首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. We have investigated the role of reactive oxygen species (ROS) in cell death induced by ischemia or application of the excitatory amino acid agonist, N-methyl-D-aspartate (NMDA) or kainate (KA), in acutely isolated rat cerebellar granule cell neurons, studied by flow cytometry. Various fluorescent dyes were used to monitor intracellular calcium concentration, ROS concentration, membrane potential, and viability in acutely dissociated neurons subjected to ischemia and reoxygenation alone, NMDA or kainate alone, and ischemia and reoxygenation plus NMDA or kainate.2. With ischemia followed by reoxygenation, ROS concentrations rose slightly and there was only a modest increase in cell death after 60 min.3. When NMDA or kainate alone was applied to the cells there was a large increase in ROS and in intracellular calcium concentration but only a small loss of cellular viability. However, when NMDA or kainate was applied during the reoxygenation period there was a large loss of viability, accompanied by membrane depolarization, but the elevations of ROS and intracellular calcium concentration were not greater than seen with the excitatory amino acids alone.4. These observations indicate that other factors beyond ROS and intracellular calcium concentration contribute to cell death in cerebellar granule cell neurons.  相似文献   

2.
信号配体诱导的活性氧生成   总被引:2,自引:0,他引:2  
活性氧(reactiveoxygenspecies,ROS)是生物体内一类活性含氧化合物的总称,主要包括超氧阴离子、羟自由基和过氧化氢等。细胞内有多种部位能生成ROS,主要包括线粒体、内质网、NADPH氧化酶复合体、脂氧合酶系、环氧合酶系等。静息条件下,细胞内ROS的水平被控制在很低的范围。而在细胞受到各种生理或病理因素作用时,当多种细胞外信号分子作用于其膜受体,ROS生成可以受到受体活化的诱导而“有目的”地快速增加,从而作为细胞内信号分子参与细胞增殖,分化和凋亡等各种细胞行为。  相似文献   

3.
GPx对活性氧诱发细胞程序性死亡的影响   总被引:1,自引:0,他引:1  
谷胱甘肽过氧化物酶(GPx)是细胞内清除活性氧的主要抗氧化酶之一.以稳定表达GPx的CHO细胞系为模型,研究GPx对百草枯(paraquat)和叔丁基脂氢过氧化物(tbOOH)细胞毒性的影响,发现paraquat和tbOOH都能够诱导CHO细胞产生典型的细胞程序性死亡的形态学改变和特征性的DNA“梯子状”断裂,而稳定表达GPx的细胞系能明显抵抗tbOOH诱发的细胞程序性死亡,但不能抵抗paraquat诱发的细胞程序性死亡.该结果揭示,GPx能选择性抑制活性氧诱发的细胞凋亡.  相似文献   

4.
Reactive oxygen species (ROS) are thought to be involved in many forms of programmed cell death. The role of ROS in cell death caused by oxidative glutamate toxicity was studied in an immortalized mouse hippocampal cell line (HT22). The causal relationship between ROS production and glutathione (GSH) levels, gene expression, caspase activity, and cytosolic Ca2+ concentration was examined. An initial 5–10-fold increase in ROS after glutamate addition is temporally correlated with GSH depletion. This early increase is followed by an explosive burst of ROS production to 200–400-fold above control values. The source of this burst is the mitochondrial electron transport chain, while only 5–10% of the maximum ROS production is caused by GSH depletion. Macromolecular synthesis inhibitors as well as Ac-YVAD-cmk, an interleukin 1β–converting enzyme protease inhibitor, block the late burst of ROS production and protect HT22 cells from glutamate toxicity when added early in the death program. Inhibition of intracellular Ca2+ cycling and the influx of extracellular Ca2+ also blocks maximum ROS production and protects the cells. The conclusion is that GSH depletion is not sufficient to cause the maximal mitochondrial ROS production, and that there is an early requirement for protease activation, changes in gene expression, and a late requirement for Ca2+ mobilization.  相似文献   

5.
Anti-cancer chemo-drugs can cause a rapid elevation of intracellular reactive oxygen species (ROS) levels. An imbalance in ROS production and elimination systems leads to cancer cell resistance to chemotherapy. This study aimed to evaluate the mechanism and effect of ROS on multidrug resistance in various human chemoresistant cancer cells by detecting the changes in the amount of ROS, the expression of ROS-related and glycolysis-related genes, and cell death. We found that ROS was decreased while oxidative phosphorylation was increased in chemoresistant cells. We verified that the chemoresistance of cancer cells was achieved in two ways. First, chemoresistant cells preferred oxidative phosphorylation instead of anaerobic glycolysis for energy generation, which increased ATPase activity and produced much more ATP to provide energy. Second, ROS-scavenging systems were enhanced in chemoresistant cancer cells, which in turn decreased ROS amount and thus inhibited chemo-induced cell death. Our in vitro and in vivo photodynamic therapy further demonstrated that elevated ROS production efficiently inhibited chemo-drug resistance and promoted chemoresistant cell death. Taken together, targeting ROS systems has a great potential to treat cancer patients with chemoresistance.  相似文献   

6.
Mitochondria are frequently the target of injury after stresses leading to necrotic and apoptoticcell death. Inhibition of oxidative phosphorylation progresses to uncoupling when opening ofa high conductance permeability transition (PT) pore in the mitochondrial inner membraneabruptly increases the permeability of the mitochondrial inner membrane to solutes of molecularmass up to 1500 Da. Cyclosporin A (CsA) blocks this mitochondrial permeability transition(MPT) and prevents necrotic cell death from oxidative stress, Ca2+ ionophore toxicity,Reye-related drug toxicity, pH-dependent ischemia/reperfusion injury, and other models of cell injury.Confocal fluorescence microscopy directly visualizes onset of the MPT from the movementof green-fluorescing calcein into mitochondria and the simultaneous release from mitochondriaof red-fluorescing tetramethylrhodamine methylester, a membrane potential-indicatingfluorophore. In oxidative stress to hepatocytes induced by tert-butylhydroperoxide, NAD(P)Hoxidation, increased mitochondrial Ca2+, and mitochondrial generation of reactive oxygen speciesprecede and contribute to onset of the MPT. Confocal microscopy also shows directly thatthe MPT is a critical event in apoptosis of hepatocytes induced by tumor necrosis factor-.Progression to necrotic and apoptotic cell killing depends, at least in part, on the effect theMPT has on cellular ATP levels. If ATP levels fall profoundly, necrotic killing ensues. If ATPlevels are at least partially maintained, apoptosis follows the MPT. Cellular features of bothapoptosis and necrosis frequently occur together after death signals and toxic stresses. A newterm, necrapoptosis, describes such death processes that begin with a common stress or deathsignal, progress by shared pathways, but culminate in either cell lysis (necrosis) or programmedcellular resorption (apoptosis) depending on modifying factors such as ATP.  相似文献   

7.
Abstract: The ability of glutamate to stimulate generation of intracellular oxidant species was determined by microfluorescence in cerebellar granule cells loaded with the oxidant-sensitive fluorescent dye 2,7-dichlorofluorescin (DCF). Exposure of cells to glutamate (10 µM) produced a rapid generation of oxidants that was blocked ~70% by MK-801 (a noncompetitive NMDA-receptor antagonist). To determine if nitric oxide (NO) or reactive oxygen species (ROS) contributed to the oxidation of DCF, cells were treated with compounds that altered their generation. NO production was inhibited with NG-nitro-l -arginine methyl ester (l -NAME) (nitric oxide synthase inhibitor) and reduced hemoglobin (NO scavenger). Alternatively, cells were incubated with superoxide dismutase (SOD) and catalase, which selectively metabolize O2 andH2O2. Concurrent inhibition of O2 and NO production nearly abolished intracellular oxidant generation. Pretreatment of cells with either chelerythrine (1 µM, protein kinase C inhibitor) or quinacrine (5 µM, phospholipase A2 inhibitor) before addition of glutamate also blocked oxidation of DCF. Generation of oxidants by glutamate was significantly reduced by incubating the cells in Ca2+-free buffer. In cytotoxicity studies, a positive correlation was observed between glutamate-induced death and oxidant generation. Glutamate-induced cytotoxicity was blocked by MK-801 and attenuated by treatment with l -NAME, chelerythrine, SOD, or quinacrine. It is concluded that glutamate induces concurrent generation of NO and ROS by activation of both NMDA receptors and non-NMDA receptors through a Ca2+-mediated process. Activation of NO synthase and phospholipaseA2 contribute significantly to this response. It is proposed that simultaneous generation of NO and ROS results in formation of peroxynitrite, which initiates the cellular damage.  相似文献   

8.
9.
为探讨原癌基因C-myc-siRNA对子宫内膜癌细胞凋亡的影响,本研究利用细胞计数盒(cell counting Kit-8, CCK-8)法分别检测C-myc-siRNA转染组和空载体转染组(Vector-NC)的子宫内膜癌细胞活力;蛋白免疫印迹法(Western blotting)分别检测C-myc-siRNA转染组和空载体转染组(Vector-NC)的子宫内膜癌细胞凋亡蛋白Bax以及抗凋亡蛋白Bcl-2的变化;流式细胞仪分别检测C-myc-siRNA转染组和空载体转染组(Vector-NC)活性氧簇(reactive oxygen species, ROS)的变化;蛋白免疫印迹法(Western blotting)分别检测预处理NAC (ROS抑制剂)后,C-myc-siRNA转染组和空载体转染组(Vector-NC)的子宫内膜癌细胞凋亡相关蛋白Bax以及Bcl-2的变化。结果表明:C-myc-siRNA转染子宫内膜癌细胞后,促凋亡相关蛋白Bax的表达显著高于空载体转染组,且抗凋亡相关蛋白Bcl-2的表达明显低于空载体转染组(p<0.05);C-myc-siRNA转染子宫内膜癌细胞后,细胞ROS水平明显增加(p<0.05);NAC预处理显著减弱C-myc-siRNA对子宫内膜癌细胞凋亡的促进作用(p<0.05)。本研究结论表明,C-myc-siRNA能够通过调控ROS诱导子宫内膜癌细胞凋亡。  相似文献   

10.
Light and oxygen are factors that are very much entangled in the reactive oxygen species (ROS) stress response network in plants, algae and cyanobacteria. The first obligatory step in understanding the ROS network is to separate these responses. In this study, a LC-MS/MS based quantitative proteomic approach was used to dissect the responses of Chlamydomonas reinhardtii to ROS, light and oxygen employing an interlinked experimental setup. Application of novel bioinformatics tools allow high quality retention time alignment to be performed on all LC-MS/MS runs increasing confidence in protein quantification, overall sequence coverage and coverage of all treatments measured. Finally advanced hierarchical clustering yielded 30 communities of co-regulated proteins permitting separation of ROS related effects from pure light effects (induction and repression). A community termed redoxII was identified that shows additive effects of light and oxygen with light as the first obligatory step. Another community termed 4-down was identified that shows repression as an effect of light but only in the absence of oxygen indicating ROS regulation, for example, possibly via product feedback inhibition because no ROS damage is occurring. In summary the data demonstrate the importance of separating light, O2 and ROS responses to define marker genes for ROS responses. As revealed in this study, an excellent candidate is DHAR with strong ROS dependent induction profiles.Life originated in an environment in which the atmosphere was reducing. More than 2.2 Gyr ago, photosynthetic bacteria managed to extract electrons from water, thereby releasing oxygen (O2) as a side product (1). Although molecular O2 is a triplet state (3O2), and is thus kinetically inhibited, its related reactive oxygen species (ROS)1, i.e., superoxide (O2•−), peroxides (ROOR), singlet oxygen (1O2), and hydroxyl radicals (HO) are not. Nevertheless, molecular O2 itself oxidizes biomolecules, for example, thiol groups, albeit at a much slower rate. The fundamental change in environment and the appearance of O2 and ROS triggered the biggest mass extinction ever seen on Earth (2, 3). Soon after, the much more efficient O2 based metabolism (compared with fermentation) lead to an evolutionary explosion (4). Today, cells obtain energy from reduced organic molecules through O2 based respiration.In the past ROS were associated with cellular stress but strong evidence points toward a cellular ROS network that keeps ROS production and ROS scavenging in tight balance to ensure the maintenance of the cellular redox homeostasis and protection against ROS stress (5, 6). An imbalance in this network has been associated with a wide array of human diseases such as cancer (7), neurodegeneration (8), Keshan disease (9), and many others (see also review (6)), although arguments have been brought forward that the origin of some diseases is not directly linked to ROS and that ROS are more likely to be the result of deteriorating cells (10). In any case, the cellular ROS network response to ROS stress is implicated in the progress of these diseases and understanding the network dynamics will have a significant impact in medicine.Equally important, reduced ROS capacity or imbalance in the ROS network results in decreased crop yields and simple attempts to increase production yields by increasing ROS scavenging capacities in plants failed because those plants lost their ability to mount a defense against pathogens efficiently by the hypersensitive reaction (11), which implicates intended localized high yield ROS production. On the other hand Chang et al. could show that the knock-out of glutathione peroxidase 7 (gpx7), i.e., reducing ROS scavenging capacity, leads to an increased pathogen resistance but, unfortunately, to an increased photosensitivity as well (12), thus resulting in reduced crop production. The quintessence is that plants require the ability to produce sufficient amounts of ROS as part of their defense mechanism yet require some ROS scavenging capacity because photosynthetic growth inevitably produces damaging ROS. In order to effectively mount a hypersensitivity defense reaction, the ROS scavenging capacities have to be suppressed. Thus understanding the ROS network is an important global issue in the light of hunger in some parts of the world and the need for biofuels. Elucidating the key players of the ROS network will allow high production crop plants to be designed.It seems clear that the ROS network, its dynamics and homeostasis are poorly understood. Understanding how to evaluate the ROS balance and how to restore ROS balance within a cell would have a strong impact on a medical and agricultural level. To put it in the words of Barry Halliwell: “the likely clinical value of ‘antioxidant therapy’ will depend on how well the exact role of reactive oxygen species,” i.e., the ROS network, “is known” (13).ROS can be divided into two classes, i.e., H2O2 and 1O2 based ones. Especially in plants, algae, and cyanobacteria, it is now widely accepted that the signaling pathways of H2O2 (14) and 1O2 (15) are complex and entangled (16, 17) simply through the nature of their production, i.e., via an active photosynthetic electron transport chain. However, there have been reports that clearly show the independence of H2O2 and 1O2 mediated responses (see e.g. (18, 19)). In Arabidopsis thaliana the ROS network, in particular the 1O2 aspect has been widely studied, but comprehensive proteomic studies are still required. The A. thaliana flu mutant was used to reveal 1O2 related retrograde signaling. The flu mutant accumulates protochlorophyllide when grown in the dark, and seedlings bleach and die whereas mature plants stop growing when transferred into light (20). 1O2 production yielded an induction of distinct genes and these differed significantly from genes induced by H2O2 (15). Apel and co-workers identified the chloroplast localized EXECUTER1/2 proteins as key players in 1O2 retrograde signaling (18, 21), highlighting that specific 1O2 induced signals trigger programmed cell death (PCD) rather than ROS induced damage. A flu-like gene (flp) was identified in Chlamydomonas reinhardtii, and its gene product FLP in its two splicing variants was shown to be involved in the chlorophyll biosynthesis (22). Regulation of FLPs were suggested to occur via light and retrograde plastid signals (22). The specific 1O2 signaling mechanism in A. thaliana was further extended by Ramel et al. (23). The authors could show that 1O2 induced damage to β-carotene, a major component in a ROS defense strategy, yields β-cyclocitral, which when produced and applied exogenously triggers a selective 1O2 response, similar to the one reported by Apel and co-workers when describing the effects of the flu mutant (15, 18, 21). However, the signaling pathways involving EXECUTER and β-cyclocitral show more and more independent features (see e.g. Lundquist et al. (24)).ROS production is an inevitable part of the oxygenic photosynthesis and thus can be controlled noninvasively by light intensities. This is why plants, algae, and cyanobacteria offer a unique opportunity to investigate the ROS network. However, in plants the majority of ROS is produced in the chloroplast requiring O2 as educt and the presence of light. Therefore, careful separation of the light, O2, and ROS responses is required. As a consequence, simple high light/low light comparisons are overshadowed by additional ROS production, and vice versa. A classical example is HSP70A in C. reinhardtii, which was originally reported to be light regulated (25) and later proven to be regulated by ROS (19), via two promoters that react specifically on H2O2 and 1O2, to be precise.We have devised an experimental setup, which allows the ROS, high light/low light (HL/LL) and aerobic/anaerobic (AR/AN) responses to be dissected on a proteome level using metabolic labeling and quantitative proteomics. We used an interlinked experimental setup that connects all four possible treatments in such a way that each treatment is compared with two other treatments. This offers a strong internal control because the changes in protein levels comparing two not directly connected treatments can be measured by two independent estimates. MS data was analyzed employing high quality retention time alignment to increase overall confidence in protein quantification, increase protein sequence coverage and increase coverage of all conditions. PyGCluster, a novel hierarchical clustering approach (26) was used to identify communities of proteins that are coregulated. Five communities/expression profiles are discussed: a) light and O2 dependent induction, i.e., potential ROS related regulations, b) a novel regulation type, which shows induction of protein expression influenced additively by light and O2, but with light as the obligatory first step, c) light related induction (O2 independent), d) light dependent repression (O2 independent), and e) light dependent repression in the absence of O2, which might be a regulation linked to feedback inhibition by for example, molecules that are normally damaged by ROS.  相似文献   

11.
叶绿体中活性氧的产生和清除机制   总被引:4,自引:0,他引:4  
陈花  吴俊林  李晓军 《现代生物医学进展》2008,8(10):1979-1981,1971
正常情况下植物细胞内活性氧(reactive oxygen species ROS)的产生和清除是平衡的,但是,一旦植物遭受环境胁迫,ROS的积累超过抗氧化剂防护系统清除能力,就会产生氧胁迫损伤细胞。由于叶绿体作为光合作用的场所与其他细胞器相比更易遭受氧化胁迫的伤害。因此,叶绿体进化了更强的防御机制调控电子传递链的氧化还原平衡及叶绿体基质中的氧化还原状态。活性氧具有双重效应.高浓度的活性氧对植物细胞有很强的毒害作用,低浓度时可充当信号分子参与植物的某些防卫反应过程,本文就叶绿体中活性氧的产生(三线态叶绿素、PSI和PSI I电子传递链)、网络清除(抗氧化剂,SOD,As—Glu循环系统,硫氧还蛋白)机制以及功能作用进行了综述。  相似文献   

12.
Oxidative stress is a major cause of defective sperm function in cases of male infertility. Such stress is known to be associated with high levels of superoxide production by the sperm mitochondria; however, the causes of this aberrant activity are unknown. Here we show that electrophilic aldehydes such as 4-hydroxynonenal (4HNE) and acrolein, generated as a result of lipid peroxidation, target the mitochondria of human spermatozoa and stimulate mitochondrial superoxide generation in a dose- and time-dependent manner. The activation of mitochondrial electron leakage by 4HNE is shown to involve the disruption of succinate dehydrogenase activity and subsequent activation of an intrinsic apoptotic cascade beginning with a loss of mitochondrial membrane potential and terminating in oxidative DNA adduct formation, DNA strand breakage, and cell death. A tight correlation between spontaneous mitochondrial superoxide generation and 4HNE content (R2 = 0.89) in untreated populations of human spermatozoa emphasized the pathophysiological significance of these findings. The latter also provide a biochemical explanation for the self-perpetuating nature of oxidative stress in the male germ line, with the products of lipid peroxidation stimulating free radical generation by the sperm mitochondria in a positive feedback loop.  相似文献   

13.
In the present work, the response of tobacco (Nicotiana tabaccum L.) wild-type SR1 and transgenic CAT1AS plants (with a basal reduced CAT activity) was evaluated after exposure to the herbicide paraquat (PQ). Superoxide anion (O2.−) formation was inhibited at 3 or 21 h of exposure, but H2O2 production and ion leakage increased significantly, both in SR1 or CAT1AS leaf discs. NADPH oxidase activity was constitutively 57% lower in non-treated transgenic leaves than in SR1 leaves and was greatly reduced both at 3 or 21 h of PQ treatment. Superoxide dismutase (SOD) activity was significantly reduced by PQ after 21 h, showing a decrease from 70% to 55%, whereas catalase (CAT) activity decreased an average of 50% after 3 h of treatment, and of 90% after 21 h, in SR1 and CAT1AS, respectively. Concomitantly, total CAT protein content was shown to be reduced in non-treated CAT1AS plants compared to control SR1 leaf discs at both exposure times. PQ decreased CAT expression in SR1 or CAT1AS plants at 3 and 21 h of treatment. The mechanisms underlying PQ-induced cell death were possibly not related exclusively to ROS formation and oxidative stress in tobacco wild-type or transgenic plants.  相似文献   

14.
Mitochondrial Complex I [NADH Coenzyme Q (CoQ) oxidoreductase] is the least understood of respiratory complexes. In this review we emphasize some novel findings on this enzyme that are of relevance to the pathogenesis of neurodegenerative diseases. Besides CoQ, also oxygen may be an electron acceptor from the enzyme, with generation of superoxide radical in the mitochondrial matrix. The site of superoxide generation is debated: we present evidence based on the rational use of several inhibitors that the one-electron donor to oxygen is an iron-sulphur cluster, presumably N2. On this assumption we present a novel mechanism of electron transfer to the acceptor, CoQ. Complex I is deeply involved in pathological changes, including neurodegeneration. Complex I changes are involved in common neurological diseases of the adult and old ages. Mitochondrial cytopathies due to mutations of either nuclear or mitochondrial DNA may represent a useful model of neurodegeneration. In this review we discuss Parkinson’s disease, where the pathogenic involvement of Complex I is better understood; the accumulated evidence on the mode of action of Complex I inhibitors and their effect on oxygen radical generation is discussed in terms of the aetiology and pathogenesis of the disease. Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.  相似文献   

15.
Some varieties of sweet pepper accumulate non-pungent isosters of capsaicin, a type of compounds exemplified by capsiate. The only structural difference between capsaicin and capsiate is the link between the vanillyl and the acyl moieties, via an amide bond in the former and via an ester bond in the latter. By flow cytometry analyses we have determined that nor-dihydrocapsiate, a simplified analogue of capsiate, is a pro-oxidant compound that induces apoptosis in the Jurkat tumor cell line. The nuclear DNA fragmentation induced by nor-dihydrocapsiate is preceded by an increase in the production of reactive oxygen species and by a subsequent disruption of mitochondria transmembrane potential. Capsiate-induced apoptosis is initiated at the S phase of the cell cycle and is mediated by a caspase-3-dependent pathway. The accumulation of intracellular reactive oxygen species in capsiate-treated cells is greatly prevented by the presence of ferricyanide, suggesting that capsiates target a cellular redox system distinct from the one involved in the mitochondrial electron-chain transport. Methylation of the phenolic hydroxyl of nor-dihydrocapsiate completely abrogated the ability to induce reactive oxygen species and apoptosis, highlighting the relevance of the presence of a free phenolic hydroxyl for the pro-oxidant properties of capsaicinoids.  相似文献   

16.
Near-UV irradiation caused the decomposition of hinokitiol in an aqueous solution. During the photochemical reaction, the distinct electron spin resonance signal characteristic of the adduct of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) with the hydroxyl radical was accompanied by small signals corresponding to the adduct of DMPO with the superoxide anion radical. More than 95% of Escherichia coli cells were killed by the incubation with hinokitiol under near-UV irradiation by BLB fluorescent lamps. These results indicated the generation of reactive oxygen species during photochemical reaction of hinokitiol under near-UV irradiation.  相似文献   

17.
18.
Flagellar development during the asexual synchronous cell cycle of Chlamydomonas reinhardtii (11.32 aM) was studied by light microscopy. Cell walls of sporangia of different developmental status were dissolved using gamete lysin (g-lysin) enabling direct observation of flagellar development. Flagellar growth in progeny cells exhibits a linear kinetic with a growth rate of 28 nm/min at 30°C leading to a flagellar length of 7–7.5 μm in 4–4.5 h. After this time the flagellar growth rate drops to 2.8 nm/min (as in interphase). Both flagella of a single cell and all flagella within a sporangium grow out at the same time and with the same rate. Cycloheximide (10 μg/ml) completely blocks flagellar development. If cycloheximide is removed flagellar growth resumes at the normal rate with no lag-phase. Flagellar development during the cell cycle in C. reinhardtii differs considerably from the well-studied model system of flagellar regeneration following amputation in the same species.  相似文献   

19.
Perturbation of calcium signaling that occurs during cell injury and disease, promotes cell death. In mouse lung fibroblasts A23187 triggered mitochondrial permeability transition pore (MPTP) formation, lactate dehydrogenase (LDH) release, and necrotic cell death that were blocked by cyclosporin A (CsA) and EGTA. LDH release temporally correlated with arachidonic acid release but did not involve cytosolic phospholipase A2α (cPLA2α) or calcium-independent PLA2. Surprisingly, release of arachidonic acid and LDH from cPLA2α-deficient fibroblasts was inhibited by the cPLA2α inhibitor pyrrophenone, and another serine hydrolase inhibitor KT195, by preventing mitochondrial calcium uptake. Inhibitors of calcium/calmodulin-dependent protein kinase II, a mitochondrial Ca2+ uniporter (MCU) regulator, also prevented MPTP formation and arachidonic acid release induced by A23187 and H2O2. Pyrrophenone blocked MCU-mediated mitochondrial calcium uptake in permeabilized fibroblasts but not in isolated mitochondria. Unlike pyrrophenone, the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol and CsA blocked cell death and arachidonic acid release not by preventing mitochondrial calcium uptake but by inhibiting MPTP formation. In fibroblasts stimulated with thapsigargin, which induces MPTP formation by a direct effect on mitochondria, LDH and arachidonic acid release were blocked by CsA and 1-oleoyl-2-acetyl-sn-glycerol but not by pyrrophenone or EGTA. Therefore serine hydrolase inhibitors prevent necrotic cell death by blocking mitochondrial calcium uptake but not the enzyme releasing fatty acids that occurs by a novel pathway during MPTP formation. This work reveals the potential for development of small molecule cell-permeable serine hydrolase inhibitors that block MCU-mediated mitochondrial calcium overload, MPTP formation, and necrotic cell death.  相似文献   

20.
Plant-derived compounds are an important source of clinically useful anti-cancer agents. Chrysin, a biologically active flavone found in many plants, has limited usage for cancer chemotherapeutics due to its poor oral bioavailability. 5-Hydroxy-7-methoxyflavone (HMF), an active natural chrysin derivative found in various plant sources, is known to modulate several biological activities. However, the mechanism underlying HMF-induced apoptotic cell death in human colorectal carcinoma cells in vitro is still unknown. Herein, HMF was shown to be capable of inducing cytotoxicity in HCT-116 cells and induced cell death in a dose-dependent manner. Treatment of HCT-116 cells with HMF caused DNA damage and triggered mitochondrial membrane perturbation accompanied by Cyt c release, down-regulation of Bcl-2, activation of BID and Bax, and caspase-3-mediated apoptosis. These results show that ROS generation by HMF was the crucial mediator behind ER stress induction, resulting in intracellular Ca2+ release, JNK phosphorylation, and activation of the mitochondrial apoptosis pathway. Furthermore, time course study also reveals that HMF treatment leads to increase in mitochondrial and cytosolic ROS generation and decrease in antioxidant enzymes expression. Temporal upregulation of IRE1-α expression and JNK phosphorylation was noticed after HMF treatment. These results were further confirmed by pre-treatment with the ROS scavenger N-acetyl-l-cysteine (NAC), which completely reversed the effects of HMF treatment by preventing lipid peroxidation, followed by abolishment of JNK phosphorylation and attenuation of apoptogenic marker proteins. These results emphasize that ROS generation by HMF treatment regulates the mitochondrial-mediated apoptotic signaling pathway in HCT-116 cells, demonstrating HMF as a promising pro-oxidant therapeutic candidate for targeting colorectal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号