated among themselves and also from the migratory lampreys, proved to be entirely composed of private haplotypes, a finding that supports some time of independent evolutionary history for these populations. This, combined with the geographic confinement to small water bodies, justifies the recognition of at least four conservation units in the Portuguese rivers Sado, São Pedro, Nabão and Inha.  相似文献   

11.
A decrease in salinity and temperature over the past 3000 years has presented the marine algae of the Baltic Sea with very considerable problems in adaptation. The effects of salinity upon a number of Baltic algae have been measured. The results showed cell mortality to be severe in 0, 68 and 102‰, and minimal in 6 and 11‰: there was most variation in tolerance to 34 and 51‰. The salt tolerances of Baltic marine algae have proved more hyposaline than those of British intertidal algae. Water uptake and loss in tissues of Chorda filum and Fucus vesiculosus from Baltic and British populations have been measured in response to salinity changes. The results revealed significant population differences in both live and killed tissues. Receptacle development and oogonial maturation have been observed in Baltic and British F. vesiculosus, and found to differ in seasonality. Some observations were associated with local sea temperatures but differences in the timing of receptacle initiation and in oogonial size were not. Th depauperate thallus, commonly ascribed to the effects of low salinity, was found to be a complicated phenomenon, comprising numerous attributes which are combined differently in different taxa. The morphological differences between Baltic and British marine algae were usually striking.

The marine algae of the Baltic Sea have therefore diverged in a number of ways from their N. Atlantic counterparts. The naturally high variability of these taxa has enabled them to survive the period of increasingly strong selection pressure which followed the Littorina Sea episode. Divergence seems not to have advanced to the point where speciation may be said to have occurred. The Baltic may therefore be contrasted with the much older Mediterranean Sea, which contains a large number of endemic species. Nevertheless, the Baltic is a site of very considerable evolutionary importance.  相似文献   

12.
We investigated the geographical distribution of genetic variation in 67 individuals of Triglochin maritima from 38 localities across Europe using AFLP markers. Analysis of genetic variation resulted in the recognition of two major genetic groups. Apart from few geographical outliers, these are distributed (1) along the Atlantic coasts of Portugal, Spain and France and (2) in the North Sea area, the Baltic Sea area, at central European inland localities, the northern Adriatic Sea coast and the Mediterranean coast of southwest France. Considering possible range shifts of T. maritima in reaction to Quaternary climatic changes as deduced from the present-day northern temperature limit of the species, Quaternary changes of coastline in the North Sea area and the very recent origin of the Baltic Sea, we conclude that the coastal populations of T. maritima in the North Sea and Baltic Sea areas originated from inland populations.  相似文献   

13.
Total length, body mass and gut content mass of young‐of‐the‐year (YOY) perch Perca fluviatilis, dace Leuciscus leuciscus and bleak Alburnus alburnus were recorded over the summer of 2006 at three littoral sites at Upper Lake Constance. In P. fluviatilis and L. leuciscus, gut content mass correlated positively with wave‐induced energy flux (EF) of the respective site and sampling day, while no correlation of gut content mass with EF was found in A. alburnus. It was assumed that benthivorous P. fluviatilis and L. leuciscus profited from suspended or uncovered benthic food items generated by wave action at sites and periods with high EF. Alburnus alburnus, in contrast, feeding mainly on zooplankton in upper parts of the water column, could not profit from increased EF. In P. fluviatilis, increased gut content mass during periods of high EF resulted in higher growth rates. For L. leuciscus, no real growth rates in local fish populations could be determined, as individuals were less sedentary, and when increased growth occurred at sites during the periods of high EF, migration of fish levelled out the resulting size differences within few days. The results of this study show that dynamic habitat variables affect site profitability in the littoral zone of lakes, especially in benthivorous fishes. Therefore, dynamic habitat variables should be considered in addition to fixed habitat properties in analyses of habitat choice of fishes in the littoral zone of lakes.  相似文献   

14.
The present study determined the effect of body mass and acclimation temperature (15–28°C) on oxygen consumption rate (ṀO2) and the size dependency of preferred temperature in European perch Perca fluviatilis. Standard metabolic rate (SMR) scaled allometrically with body mass by an exponent of 0.86, and temperature influenced SMR with a Q10 of 1.9 regardless of size. Maximum metabolic rate (MMR) and aerobic scope (MMR-SMR) scaled allometrically with body mass by exponents of 0.75–0.88. The mass scaling exponents of MMR and aerobic scope changed with temperature and were lowest at the highest temperature. Consequently, the optimal temperature for aerobic scope decreased with increasing body mass. Notably, fish <40 g did not show a decrease aerobic scope with increasing temperature. Factorial aerobic scope (MMR × SMR−1) generally decreased with increasing temperatures, was unaffected by size at the lower temperatures, and scaled negatively with body mass at the highest temperature. Similar to the optimal temperature for aerobic scope, preferred temperature declined with increasing body mass, unaffectedly by acclimation temperature. The present study indicates a limitation in the capacity for oxygen uptake in larger fish at high temperatures. A constraint in oxygen uptake at high temperature may restrict the growth of larger fish with environmental warming, at least if food availability is not limited. Furthermore, behavioural thermoregulation may be contributing to regional changes in the size distribution of fish in the wild caused by global warming as larger individuals will prefer colder water at higher latitudes and at larger depths than smaller conspecifics with increasing environmental temperatures.  相似文献   

15.
Sexual size dimorphism (SSD) is often assumed to reflect the phenotypic consequences of differential selection operating on each sex. Species that exhibit SSD may also show intersexual differences in other traits, including field‐active body temperatures, preferred temperatures, and locomotor performance. For these traits, differences may be correlated with differences in body size or reflect sex‐specific trait optima. Male and female Yarrow's spiny lizards, Sceloporus jarrovii, in a population in southeastern Arizona exhibit a difference in body temperature that is unrelated to variation in body size. The observed sexual variation in body temperature may reflect divergence in thermal physiology between the sexes. To test this hypothesis, we measured the preferred body temperatures of male and female lizards when recently fed and fasted. We also estimated the thermal sensitivity of stamina at seven body temperatures. Variation in these traits provided an opportunity to determine whether body size or sex‐specific variation unrelated to size shaped their thermal physiology. Female lizards, but not males, preferred a lower body temperature when fasted, and this pattern was unrelated to body size. Larger individuals exhibited greater stamina, but we detected no significant effect of sex on the shape or height of the thermal performance curves. The thermal preference of males and females in a thermal gradient exceeded the optimal temperature for performance in both sexes. Our findings suggest that differences in thermal physiology are both sex‐ and size‐based and that peak performance at low body temperatures may be adaptive given the reproductive cycles of this viviparous species. We consider the implications of our findings for the persistence of S. jarrovii and other montane ectotherms in the face of climate warming.  相似文献   

16.
Global warming may affect most organisms and their interactions. Theory and simple mesocosm experiments suggest that consumer top–down control over primary producer biomass should strengthen with warming, since consumer respiration increases faster with warming than plant photosynthesis. However, these predictions have so far not been tested on natural communities that have experienced warming over many generations. Natural systems display a higher diversity, heterogeneity and complexity than mesocosms, which could alter predicted effects of warming. Here we used an artificially heated part of the northern Baltic Sea (the Forsmark Biotest basin) to test how warming influences trophic interactions in a shallow coastal food web with four trophic levels: omnivorous fish, invertivorous fish, herbivorous invertebrates, and filamentous macroalgae. Monitoring of fish assemblages over six years showed that small invertivorous fish (gobiids, sticklebacks and minnows) were much less abundant in the heated basin than in unheated references areas. Stomach content analyses of the dominating omnivorous fish – Eurasian perch Perca fluviatilis – revealed a strikingly different diet within and outside the Biotest basin; gammarid crustaceans were the dominating prey at heated sites, whereas invertivorous fish (e.g. gobiids) dominated at unheated sites. A 45‐day cage experiment showed that fish exclusion did not affect the biomass of algal herbivores (gastropods and gammarids), but reduced algal biomass in heated sites (but not unheated). This suggests that warming induced a trophic cascade from fish to algae, and that this effect was mediated by predator‐induced changes in herbivore behavior, rather than number. Overall, our study suggests that warming has effectively compressed the food chain from four to three trophic levels (algae, gammarids and perch), which have benefitted the primary producers by reducing grazing pressure. Consequently, warming appears to have restructured this coastal food web through a combination of direct (physiological) and indirect (species interactions) effects.  相似文献   

17.
Recent studies showing consequences of species’ genetic diversity on ecosystem performance raise the concern of how key ecosystem species are genetically structured. The bladder wrack Fucus vesiculosus L. is a dominant species of macroalga in the northern Atlantic, and it is particularly important as a habitat‐forming species in the Baltic Sea. We examined the genetic structure of populations of F. vesiculosus with a hierarchical approach from a within‐shore scale (10 m) to a between‐seas scale (Baltic Sea–Skagerrak, 800 km). Analysis of five microsatellite loci showed that population differentiation was generally strong (average FST = 12%), being significant at all spatial scales investigated (101, 103, 104–5, 106 m). Genetic differentiation between seas (Baltic Sea and Skagerrak) was substantial. Nevertheless, the effects of isolation by distance were stronger within seas than between seas. Notably, Baltic summer‐reproducing populations showed a strong within‐sea, between‐area (70 km) genetic structure, while Baltic autumn‐reproducing populations and Skagerrak summer‐reproducing populations revealed most genetic diversity between samples within areas (<1 km). Despite such differences in overall structure, Baltic populations of summer‐ and autumn‐reproducing morphs did not separate in a cluster analysis, indicating minor, if any, barriers to gene flow between them. Our results have important implications for management and conservation of F. vesiculosus, and we raise a number of concerns about how genetic variability should be preserved within this species.  相似文献   

18.
A naked dinoflagellate with a unique arrangement of chloroplasts in the center of the cell was isolated from the northern Baltic proper during a spring dinoflagellate bloom (March 2005). Morphological, ultrastructural, and molecular analyses revealed this dinoflagellate to be undescribed and belonging to the genus Gymnodinium F. Stein. Gymnodinium corollarium A. M. Sundström, Kremp et Daugbjerg sp. nov. possesses features typical of Gymnodinium sensu stricto, such as nuclear chambers and an apical groove running in a counterclockwise direction around the apex. Phylogenetic analyses based on partial nuclear‐encoded LSU rDNA sequences place the species in close proximity to G. aureolum, but significant genetic distance, together with distinct morphological features, such as the position of chloroplasts, clearly justifies separation from this species. Temperature and salinity experiments revealed a preference of G. corollarium for low salinities and temperatures, confirming it to be a cold‐water species well adapted to the brackish water conditions in the Baltic Sea. At nitrogen‐deplete conditions, G. corollarium cultures produced small, slightly oval cysts resembling a previously unidentified cyst type commonly found in sediment trap samples collected from the northern and central open Baltic Sea. Based on LSU rDNA comparison, these cysts were assigned to G. corollarium. The cysts have been observed in many parts of the Baltic Sea, indicating the ecologic versatility of the species and its importance for the Baltic ecosystem.  相似文献   

19.
The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20° C, where it was 28%. The results show that P. fluviatilis have capacity to osmoregulate in hyper‐osmotic environments. This contradicts previous studies and indicates intraspecific variability in osmoregulatory capabilities among P. fluviatilis populations or habitat origins. An apparent cost of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity on MMR is possibly due to a reduction in gill permeability, initiated to reduce osmotic stress. An interaction between salinity and temperature on aerobic scope shows that high salinity habitats are energetically beneficial during warm periods (summer), whereas low salinity habitats are energetically beneficial during cold periods (winter). It is suggested, therefore, that the seasonal migrations of P. fluviatilis between brackish and fresh water is to select an environment that is optimal for metabolism and aerobic scope.  相似文献   

20.
Drivers of population genetic structure are still poorly understood in marine micro‐organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500‐km‐long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low‐salinity Baltic Sea population and a high‐salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号