首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cochliopodium is a lens‐shaped genus of Amoebozoa characterized by a flexible layer of microscopic dorsal scales. Recent taxonomic and molecular studies reported cryptic diversity in this group and suggested that the often‐used scale morphology is not a reliable character for species delineation in the genus. Here, we described three freshwater Cochliopodium spp. from the southeastern United States based on morphological, immunocytochemistry (ICC), and molecular data. A maximum‐likelihood phylogenetic analysis and pairwise comparison of COI sequences of Cochliopodium species showed that each of these monoclonal cultures were genetically distinct from each other and any described species with molecular data. Two of the new isolates, “crystal UK‐YT2” (Cochliopodium crystalli n. sp.) and “crystal‐like UK‐YT3” (C. jaguari n. sp.), formed a clade with C. larifeili, which all share a prominent microtubule organizing center (MTOC) and have cubical‐shaped crystals. The “Marrs Spring UK‐YT4” isolate, C. marrii n. sp., was 100% identical to “Cochliopodium sp. SG‐2014 KJ569724 .” These sequences formed a clade with C. actinophorum and C. arabianum. While the new isolates can be separated morphologically, most of the taxonomic features used in the group show plasticity; therefore, Cochliopodium species can only be reliably identified with the help of molecular data.  相似文献   

2.
Cochliopodium pentatrifurcatum n. sp. (ATCC© 30935TM) is described based on light microscopic morphology, fine structure, and molecular genetic evidence. Cochliopodium pentatrifurcatum n. sp. (length ~ 25 μm) is characterized by surface microscales (0.3 μm tall) containing a circular porous base (~ 0.6 μm diam.) with a thin peripheral rim. Five radially arranged feet, emanating from the base, support a short central column terminating apically as a funnel‐shaped collar (~ 0.5 μm diam.) composed of five radial, trifurcate rays extending from the center toward a thin peripheral rim. The central spine is 0.5–0.6 μm long. The comparative morphologies and combined molecular genetic evidence, SSU‐rDNA and COI, indicate that the new species falls in a clade sufficiently different from other species to suggest that it is a valid new species.  相似文献   

3.
Cochliopodium gallicum n. sp., isolated from cyanobacterial mats in the Camargue (France) is the smallest marine species of Cochliopodium to date. Its unusual tectum consists of flat plate-shaped scales with honeycomb-like centres, underlain by a layer of filamentous structures connected to each other in the basal and apical parts. The tectum is very fine and can be easily lost under inappropriate EM fixation. In its light-microscopical features, this species resembles Ovalopodium carrikeri Sawyer, 1980, a himatismenid that is believed to possess a scaleless, fuzzy or hairy "glycocalyx". We suggest that O. carrikeri might have been a similar species that lost scales under fixation. Our finding makes desirable a re-investigation of the genus Ovalopodium.  相似文献   

4.
5.
Two marine urostylid ciliates, Caudiholosticha marina sp. nov. and Nothoholosticha flava sp. nov., isolated from intertidal sediment in the Yellow Sea, are investigated using morphological and small subunit rDNA phylogenetic analyses. Caudiholosticha marina is 210?310 μm × 40?55 μm in vivo, and has 10?20 macronuclear nodules, 23?37 midventral cirral pairs extending to 5?8 transverse cirri, and two caudal cirri. It differs from congeners by its marine habitat, larger size, macronuclear arrangement pattern and high number of midventral pairs. Molecular phylogenetic analyses indicate a polyphyly of Caudiholosticha. Nothoholosticha flava is yellow to brownish and 240?320 μm × 40?60 μm sized, and has a bipartite adoral zone, six frontal cirri in atypical bicorona, usually four frontoterminal, one buccal and 5?7 transverse cirri and 28?54 midventral pairs. Phylogenetic analyses allocate N. flava as sister of N. fasciola, type of the genus. The two Nothoholosticha species differ distinctly by the presence/absence of frontoterminal cirri, a feature often used to define genera in the Hypotrichia. However, the SSU rDNA sequence similarity between these two species is 99.3%, which weakens the justification for separating the new isolate at genus level. The taxonomic significance of frontoterminal cirri is discussed based on morphological and molecular data.  相似文献   

6.
This study demonstrates for the first time the presence of marine‐associated mites in the Andaman Sea and Strait of Malacca and reveals a relatively high diversity of these taxa with six species from two different families: Selenoribatidae and Fortuyniidae. Indopacifica, a new genus of Selenoribatidae, is described from Thailand and Malaysia, with two new species, Indopacifica pantai n. sp. and Indopacifica parva n. sp. The genus is characterized by the unique combination of following characters: lacking lamellar ridges, incomplete dorsosejugal suture, fourteen pairs of notogastral setae, and presence of epimeral foveae. A phylogenetic reconstruction based on 18S ribosomal RNA sequences clearly confirms the distinctness of the new genus Indopacifica and places it close to the genus Rhizophobates. The lack of molecular genetic data of possible relatives impedes a clear assessment, and hence, we emphasize the need for further combined approaches using morphological and molecular genetic sequence data. All species show wide distribution areas within this geographic region suggesting that these taxa are good dispersers despite their minute size and wingless body. Molecular genetic data demonstrate recent gene flow between far distant populations of I. pantai n. sp. from the coasts of Thailand and two islands of Malaysia and hence confirm this assumption. The seasonally changing surface currents within this geographic area may favor hydrochorous dispersal and hence genetic exchange. Nevertheless, morphometric data show a slight trend to morphological divergence among the studied populations, whereas this variation is suggested to be a result of genetic drift but also of habitat differences in one population of Alismobates pseudoreticulatus.  相似文献   

7.
This study investigates the morphology and molecular characteristics of three new cyrtophorid ciliates isolated from China seas: Chlamydodon salinus n. sp., Chlamydodon caudatus n. sp., and Chlamydodon paramnemosyne n. sp. Of these, C. salinus n. sp. differs from its congeners through a combination of body size, a cross‐striated band that is not continuous, the presence of 30–34 somatic kineties, 11–15 nematodesmal rods, and 13 contractile vacuoles. Chlamydodon caudatus n. sp., meanwhile, is characterized by having a conspicuous tail, a continuous cross‐striated band, 34–40 somatic kineties, about 15 contractile vacuoles, and 20–24 nematodesmal rods. Compared with other Chlamydodon species, the third new one, C. paramnemosyne n. sp., could be identified by its continuous cross‐striated band, 16–18 somatic kineties, 5 contractile vacuoles, and 9–12 nematodesmal rods. Based on the sequence of the small subunit (SSU) rRNA gene, the phylogeny of these three new species was analyzed, indicating that they all clustered with other congeners to form a monophyletic assemblage. Based on previous studies and the present work, a brief revision of the genus Chlamydodon is supplied, and a key to aid the identification of Chlamydodon species is given.  相似文献   

8.
A new vampyropod coleoid from the Cenomanian limestones of Coahuila (Mexico) is described. Glyphiteuthis rhinophora n. sp. is classified as a member of the Trachyteuthididae because of its general gladius morphology. Within the genus Glyphiteuthis, Gl. rhinophora n. sp. is unique by its nose-shaped extension of the anterior median field extremity. The ventral gladius surface reflects the dorsal surface and lacks evidence of a phragmocone, so affiliations with sepiids are unlikely. Gl. rhinophora n. sp. represents the first Cenomanian record of a vampyropod coleoid in the New World and the first evidence of the genus outside the Tethyan and Boreal realm. The paleoenvironment indicates a nektonic lifestyle for Gl. rhinophora n. sp.  相似文献   

9.
The genus Entamoeba includes anaerobic lobose amoebae, most of which are parasites of various vertebrates and invertebrates. We report a new Entamoeba species, E. marina n. sp. that was isolated from a sample of tidal flat sediment collected at Iriomote Island, Okinawa, Japan. Trophozoites of Emarina were 12.8–32.1 μm in length and 6.8–15.9 μm in width, whereas the cysts were 8.9–15.8 μm in diam. and contained four nuclei. The E. marina cells contained a rounded nucleus with a small centric karyosome and uniformly arranged peripheral chromatin. Although E. marina is morphologically indistinguishable from other tetranucleated cyst‐forming Entamoeba species, E. marina can be distinguished from them based on the combination of molecular phylogenetic analyses using SSU rDNA gene and the difference of collection sites. Therefore, we propose E. marina as a new species of the genus Entamoeba.  相似文献   

10.
11.
Symbiotic dinoflagellates in the genus Breviolum (formerly Symbiodinium Clade B) dominate coral communities in shallow waters across the Greater Caribbean. While some formally described species exist, mounting genetic, and ecological evidence indicate that numerous more comprise this genus, many of which are closely related. To test this, colonies of common reef‐building corals were sampled across a large geographical range. Phylogenetic and population genetic markers then used to examine evolutionary divergence and delineate boundaries of genetic recombination. Three new candidate species were distinguished by fixed differences in nucleotide sequences from nuclear and chloroplast DNA. Population connectivity was evident within each lineage over thousands of kilometers, however, substantial genetic structure persisted between lineages co‐occurring within sampling locations, signifying reproductive isolation. While geographically widespread with overlapping distributions, each species is ecologically distinct, exhibiting specific mutualisms with phylogenetically distinct coral hosts. Moreover, significant differences in mean cell sizes provide some morphological evidence substantiating formal species distinctions. In providing evidence that satisfies the biological, phylogenetic, ecological, and morphological species concepts, we classify and formally name Breviolum faviinorum n. sp., primarily associated with Caribbean corals belonging to the Caribbean subfamily Faviinae; B. meandrinium n. sp., associated with corals belonging to the family Meandrinidae; and B. dendrogyrum n. sp., a symbiont harbored exclusively by the threatened coral Dendrogyra cylindrus. These findings support the primary importance of niche diversification (i.e. host habitat) in the speciation of symbiotic dinoflagellates.  相似文献   

12.
13.
In an effort to broaden our understanding of the biodiversity and distribution of gregarines infecting crustaceans, this study describes two new species of gregarines, Thiriotia hyperdolphinae n. sp. and Cephaloidophora oradareae n. sp., parasitizing a deep sea amphipod (Oradarea sp.). Amphipods were collected using the ROV Hyper‐Dolphin at a depth of 855 m while on a cruise in Sagami Bay, Japan. Gregarine trophozoites and gamonts were isolated from the gut of the amphipod and studied with light and scanning electron microscopy, and phylogenetic analysis of 18S rDNA. Thiriotia hyperdolphinae n. sp. was distinguished from existing species based on morphology, phylogenetic position, as well as host niche and geographic locality. Cephaloidophora oradareae n. sp. distinguished itself from existing Cephaloidophora, based on a difference in host (Oradarea sp.), geographic location, and to a certain extent morphology. We established this latter new species with the understanding that a more comprehensive examination of diversity at the molecular level is necessary within Cephaloidophora. Results from the 18S rDNA molecular phylogeny showed that T. hyperdolphinae n. sp. was positioned within a clade consisting of Thiriotia spp., while C. oradareae n. sp. grouped within the Cephaloidophoridae. Still, supplemental genetic information from gregarines infecting crustaceans will be needed to better understand relationships within this group of apicomplexans.  相似文献   

14.
15.
The genus Paragymnodinium currently includes two species, P. shiwhaense and P. stigmaticum, that are characterized by mixotrophic nutrition and the possession of nematocysts. In this study, two new dinoflagellates belonging to this genus were described based on observations using LM, SEM, and TEM together with a molecular analysis. Cells of P. asymmetricum sp. nov., isolated from Nha Trang Beach, Vietnam, were 7.9–12.6 μm long and 4.7–9.0 μm wide. The species showed no evidence of feeding behavior and was able to sustain itself phototrophically. Paragymnodinium asymmetricum shared many features with P. shiwhaense, including presence of nematocysts, absence of an eyespot, and a planktonic lifestyle, but was clearly distinguished by the asymmetric shape of the hyposome, possession of a single chloroplast, and its nutritional mode. Cells of P. inerme sp. nov., isolated from Jogashima, Kanagawa Pref, Japan, were 15.3–23.7 μm long and 10.9–19.6 μm wide. This species also showed no evidence of feeding behavior. Paragymnodinium inerme was similar to cells of P. shiwhaense in shape and planktonic lifestyle, but its nutritional mode was different. The presence of incomplete nematocysts was also a unique feature. A phylogenetic analysis inferred from concatenated SSU and LSU rDNA sequences recovered the two dinoflagellates in a robust clade with Paragymnodinium spp., within the clade of Gymnodinium sensu stricto. This evidence, together with their morphological similarities, made it reasonable to conclude that these two dinoflagellates are new species of Paragymnodinium.  相似文献   

16.
The marine phototrophic dinoflagellate Gymnodinium smaydae n. sp. is described from cells prepared for light, scanning, and transmission electron microscopy. Also, sequences of the small (SSU) and large subunits (LSU) and the internal transcribed spacer region (ITS1–5.8S–ITS2) of ribosomal DNA were analyzed. This newly isolated dinoflagellate possessed nuclear chambers, nuclear fibrous connective, an apical groove running in a counterclockwise direction around the apex, and a major accessory pigment peridinin, which are four key features for the genus Gymnodinium. The epicone was conical with a round apex, while the hypocone was ellipsoid. Cells growing photosynthetically were 6.3–10.9 μm long and 5.1–10.0 μm wide, and therefore smaller than any other Gymnodinium species so far reported except Gymnodinium nanum. Cells were covered with polygonal amphiesmal vesicles arranged in 11 horizontal rows, and the vesicles were smaller than those of the other Gymnodinium species. This dinoflagellate had a sharp and elongated ventral ridge reaching half way down the hypocone, unlike other Gymnodinium species. Moreover, displacement of the cingulum was 0.4–0.6 × cell length while in other known Gymnodinium species it is less than 0.3 × cell length. In addition, the new species possessed a peduncle, permanent chloroplasts, pyrenoids, trichocysts, pusule systems, and small knobs along the apical furrow, but it lacked an eyespot, nematocysts, and body scales. The sequence of the SSU, ITS1–5.8S–ITS2, and LSU rDNA region differed by 1.5–3.8%, 6.0–17.4%, and 9.1–17.5%, respectively, from those of the most closely related species. The phylogenetic trees demonstrated that the new species belonged to the Gymnodinium clade at the base of a clade consisting of Gymnodinium acidotum, Gymnodinium dorsalisulcum, Gymnodinium eucyaneum, etc. Based on morphological and molecular data, we suggest that the taxon represents a new species, Gymnodinium smaydae n. sp.  相似文献   

17.
The diatom genus Chaetoceros is one of the most abundant and diverse phytoplankton in marine and brackish waters worldwide. Within this genus, Chaetoceros socialis has been cited as one of the most common species. However, recent studies from different geographic areas have shown the presence of pseudo‐cryptic diversity within the C. socialis complex. Members of this complex are characterized by curved chains (primary colonies) aggregating into globular clusters, where one of the four setae of each cell curves toward the center of the cluster and the other three orient outwards. New light and electron microscopy observations as well as molecular data on marine planktonic diatoms from the coastal waters off Chile revealed the presence of two new species, Chaetoceros sporotruncatus sp. nov. and C. dichatoensis. sp. nov. belonging to the C. socialis complex. The two new species are similar to other members of the complex (i.e., C. socialis and C. gelidus) in the primary and secondary structure of the colony, the orientation pattern of the setae, and the valve ultrastructure. The only morphological characters that can be used to differentiate the species of this complex are aspects related to resting spore morphology. The two newly described species are closely related to each other and form a sister clade to C. gelidus in molecular phylogenies. We also provide a phylogenetic status along with the morphological characterization of C. radicans and C. cintus, which are genetically related to the C. socialis complex.  相似文献   

18.
A new photosynthetic planktonic marine dinoflagellate, Azadinium dexteroporum sp. nov., is described from the Gulf of Naples (South Tyrrhenian Sea, Mediterranean Sea). The plate formula of the species, Po, cp, X, 4′, 3a, 6″, 6C, 5?S, 6? and 2″″, is typical for this recently described genus. Azadinium dexteroporum is the smallest rep‐resentative of the genus (8.5 μm average length, 6.2 μm average width) and shares the presence of a small antapical spine with the type species A. spinosum and with A. polongum. However, it differs from all other Azadinium species for the markedly asymmetrical Po plate and the position of the ventral pore, which is located at the right posterior end of the Po plate. Another peculiarity of A. dexteroporum is the pronounced concavity of the second intercalary plate (2a), which appears collapsed with respect to the other plates. Phylogenetic analyses based on the large subunit 28S rDNA (D1/D2) and the internal transcribed spacer (ITS rDNA) support the attribution of A. dexteroporum to the genus Azadinium and its separation from the other known species. LC/MS‐TOF analysis shows that Azadinium dex‐teroporum produces azaspiracids in low amounts. Some of them have the same molecular weight as known compounds such as azaspiracid‐3 and ‐7 and Compound 3 from Amphidoma languida, as well as similar fragmentation patterns in some cases. This is the first finding of a species producing azapiracids in the Mediterranean Sea.  相似文献   

19.
Elaphoglossum clathratum F. B. Matos & R. C. Moran sp. nov. (Dryopteridaceae), which grows at middle elevations on the eastern side of the Andes in Ecuador, is described, illustrated, and compared to its most similar species. It is unusual in Elaphoglossum by having lamina margin scales that are strongly clathrate. Research on the phylogeny of the genus has shown that the new species belongs to Elaphoglossum sect. Polytrichia. However, it is unique in the subulate‐scaled clade of Elaphoglossum by having planar, not subulate, scales.  相似文献   

20.
Korotnevella (Amoebozoa, Dactylopodida) is a genus of naked lobose amoebae with a dactylopodial morphotype. The cell membrane of these amoebae is covered with a monolayer of scales. The structure and size of scales are considered as species-specific features. Here, we describe a new marine species, Korotnevella mutabilis n. sp., isolated from the bottom sediment sample of Nivå Bay (Baltic Sea, The Sound) and studied with light and electron microscopy as well as with molecular phylogenetic analysis. This species has a number of morphological similarities with Korotnevella monacantholepis, such as size of the cell, L/B ratio, the nucleus structure and the type of a biotope from which both species were isolated. At the same time, Korotnevella mutabilis n. sp. differs from K. monacantholepis in the structure of basket-shaped scales: Korotnevella mutabilis n. sp. has an enclosed hammock-shaped latticework basket and up to two spines while K. monacantholepis has an opened two-row latticework basket and never has two spines. According to molecular phylogenetic analyses based on the sequences of the mitochondrial COI gene, Korotnevella mutabilis n. sp. is a distinct species, highly divergent from other Korotnevella species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号