首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Predicting and preventing invasions depends on knowledge of the factors that make ecosystems susceptible to invasion. Current studies generally rely on non‐native species richness (NNSR) as the sole measure of ecosystem invasibility; however, species identity is a critical consideration, given that different ecosystems may have environmental characteristics suitable to different species. Our aim was to examine whether non‐native freshwater fish community composition was related to ecosystem characteristics at the landscape scale. Location United States. Methods We described spatial patterns in non‐native freshwater fish communities among watersheds in the Mid‐Atlantic region of the United States based on records of establishment in the U.S. Geological Survey’s Nonindigenous Aquatic Species Database. We described general relationships between non‐native species and ecosystem characteristics using canonical correspondence analysis. We clustered watersheds by non‐native fish community and described differences among clusters using indicator species analysis. We then assessed whether non‐native communities could be predicted from ecosystem characteristics using random forest analysis and predicted non‐native communities for uninvaded watersheds. We estimated which ecosystem characteristics were most important for predicting non‐native communities using conditional inference trees. Results We identified four non‐native fish communities, each with distinct indicator species. Non‐native communities were predicted based on ecosystem characteristics with an accuracy of 80.6%, with temperature as the most important variable. Relatively uninvaded watersheds were predicted to be invasible by the most diverse non‐native community. Main conclusions Non‐native species identity is an important consideration when assessing ecosystem invasibility. NNSR alone is an insufficient measure of invasibility because ecosystems with equal NNSR may not be equally invasible by the same species. Our findings can help improve predictions of future invasions and focus management and policy decisions on particular species in highly invasible ecosystems.  相似文献   

2.
北京及其邻近地区野生鱼类物种多样性及其资源保育   总被引:2,自引:0,他引:2  
作者2002-2010年间,连续多年对北京及周边地区的野生鱼类进行了实地调查和采集,结合对中国科学院动物研究所国家动物博物馆馆藏鱼类标本及相关文献资料的整理,得出北京及其邻近地区分布过的鱼类计有93种,隶属于13目23科73属;去除引入种,自然分布于该地区的原生野生鱼类为85种(包括经通海河流上溯至区域内的河口咸淡水、...  相似文献   

3.
A review of the primary literature on the cartilaginous fishes (sharks, skates, rays and chimaeras), together with new information suggests that 106 species occur in Chilean waters, comprising 58 sharks, 30 skates, 13 rays and five chimaeras. The presence of 93 species was confirmed, although 30 species were encountered rarely, through validated catch records and sightings made in artisanal and commercial fisheries and on specific research cruises. Overall, only 63 species appear to have a range distribution that normally includes Chilean waters. Actual reliable records of occurrence are lacking for 13 species. Chile has a cartilaginous fish fauna that is relatively impoverished compared with the global species inventory, but conservative compared with countries in South America with warm‐temperate waters. The region of highest species richness occurs in the mid‐Chilean latitudes of c. 30–40° S. This region represents a transition zone with a mix of species related to both the warm‐temperate Peruvian province to the north and cold‐temperate Magellan province to the south. This study provides clarification of species occurrence and the functional biodiversity of Chile's cartilaginous fish fauna.  相似文献   

4.
5.
Since the beginning of this century there have been substantial declines in the distribution and abundance of native Megalagrion damselflies on the Hawaiian Island of Oahu. Native damselflies have also vanished from most low elevation areas on other Hawaiian Islands, although historically, lotic and wetland dwelling damselfly species were once common throughout the archipelago. It is hypothesized that poeciliid fish introduced for biological control have caused the decline of four stream-breeding damselfly species on Oahu, and the extinction or near-extinction of two other species in Hawaii. This study documents the presence of remnant Megalagrion populations in Oahu streams, wetlands and estuaries, and records the elevational distributions of introduced fish in each waterbody surveyed. The distributions of introduced Odonata are also recorded, because the seven species of damselflies and dragonflies introduced to Oahu since 1936 present another potential threat to native Hawaiian damselflies. Native damselfly and introduced poeciliid fish distributions were mutually exclusive on Oahu, and it is concluded that this is probably due to predation by the introduced fish. By contrast, even the rarest native Megalagrion damselflies were found in areas containing introduced damselflies and dragonflies.  相似文献   

6.
Indirect facilitation of an anuran invasion by non-native fishes   总被引:3,自引:0,他引:3  
Positive interactions among non‐native species could greatly exacerbate the problem of invasions, but are poorly studied and our knowledge of their occurrence is mostly limited to plant‐pollinator and dispersal interactions. We found that invasion of bullfrogs is facilitated by the presence of co‐evolved non‐native fish, which increase tadpole survival by reducing predatory macroinvertebrate densities. Native dragonfly nymphs in Oregon, USA caused zero survival of bullfrog tadpoles in a replicated field experiment unless a non‐native sunfish was present to reduce dragonfly density. This pattern was also evident in pond surveys where the best predictors of bullfrog abundance were the presence of non‐native fish and bathymetry. This is the first experimental evidence of facilitation between two non‐native vertebrates and supports the invasional meltdown hypothesis. Such positive interactions among non‐native species have the potential to disrupt ecosystems by amplifying invasions, and our study shows they can occur via indirect mechanisms.  相似文献   

7.
We examined changes in the distribution of 9 native and 18 introduced freshwater fishes in the south-eastern Pyrenees watershed, Iberian Peninsula, using data from 1996, 1984–1988 and historical information. This region suffers many modifications to its freshwater ecosystems that are linked to human activity in the Mediterranean regions. Fish communities, stream physical habitat and environmental degradation were assessed at 168 sites from 11 basins in 1996. Seven native species (78%) showed decline from previous data, one of which became extirpated in the first half of the 20th century. On the other hand, introduced species are expanding. As a consequence, intact native communities are increasingly rare, declining from presence in 22% of river courses in 1984–1988 to 15% in 1996. The most typical community type is a mixture of native and introduced species occupying 30% of river courses. Stream degradation seems to be the main cause of this process because fish communities differed between degraded streams and streams suffering less impact. A principal component analysis showed that water pollution and modifications to the habitat were the two anthropogenic factors that accounted for most changes in the fish community integrity. Habitat alteration, primarily through construction of dams and water diversions, has fragmented habitats and isolated native fish communities in headwater streams. Current protection measures do not offer effective conservation of threatened species and communities. A global conservation and restoration programme from an ecosystem-based approach is essential to reverse the trend affecting native freshwater fishes in this Mediterranean region.  相似文献   

8.
9.
Aim We examine the regional dominance of California as a beachhead for marine biological invasions in western North America and assess the relative contribution of different transfer mechanisms to invasions over time. Location Western North America (California to Alaska, excluding Mexico). Methods We undertook extensive analysis of literature and collections records to characterize the invasion history of non‐native species (invertebrates, microalgae and microorganisms) with established populations in coastal marine (tidal) waters of western North America through 2006. Using these data, we estimated (1) the proportion of first regional records of non‐native species that occurred in California and (2) the relative contribution of transfer mechanisms to California invasions (or vector strength) over time. Results Excluding vascular plants and vertebrates, we identified 290 non‐native marine species with established populations in western North America, and 79% had first regional records from California. Many (40–64%) of the non‐native species in adjacent states and provinces were first reported in California, suggesting northward spread. California also drives the increasing regional rate of detected invasions. Of 257 non‐native species established in California, 59% had first regional records in San Francisco Bay; 57% are known from multiple estuaries, suggesting secondary spread; and a majority were attributed to vessels (ballast water or hull fouling) or oysters, in some combination, but their relative contributions are not clear. For California, more than one vector was possible for 56% of species, and the potential contribution of ballast water, hull fouling and live trade increased over time, unlike other vectors. Main conclusions California, especially San Francisco Bay, plays a pivotal role for marine invasion dynamics for western North America, providing an entry point from which many species spread. This pattern is associated historically with high propagule supply and salinity. Any effective strategies to minimize new invasions throughout this region must (1) focus attention on California and (2) address current uncertainty and future shifts in vector strength.  相似文献   

10.
Invasive non‐native species (NNS) are internationally recognized as posing a serious threat to global biodiversity, economies and human health. The identification of invasive NNS is already established, those that may arrive in the future, their vectors and pathways of introduction and spread, and hotspots of invasion are important for a targeted approach to managing introductions and impacts at local, regional and global scales. The aim of this study was to identify which marine and brackish NNS are already present in marine systems of the northeastern Arabia area (Arabian Gulf and Sea of Oman) and of these which ones are potentially invasive, and which species have a high likelihood of being introduced in the future and negatively affect biodiversity. Overall, 136 NNS were identified, of which 56 are already present in the region and a further 80 were identified as likely to arrive in the future, including fish, tunicates, invertebrates, plants and protists. The Aquatic Species Invasiveness Screening Kit (AS‐ISK) was used to identify the risk of NNS being (or becoming) invasive within the region. Based on the AS‐ISK basic risk assessment (BRA) thresholds, 36 extant and 37 horizon species (53.7% of all species) were identified as high risk. When the impact of climate change on the overall assessment was considered, the combined risk score (BRA+CCA) increased for 38.2% of all species, suggesting higher risk under warmer conditions, including the highest‐risk horizon NNS the green crab Carcinus maenas, and the extant macro‐alga Hypnea musciformis. This is the first horizon‐scanning exercise for NNS in the region, thus providing a vital baseline for future management. The outcome of this study is the prioritization of NNS to inform decision‐making for the targeted monitoring and management in the region to prevent new bio‐invasions and to control existing species, including their potential for spread.  相似文献   

11.
1. North‐eastern Spain is a hot spot for the introduction of alien fish species, and its native fish fauna is one of the most endangered worldwide. We used an extensive data set from 2002 to 2003 and historical information from the area to characterize fish diversity and establish conservation priorities in river catchments. 2. Diversity indices were used to characterize fish diversity at the basin scale. An index of conservation status was applied for each species, which considers the occurrence, abundance and endemicity of each taxon. We used indirect ordination methods to test the relationship among basin features and to identify those variables most correlated with each other. To identify physical, biotic and environmental characteristics that seem to make a basin particularly susceptible to invasion, we performed a step‐wise multiple regression to examine the relationship between the number of native, translocated and introduced fish species (including the original native species richness of each basin), and landscape variables. 3. Over a period of approximately 50 years, the mean range size of native fish species has decreased by 60%. The greatest decline occurred in Gasterosteus gymnurus, Anguilla anguilla and Salaria fluviatilis, for which species over 75% of the original distribution area has been lost. The species with the highest conservation index were Gasterosteus gymnurus and Salaria fluviatilis. 4. Basin area and the catchment type explained 70% of variation in native species richness, whereas the number of dams and basin area accounted for more than 80% of variation in the number of introduced species. 5. The original native species richness and the number of introduced species at basin scale were not related, and thus there was no evidence of “biotic resistance” to invasion. The restoration of natural hydrologic processes and the development of specific management tools to protect native species, such as the prioritization of areas for fish conservation and the eradication of local populations of exotic species, are required to restore native fish fauna in these catchments.  相似文献   

12.
13.
A growing threat to the conservation of many native species worldwide is genetic introgression from non‐native species. Although improved molecular genetic techniques are increasing the availability of species‐diagnostic markers for many species, efficient field sampling design and reliable data interpretation require accurate estimates of uncertainty associated with the detection of non‐native alleles and the quantification of introgression in native populations. Using fish populations as examples, we developed a simulation model of an age‐structured population that tracks the introduction and inheritance of non‐native alleles across generations by simulating stochastic mating and survival of individual fish and the resulting transmission of diagnostic markers. To simulate detection and quantification of introgression, we sampled varying combinations of n fish and m diagnostic markers to detect and quantify introgression from thousands of virtual, independent fish populations for a wide range of hybridization scenarios. Using the results of simulated sampling, we quantified the extent to which common simplifying assumptions regarding population structure and inheritance mechanisms can lead to the following: (i) overconfidence in our ability to detect non‐native alleles and (ii) unrealistically narrow confidence intervals for estimates of the proportion of non‐native alleles present. Under many circumstances, commonly used simplifying assumptions underestimate the probability of failing to detect ongoing introgression and the uncertainty associated with estimates of introgression by orders of magnitude. Such overconfidence in our ability to detect and quantify introgression can affect critical conservation and management decisions regarding native species undergoing or at risk of introgression from non‐native species.  相似文献   

14.
Carp (Cyprinus carpio) as a powerful invader in Australian waterways   总被引:3,自引:0,他引:3  
1. The invasion of carp (Cyprinus carpio L.) in Australia illustrates how quickly an introduced fish species can spread and dominate fish communities. This species has become the most abundant large freshwater fish in south‐east Australia, now distributed over more than 1 million km2. 2. Carp exhibit most of the traits predicted for a successful invasive fish species. In addition, degradation of aquatic environments in south‐east Australia has given them a relative advantage over native species. 3. Derivation of relative measures of 13 species‐specific attributes allowed a quantitative comparison between carp and abundant native fish species across five major Australian drainage divisions. In four of six geographical regions analysed, carp differed clearly from native species in their behaviour, resource use and population dynamics. 4. Climate matching was used to predict future range expansion of carp in Australia. All Australian surface waters appear to be climatically suitable for carp. 5. This assessment strongly reinforces the need for immediate management of carp in Australia to include targeted control of human‐assisted dispersal, such as use of carp as bait by anglers, distribution to new locations by anglers and the use of the ‘Koi’ strain in the aquarium industry. 6. Given their historical spread, dispersal mechanisms and ecological requirements, the expansion of carp across most of the remainder of Australia is to be expected.  相似文献   

15.
Aim Human activities have led to the spread and establishment of increasing numbers of non‐native species. Here we assess whether non‐native plant and vertebrate species have affected species compositions within and across Europe and North America. We also assess the effects of intra‐continental species exchange using the example of vertebrates. Location European countries and North America (states in the contiguous United States and provinces of Canada). Methods We measured compositional dissimilarity of native and non‐native assemblages of vascular plants and vertebrates and related these patterns to climatic dissimilarity and geographical distance. We considered three categories of non‐native species (introduced after ad 1500), namely: those (1) originating outside of both continents, (2) native to one continent and non‐native to the other, and (3) native in a particular region of a continent but non‐native in another region. Results The presence of non‐native plants and vertebrates led to more homogeneous species compositions between continents and to less homogeneous species composition within Europe compared with the native assemblages. In North America, the presence of non‐native plants led to more homogeneous species compositions and the presence of non‐native vertebrates had no effect. Species compositions being more homogeneous than the native composition were found for the three categories of non‐native vertebrate species for both continents. Between continents, climate was a better predictor of compositional dissimilarity for non‐native plants, whereas for vertebrates the explanatory power of climate and geographical distance were comparable. By contrast, within continents, climate was a better predictor of compositional dissimilarity of both plants and vertebrates. Conclusions We found clear evidence for biotic homogenization as a consequence of species displacement. However, in relation to overall species richness this effect was rather small, indicating that floras and faunas are still quite distinct. Therefore, claiming that we already face homogeneous biotas might be premature, although clear indications are visible which should raise a note of caution, especially in the light of increasing globalization.  相似文献   

16.
This study confirms the presence of two species of the non‐native mosquitofish Gambusia in Argentina. The risks that they represent to native biota, their potential dispersal in the region, and their effectiveness in mosquito larvae control are discussed.  相似文献   

17.
Aim The introduction of non‐indigenous species has resulted in wide‐ranging ecological and economic impacts. Predictive modelling of the introduction and establishment of non‐indigenous species is imperative to identify areas at high risk of invasion to effectively manage non‐indigenous species and conserve native populations. Smallmouth bass (Micropterus dolomieu), a warm water fish species native to central North America has negatively impacted native fish communities, including cyprinids and salmonid populations, as a result of intentional introductions. We predicted the introduction risk; species establishment based on habitat suitability; identified lakes at high risk of invasion; and finally assessed the consequential impacts on native salmon, trout and cyprinid populations. Location Ontario and British Columbia, Canada. Methods Classification tree and logistic regression models were developed and validated to predict the introduction and establishment of smallmouth bass for thousands of lakes. Results Densely human populated areas and larger lake surface areas successfully identify lakes associated with the introduction of smallmouth bass (introduction model) in British Columbia. Climate, lake morphology and water chemistry variables were the driving environmental parameters to define suitable smallmouth bass habitat (establishment model). A combination of the introduction and establishment model identified 138 lakes that are currently at risk in British Columbia to the introduction and establishment of smallmouth bass. Of these 138 high‐risk lakes, 95% of them contain at least one species of salmon, trout or cyprinid, thereby increasing the potential impact of an invasion by smallmouth bass. Main conclusions Our framework can be applied to other terrestrial and aquatic species to obtain a better understanding of the potential risk posed by a non‐indigenous species to an ecosystem. Furthermore, our methodology can be used to focus management efforts on areas at higher risk (e.g. number of potential releases, more favourable habitats) to control future introductions of non‐indigenous species, thereby conserving native populations.  相似文献   

18.
Estuarine and lagoonal surveys of Socotra Island and selected sites on the Hadhramout coast of Yemen were conducted with the objective of documenting and analysing fish diversity and assemblage structure. A total of 74 species in 35 families were recorded, among which 65 species in 32 families were from Socotra and 20 species in 17 families were from mainland Yemen. Twenty‐one species represent new faunal records for Socotra. Including historic records re‐examined in this study, the total fish species richness of estuaries and lagoons of Socotra Island reaches 76, which is relatively high compared to species inventories of well‐researched coastal estuaries in southern Africa. Five species dominate the occurrence and abundance frequencies: Terapon jarbua, Hyporhamphus sindensis, Aphanius dispar, Ambassis gymnocephala and Chelon macrolepis. Rarefaction and extrapolation analyses suggest that the actual number of fish species inhabiting some of those estuaries might be higher than the one observed. Thus, additional sampling at specific sites should be conducted to record other less conspicuous species. Ordination and multivariate analyses identified four main distinct assemblage clusters. Two groups are geographically well structured and represent northern Socotra and mainland Yemen, respectively. The other two assemblage groups tend to be determined to a greater extent by the synchrony between physical (e.g. estuary opening periods) and biological (e.g. spawning and recruitment periods) variables than by geographical location. Finally, the single intertidal lagoon of Socotra represents by itself a specific fish assemblage. The high proportion of economically important fish species (38) recorded underscores the paramount importance of these coastal water bodies as nursery sites, and for sustaining vital provisioning ecosystem services.  相似文献   

19.
1. Preventing the introduction of species likely to become invaders is the best management option to deal with biological invasions. A data set consisting of native, introduced and species not currently present in Iberian Peninsula (n = 167 species) was used to identify freshwater fish species that are likely to be introduced and become successful invaders in the near future. 2. Principal component analysis (PCA) of species traits was used to determine species likely to be introduced, assuming that the traits of species introduced in the future will resemble those of previously introduced species. The likelihood of introduction was calculated as the proportion of neighbour species (in the space defined by the PCA) that have been introduced to the Iberian Peninsula and, together with metrics related to different stages of invasion, was used to construct a region‐specific risk index (Iberian risk index). 3. Introduced species had higher index values compared with native species or species currently absent from the region. The Iberian risk index was positively related to the results of an independent risk analysis for freshwater fish as well as to the geographical spread of species previously introduced to the Iberian Peninsula. 4. Iberian risk index values were used to establish a cut‐off value for estimating the probability of a successful invasion. This threshold value was used to construct a list of 20 species to be included in a ‘watch list’ to prevent freshwater fish invasions in the Iberian Peninsula.  相似文献   

20.
Profiling invasive fish species: the importance of phylogeny and human use   总被引:4,自引:0,他引:4  
Understanding the ecological differences between native and invasive species is of considerable scientific and practical interest. We examined such differences between native and invasive inland fish species from the Iberian Peninsula in order to analyse the importance of phylogenetic correction and variability (in addition to central tendency). We collected 26 quantitative and qualitative variables on the ecology, life‐history traits and human use of the 69 inland fish species of the Iberian Peninsula, including native, invasive and migratory species. The taxonomic distribution of invasive fish species deviated significantly from world freshwater richness and in contrast to native species, invasive fish belongs to only five taxonomic orders but to a wide spectrum of families not native to the Iberian Peninsula. Because the life‐history traits were highly dependent on taxonomy, the results, with or without applying phylogenetic methods, differed and after accounting for phylogeny, invasive species displayed higher and wider latitude in general and a different reproductive season mainly among salmonids and cyprinids. Human use was also significantly different between native and invasive fish species and produced more variability in life‐history traits of invasive species and uneven taxonomic distribution because of the high diversity of species introduced. We show that accounting for taxonomy and studying variability in addition to central tendency is important in the comparison of life‐history traits between native and invasive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号