首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
C. I. Ullrich-Eberius 《Planta》1973,109(2):161-176
Summary Ion uptake was studied using 32P, 35S, 22Na and 42K as tracers in synchronized cells of Ankistrodesmus, which were slightly starved with respect to the ions to be investigated. In the light and in the dark, phosphate uptake is maximal between pH 5.5 and 6.5. Whereas Na+ in comparison to K+ enhances phosphate uptake in the light (8 to 9-fold) and in the dark, Ca++ exerts only a slightly stimulatory effect. The stimulation of phosphate binding by Na+ occurs rapidly, even after less than 5 sec of incubation, and also in the presence of an equimolar concentration of K+.The pH-dependence of Na+-uptake in the light and in the dark is comparable to a dissociation curve: Na+-uptake increases with decreasing extracellular H+-concentration and is inversely proportional to phosphate uptake in the absence of Na+. The light:dark ratio of Na+-uptake at pH 8 amounts to 7:1. Mere adsorption of Na+ is similarly dependent on the pH. K+ strongly competes with Na+-uptake, even at pH 8. K+-uptake proceeds in a quite different manner from Na+-uptake and has an optimum at pH 7.Sulfate is taken up linearly in a biphasic process as a function of time; the pH-optimum lies between pH 7.5 and 8. K+ but not Na+ slightly enhances sulfate uptake.The Na+-enhancement of phosphate uptake can be related neither to a sodium-potassium exchange pump nor to a photosynthesis-dependent ion-exchange reaction.The results suggest that the uptake of phosphate, Na+ and K+, and the influence of alkali cations on phosphate uptake, but not sulfate uptake, are strongly dependent on fixed charges of the plasmalemma or even of the cell wall. These fixed charges may even prevent an active ion uptake.  相似文献   

2.
A furosemide-sensitive, ouabain-insensitive [86Rb+] uptake is described in glioma cells in culture which is dependent upon external Na+, K+, and Cl? concentrations. This transport activity was also inhibited by bumetanide at 100-fold lower concentrations than furosemide. Furosemide-sensitive swelling of glioma cells is demonstrated and this activity is dependent upon external Na+ and K+ in a manner similar to [86Rb+] uptake. This transport activity was not detected in neuroblastoma cells and the possible relevance of these findings to extracellular K+ buffering by glia is discussed.  相似文献   

3.
To prepare membrane vesicles, nerve terminal preparations (synaptosomes) isolated from rat cerebral cortex were first subjected to hypotonic lysis. After collecting the membranes contained in this fraction by centrifugation, membrane vesicles were then reconstituted during incubation in a potassium salt solution at 37 °C. The transport of glutamate, aspartate, or γ-aminobutyric acid (GABA) was measured by transferring vesicles to 10 vol of 0.1 m NaCl solution containing the radioactive substrate. Transport was temperature dependent and exhibited saturation kinetics with an apparent Km of 2.5 μm. The rates and extent of l-glutamate and l-aspartate uptake were equivalent and were greater than those for GABA. Valinomycin increased the rate of uptake of each of these substances suggesting a role for an electrogenic component in transport. Consonant with this notion, external K+ and Rb+ decreased uptake of all three compounds. External thiocyanate also increases the rate of glutamate, aspartate, and GABA transport. Uptake of these neuroactive amino acids was absolutely dependent on external Na+; no other monovalent cation tested substitutes for it. Gramicidin D and nigericin inhibit glutamate transport by abolishing both the Na+ and K+ gradients. Monensin inhibits uptake by selectively dissipating the Na+ gradient. For both glutamate and GABA transport, the Na+ and K+ gradients are synergistic and not additive.  相似文献   

4.
The antiepileptic drug Na+-valproate (VPA) is a broadspectrum anticonvulsant. It has been proposed to be involved in the inhibitory mechanisms of GABA-ergic systems. In this study, transport of the drug and possible influence on the GABA uptake were investigated in primary astroglial cell cultures from newborn rat cerebral cortex. The results show a Na+ and K+ independent high affinity uptake for VPA, withK m andV max not significantly different from those observed for the GABA uptake. In the presence of the drug, the Km-value of the GABA uptake increased. The GABA uptake inhibitors guvacine, (RS)-Cis-4-OH-nipecotic acid and 4,5,6,7-tetrahydroisoxazolo (4,5-c) pyridin-3-ol (THPO) did not influence upon the uptake of VPA, suggesting a transport mechanism for the drug, separated from the GABA uptake carrier.  相似文献   

5.
The rat osteosarcoma cell line UMR-106–01 has an osteoblast-like phenotype. When grown in monolyer culture these cells transport inroganic phosphate and L-alanine via Na+-dependent transport systems. Exposure of these cells to a low phosphate medium for 4 h produced a 60–70 per cent increase in Na+-dependent phosphate uptake compared to control cells maintained in medium with a normal phosphate concentration. In contrast, Na+-dependent alanine uptake and Na+-independent phosphate uptake were not changed during phosphate deprivation. The increased phosphate uptake was due, in part, to an increased Vmax and was blocked completely by pretreatment with cycloheximide (70 μM). In these cells recovery of intracellular pH after acidification with NH4Cl is due primarily to the Na+/H+ exchange system. The rate of this recovery process, monitored with a pH sensitive indicator (BCECF), was decreased by more than 50 per cent in phosphate-deprived cells compared to controls indicating that Na+/H+ exchange was inhibited during phosphate deprivation.  相似文献   

6.
The monovalent ion transport systems of an immortalized insect cell line (CHE) have been investigated. These cells are unusual in that unlike most vertebrate cells, their normal extracellular environment consists of high potassium and low sodium concentrations. CHE cells maintained high intracellular [K+] through both a furosemide-inhibitable and a vanadate-inhibitable transport system. Intracellular exchangeable [Na+] was slightly lower than the extracellular [Na+] and was maintained at this level through a vanadate-sensitive transport system. Na+ uptake was also inhibited by furosemide: however, the stoichiometry of furosemide-sensitive Na+ uptake when compared with furosemide-sensitive K+ uptake indicated that these cations are not cotransported. 4,4′-Diisothiocyano-2,2′-disulfonic acid stilbene (DIDS) inhibited Na+, K+, and Cl? uptake. Vanadate and furosemide decreased cytoplasmimic pH, while cytoplasmic pH increased in the presence of DIDS. A model is presented explaining how Na+, K+, Cl?, H+ and HCO3 ? fluxes are regulated in these cells.  相似文献   

7.
Physiologic-pharmacologic studies in vivo and with tissue cultures have revealed that synaptic GABA receptors exist in the vertebrate CNS. The GABA antagonist, bicuculline, can be used to detect synaptic GABA receptors in both the presence and absence of Na+, even though GABA binding to cerebral subcellular fractions occurs mainly to transport (uptake) receptors in the presence of Na+.  相似文献   

8.
Radiolabeled GABA and glutamate transport into 7 day, 14 day and adult cortical nerve ending preparations was examined. Transport was measured at several Na+ concentrations, 19, 27, 43 and 121 mM, and at two temperatures, 15 and 30°C. Km and Vmax values were calculated for all experimental conditions by means of Wilkinson (1961) analysis. A comparison of the day 14 and adult data shows higher Km values at all Na+ concentrations on day 14 for both GABA and glutamate transport. In addition, the temperature dependence of transport was attenuated in the day 14 preparation. Finally, the specificity of GABA transport, as measured by the use of the transport inhibitors β-alanine and 2,4-diaminobutyric acid, was not different between the day 14 and adult preparations. Overall, it is concluded that both GABA and glutamate transport into day 14 nerve endings behave as if “adult” transporter molecules were existing in a more fluid lipid environment, which is the situation found in synaptic membranes prepared from day 14 nerve endings (Hitzemann and Johnson, 1983).Glutamate and GABA transport into 7 day nerve endings is complex and shows marked differences from the day 14 and adult data. Day 7 GABA transport was significantly more sensitive to β-alanine inhibition. Day 7 transport was more sensitive to Na+ manipulation and the temperature dependent kinetics show unique Na+ effects not seen in the day 14 or adult preparations. For example, at 19 mM Na+, 7 day glutamate transport was more temperature dependent than adult transport but as the Na+ concentration was increased the reverse was true. The opposite situation for temperature-Na+ effects was seen for GABA transport. Finally, no Ca+2-dependent component of GABA release could be found in 7 day nerve endings while a significant component was found at day 14. Overall, it is concluded that both glutamate and GABA fluxes in 7 day nerve endings differ both qualitatively from that seen in both day 14 and adult nerve endings.  相似文献   

9.
[14C]GABA is taken up by rat brain synaptosomes via a high affinity, Na+-dependent process. Subsequent addition of depolarizing levels of potassium (56.2 MM) or veratridine (100 μM) stimulates the release of synaptosomal [14C]GABA by a process which is sensitive to the external concentration of divalent cations such as Ca2+, Mg2+, and Mn2+. However, the relatively smaller amount of [14C]GABA taken up by synaptosomes in the absence of Na+ is not released from synaptosomes by Ca2+ -dependent, K +-stimulation. [14C]DABA, a competitive inhibitor of synaptosomal uptake of GABA (Iversen & Johnson , 1971) is also taken up by synaptosomal fractions via a Na + -dependent process; and is subsequently released by Ca2+ -dependent, K+-stimulation. On the other hand, [14C]β-alanine, a purported blocker of glial uptake systems for GABA (Schon & Kelly , 1974) is a poor competitor of GABA uptake into synaptosomes. Comparatively small amounts of [14C] β-alanine are taken up by synaptosomes and no significant amount is released by Ca2+ -dependent, K+-stimulation. These data suggest that entry of [14C]GABA into a releasable pool requires external Na+ ions and maximal evoked release of [14C]GABA from the synaptosomal pool requires external Ca2+ ions. The GABA analogue, DABA, is apparently successful in entering the same or similar synaptosomal pool. The GABA analogue, β-alanine, is not. None of the compounds or conditions studied were found to simultaneously affect both uptake and release processes. Compounds which stimulated release (veratridine) or inhibited release (magnesium) were found to have minimal effect on synaptosomal uptake. Likewise compounds (DABA) or conditions (Na+-free medium) which inhibited uptake, had little effect on release.  相似文献   

10.
It was shown in previous studies that the giant freshwater alga Chara corallina does not control its Na+‐dependent Pi uptake by monitoring the internal Pi concentration and it was hypothesized that Chara may instead detect changes in Pi supply from the environment. The present work investigated the conditions that control the induction and inactivation of high affinity Na+/Pi influx in Chara. Withdrawal of Pi from the external medium resulted in a gradual increase in the rate of uptake measured immediately after Pi was resupplied. The increase continued for at least 7 d of starvation. In the initial stages, 0·5 or 1 µm Pi were more effective at inducing transport activity than no Pi, suggesting that low levels of Pi are actually required for induction. The high Na+‐dependent Pi uptake observed in Pi‐starved cells was inactivated by treatment with as little as 1 µm Pi over 6 d. External Na+ plays a major role in controlling the capacity for Na+/Pi cotransport activity, and in the absence of Na+, both induction and inactivation were either delayed or abolished. Na+ starvation stimulated Na+ uptake even though there were no measurable changes in the concentrations of Na+, or of K+ or Pi in either the vacuole or cytoplasm. It was concluded that both substrate (Pi) and driver ion (Na+) are required at adequate concentrations for the induction of the cotransporter. In the case of Pi, it was suggested that passive leakage of Pi from the cell into the apoplast is sufficient for this purpose but that supplementation by up to 1 µm Pi is more effective at the earlier stage. A mechanism for sensing the external supply of Pi is proposed.  相似文献   

11.
Spergularia marina (L.) Griseb. is. a rapidly growing, annual, coastal halophyte. Because of its small size, it is suitable for isotope studies of ion transport well beyond the seedling stage. The purpose of this report is to establish the similarities and differences between 22Na+ and 42K+ uptake in S. marina and in more commonly used mesophytic crop species. Vegetative plants were used 18 days after transfer to solution culture. Plants were grown either on Na+-free medium or on 0.2 × sea water. 22Na+ uptake was linear with time for several hours. The rate was relatively insensitive to external concentration between 1 and 180 mol Na+ m?3, particularly in Na+-free plants. Transport to the shoot accounted for 40 to 70% of the total uptake, dependent on salinity but largely independent of time. 42K+ uptake decreased with increasing salinity in Na+-free plants and increased in 0.2 × sea water plants. Both uptake and transport to the shoot were non-linear with time, upward concavity suggesting recovery from a manipulative and/or osmotic injury. Steady state root contents were compared with predicted contents based on cortical cell electrical potentials using the Nernst equation. Reasonable agreement was found in all cases except Na+ content of 0.2 × sea water plants, in which active efflux was indicated. Uptake studies conducted in the presence of chemical modifiers (dicyclohexylcarbodiimide, dinitrophenol and fusicoccin) showed responses of 42K+ uptake as expected from studies on agronomic species, and implied the presence of a similar active uptake here despite the appearance of equilibrium. Active Na+ uptake was suggested at low Na+ levels. We conclude that S. marina is a promising experimental system combining the rapid nutrient acquisition strategy of agionomically important annuals with a high degree of salt tolerance.  相似文献   

12.
Summary Endogenous glucose uptake by the oocytes ofXenopus laevis consists of two distinct components: one that is independent of extracellular Na+, and the other one that represents Na+-glucose cotransport. The latter shows similar characteristics as 2 Na+-1 glucose cotransport of epithelial cells: The similarities include the dependencies on external concentrations of Na+, glucose, and phlorizin, and on pH. As in epithelial cells, the glucose uptake in oocytes can also be stimulated by lanthanides. Both the electrogenic cotransport and the inhibition by phlorizin are voltage-dependent; the data are compatible with the assumption that the membrane potential acts as a driving force for the reaction cycle of the transport process. In particular, hyperpolarization seems to stimulat transport by recruitment of substrate binding sites to the outer membrane surface. The results described pertain to oocytes arrested in the prophase of the first meiotic division; maturation of the oocytes leads to a downregulation of both the Na+-independent and the Na+-dependent transport systems. The effect on the Na+-dependent cotransport is the consequence of a change of driving force due to membrane depolarization associated with the maturation process.  相似文献   

13.
COUPLED TRANSPORT OF GLUTAMATE AND SODIUM IN A CEREBELLAR NERVE CELL LINE   总被引:10,自引:4,他引:6  
The cerebellar nerve cell line ε1 has a very effective active transport system for glutamate. Glutamate uptake is dependent on extracellular Na+ and furthermore, 22Na+ uptake is stimulated by glutamate, indicating that glutamate uptake and Na+ uptake are coupled. Two molecules of Na + are transported for each molecule of glutamate. The Km for glutamate is found to be 5 × 10?5M in both the glutamate uptake assay and the 22Na+ uptake assay, providing additional evidence for glutamate-Na+ coupling. Pre-incubation with ouabain, which inhibits the Na+-K+ ATPase, results in a gradual inhibition of glutamate uptake due to the deterioration of the Na+ gradient. Tetrodotoxin, however, has no effect on glutamate-induced 22Na+ uptake, showing that this Na+ flux does not occur via voltage-dependent Na+ channels. Studies on the specificity of the ε1 glutamate transport system show that it is distinct from systems that transport alanine and glycine. l -Glutamate, d -aspartate, l -cysteate, and l -cysteine sulfinate are able to utilize the transport system efficiently. d -Glutamate, l -homocysteate, N-methyl-d , l -aspartate, and kainic acid are very poor substrates for the glutamate transport system, and in addition do not stimulate 22Na+ uptake. These data allow us to distinguish the glutamate transport system from the glutamate receptor which is known to mediate depolarization in response to all nine of the above compounds. Thus, ε1 does not have an excitatory glutamate receptor.  相似文献   

14.
Lowering extravesicular pH stimulated Na+-dependent citrate transport in renal brush border membrane vesicles: e.g., at pHout = 5.5, the initial rate of citrate uptake was increased 10-fold compared to parallel control experiments at pH 7.5. The same experimental conditions had little effect on succinate uptake. The influence of pH on citrate transport is a product of the extravesicular H+ concentration; pH gradients did not potentiate the effects nor were proton gradients capable of driving transport in the absence of Na+. The effect of pH is adequately explained if only the mono- and divalent species of citrate (Cit1?, Cit2?) are considered acceptable substrates for transport. The stimulatory influence of pH on transport correlated quite well with pH-related increases in the concentrations of Cit1? and Cit2?, and over the same pH range [Cit3?] was inversely related to citrate uptake. A model of the Na+-dependent dicarboxylate transport system is discussed in which three sodium ions are translocated per molecule of dicarboxylic acid.  相似文献   

15.
Postnatal development changes in mechanisms of synaptosomal amino acid transport have been studied in rat cerebral cortex. Specific uptake of radiolabeled l-serine was examined and compared with that of radiolabeled GABA using synaptosomes-enriched fractions freshly prepared from cerebral cortex at different postnatal days from the birth to young adulthood. The preparations were incubated with 10 nM of [3H]l-serine and 10 nM of [3H]-GABA in either the presence or absence of NaCl, KCl or choline chloride, at 2 and 30 °C, for different periods up to 30 min. The uptake of [3H]l-serine was temperature dependent in synaptosomal fractions prepared from cerebral cortex of rats in postnatal days 5, 7, 13 and 21, but stronger dependence was observed in adult brain, irrespective of the presence of Na+, K+ or choline ions. At all postnatal ages studied, [3H]-GABA uptake showed a high activity in the presence of Na+ ions and at 30 °C. The values of Km were 90–489 μM in l-serine uptake. However, in the uptake of GABA the values of Km were 80–150 μM. The highest values of Vmax were obtained at 5 and 21 postnatal days for both transport systems. These results indicate that the uptake of l-serine and GABA are regulated differentially during postnatal development.  相似文献   

16.
Abstract— Several parameters of GABA Auxes across the synaptosomal membrane were studied using synaptosomes prepared from the brain of immature (8-day-old) rats. The following aspects of GABA carrier-mediated transport were similar in immature and mature synaptosomes: (1) magnitude of [3H]GABA accumulation; (2) GABA homoexchange in normal ionic conditions; (3) GABA homoexchange in the presence of cationic fluxes (Na+ and Ca2+ influx, K+ efflux) characteristic of physiological depolarization. As in adult synaptosomes (Levi & Raiteri , 1978), in these conditions the stoichiometry of GABA homoexchange was in the direction of net outward transport (efflux > influx). The essential differences between the behaviour of 8-day-old and adult synaptosomes were the following: (1) β-alanine (a glial uptake inhibitor) inhibited GABA uptake in immature synaptosomes (the inhibition being greater in crude than in purified preparations) and was without a significant effect in adult synaptosomes. DABA and ACHC (two neuronal uptake inhibitors) depressed GABA uptake more efficiently in purified than in crude immature synaptosomes, but were as effective in crude and purified nerve endings from adult animals. The data suggest a greater uptake of GABA in the‘gliosomes’contaminating the synaptosomal preparations from immature animals. (2) In immature synaptosomes prelabelled with [3H]GABA the specific radioactivity of the GABA released spontaneously or by heteroexchange (with 300 μm -OH-GABA) was the same as that present in synaptosomes, while in adult synaptosomes OH-GABA released GABA with increased specific radioactivity. The data suggest a homogeneous distribution of the [3H]GABA taken up within the endogenous GABA pool in immature, but not in mature synaptosomes. (3) In immature synaptosomes the release of GABA (radioactive and endogenous) induced by depolarization with high KC was not potentiated by Ca2+, unless the synaptosomes had been previously depleted of Na+ These data suggest that, although a Ca2+ sensitive pool of GABA may be present, this pool is not susceptible to being released in normal conditions, probably because the high intrasynaptosomal Na+ level prevents a sufficient depolarization. The possible significance of these findings in terms of functional activity of GABAergic neurotransmission in the immature brain is discussed.  相似文献   

17.
Abstract: The mechanism of recovery from an acid load in primary cultures of rabbit choroid plexus epithelium (CPE) was examined, with emphasis on Na+-dependent antiports. Cells were incubated in saline solutions buffered to pH 7.38 with either HEPES or HCO3? plus 95% O2/5% CO2. Intracellular pH (pHi) was determined from the steady-state distribution of [14C]benzoate. Recovery after acidification with NH4Cl was rapid (t1/2= 5 min) and was dependent on external Na+ (EC50= 12 mM). Hexamethyleneamiloride and ethylisopropylamiloride, potent inhibitors of the Na+/H+ antiport, blocked 80% of recovery when [Na+] was 5 mM with IC50 values of 100 nM. However, neither drug blocked recovery in normal [Na+]. 4,4′-Diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), an inhibitor of Cl?/HCO3? antiports, blocked recovery of pHi in a dose-related fashion in the presence of bicarbonate, but not in the presence of HEPES. No inhibition occurred with benzamil, an amiloride congener with high affinity for the Na+ channel, nor with dimethylbenzamil, an inhibitor of Na+/Ca2+ exchange. The carbonic anhydrase inhibitor acetazolamide also did not alter recovery from acidification. In CPE that had been pH-clamped with nigericin and KCl, the initial rate of 22Na+ uptake was very rapid (227 pmol/μg of DNA/min at pH 6.2), was dependent on external [Na+] with an EC50 value of 8 mM, and was inversely related to the pH of the medium. The maximal inhibition of 22Na+ uptake by hexamethyleneamiloride was 60% with an IC50 value of 76 nM. We conclude that both the Na+/H+ antiport and a DIDS-sensitive bicarbonate-dependent antiport are important mechanisms of regulation of the internal pH of rabbit CPE under acidifying conditions. Further, our data suggest that the rabbit choroid plexus Na+/H+ exchanger can be classified as amiloride insensitive, suggesting that this antiport may play a greater role in controlling transport mechanisms than does the pH of the CNS.  相似文献   

18.
The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K+, Na+, Ca2+, Mg2+, Fe2+, Cu2+, Co2+, Cd2+, Mn2+, Ba2+, Ni2+, Zn2+, and Li+) were analyzed. AtCCX5 expression was found to affect the response to K+ and Na+ in yeast. The AtCCX5 transformant also showed a little better growth to Zn2+. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K+ (0.5 mM), and also suppressed its Na+ sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K+ uptake and was also involved in Na+ transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K+ uptake and Na+ transport in yeast.  相似文献   

19.
Abstract: The effects of γ-aminobutyric acid (GABA) on the spontaneous release of endogenous glutamic acid (Glu) or aspartic acid (Asp) and the effects of Glu on the release of endogenous GABA or [3H]GABA were studied in superfused rat cerebral cortex synaptosomes. GABA increased the outflow of Glu (EC5017.2 μM) and Asp (EC50 18.4 μM). GABA was not antagonized by bicuculline or picrotoxin. Neither muscimol nor (-)-baclofen mimicked GABA. The effects of GABA were prevented by GABA uptake inhibitors and were Na+ dependent. Glu enhanced the release of [3H]GABA (EC50 11.5 μM) from cortical synaptosomes. Glu was not mimicked by the glutamate receptor agonists N-methyl-d -aspartic, kainic, or quisqualic acid. The Glu effect was decreased by the Glu uptake inhibitor D-threo-hydroxyaspartic acid (THA) and it was Na+ sensitive. Similarly to Glu, D-Asp increased [3H]GABA release (EC50 9.9 μM), an effect blocked by THA. Glu also increased the release of endogenous GABA from cortex synaptosomes. In this case the effect was in part blocked by the (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist 6-cyano-7-nitroquinoxaiine-2, 3-dione, whereas the 6-cyano-7-nitroquinoxaline- 2, 3-dione-insensitive portion of the effect was prevented by THA. GABA increased the [3H]D-Asp outflow (EC50 13.7 μM) from hippocampal synaptosomes in a muscimol-, (-)- baclofen-, bicuculline-, and picrotoxin-insensitive manner. The GABA effect was abolished by blocking GABA uptake and was Na+ dependent. Glu increased the release of [3H]- GABA from hippocampal synaptosomes (EC50 7.1 μM) in an N-methyl-d -aspartic acid-, kainic acid-, or quisqualic acid-insensitive way. The effect of Glu was prevented by THA and was Na+ dependent. As in the cortex, the effect of Glu was mimicked by D-Asp in a THA-sensitive manner. It is proposed that high-affinity GABA or Glu heterocarriers are sited respectively on glutamatergic or GA- BAergic nerve terminals in rat cerebral cortex and hippocampus. The uptake of GABA may modulate Glu and Asp release, whereas the uptake of Glu may modulate the release of GABA. The existence of these heterocarriers is in keeping with the reported colocalization of GABA and Glu in some cortical and hippocampal neurons. Preliminary data suggest that these mechanisms may also be present in rat cerebellum and spinal cord.  相似文献   

20.
Na+ dependent [3H]glutamine uptake was found in liposomes reconstituted with solubilized rat kidney brush border in the presence of intraliposomal K+. The reconstituted system was optimised with respect to the critical parameters of the cyclic detergent removal procedure, i.e., the detergent used for the solubilization, the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. Time dependent [3H]glutamine accumulation in proteoliposomes occurred only in the presence of external Na+and internal K+. The transporter showed low if there is any tolerance towards the substitution of Na+ or K+ for other cations. Valinomycin strongly stimulated the transport indicating that it is electrogenic. Intraliposomal glutamine had no effect. From the dependence of the transport rate on the Na+ concentration cooperativity index close to 1 was derived, indicating that 1 Na+ should be involved in the cotransport with glutamine. The electrogenicity of the transport originated from the Na+ transport. Optimal rate of 0.1 mM [3H]glutamine uptake was found in the presence of 50 mM intraliposomal K-gluconate. At higher K-gluconate concentrations the transport rate decreased. The activity of the reconstituted transporter was pH dependent with optimal function in the range pH 6.5-7.0. [3H]glutamine (and [3H]leucine) uptake was inhibited by all the neutral but not by the positively or negatively charged amino acids. The sulfhydryl reagents HgCl2, mersalyl, p-hydroxymercuribenzoate and the substrate analogue 2-aminobicyclo[2,2,1]heptane-2-carboxylate strongly inhibited the transporter, whereas the amino acid analogue α-(methylamino)isobutyrate had no effect. The inhibition by mersalyl was protected by the presence of the substrate. On the basis of the Na+ dependence, the electrogenic transport mode and the specificity towards the amino acids, the reconstituted transporter was classified as B°-like.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号