首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Totoaba Totoaba macdonaldi and shortfin corvina Cynoscion parvipinnis, were acclimated and reared together at salinities of 0, 2, 5, 10, 20 and 35 for 56 days. Initial overall mean ± s.d . body masses of 67·6 ± 7·1 g T. macdonaldi and 37·3 ± 3·1 g C. parvipinnis increased to final overall masses of 217·4 ± 30·3 and 96·5 ± 16·5 g, respectively, at the end of the study. Totoaba macdonaldi was not able to tolerate salinities of 0 and 2 and C. parvipinnis of 0. In contrast, both species had 100% survival at salinities ≥ 10. Somatic growth was highest not at natural seawater salinity of 35, but at 10. Plasma osmolality ranged from 172·5 to 417·0 mOsmol kg?1 for T. macdonaldi and from 207·0 to 439·5 mOsmol kg?1 for C. parvipinnis and varied in direct proportion to salinity. The estimated isosmotic salinities of T. macdonaldi and C. parvipinnis were 12·3 and 13·4, respectively. Cynoscion parvipinnis reared at two had significantly lower plasma lysozyme activity (95·0 Units ml?1) than fish held at salinities from 5 to 35 (ranging from 215·0 to 355·0 Units ml?1), but without clear trends over this range. Blood neutrophil oxidative radical production (NBT) (ranging from 3·9 to 6·7 mg ml?1) had some significant differences among salinities, but these did not follow a clear pattern. For T. macdonaldi, neither lysozyme activity nor NBT was affected by salinity. Ash content of whole fishes varied directly and moisture content inversely, with salinity for both species.  相似文献   

2.
This study assessed the impact of salinity on whiting (Sillaginodes punctata) in an attempt to understand the mechanisms by which salinity could potentially influence habitat selection and growth of King George whiting in southern Australia. The experiment included whiting of two age classes, young of the year (YOY) and 2+ year, at three salinities (30, 40, 50 ppt). YOY whiting showed no significant difference in length or weight gain, specific growth rate, feed intake, food conversion ratio or condition factor when exposed to the three salinities for 72 day. Plasma osmolality of YOY whiting was not significantly different at any salinity, although it was significantly lower than that of 2+ year whiting. The 2+ year whiting showed significantly higher plasma osmolality than the YOY. Blood plasma potassium and chloride levels of 2+ year fish at 50 ppt were significantly higher than those at 30 ppt and 40 ppt. Blood sodium levels at 50 ppt were significantly higher than at 30 ppt but the sodium level at 40 ppt was not different from 30 ppt or 50 ppt. Haematocrit of 2+ whiting was significantly higher at 30 than at 50 ppt while haematocrit at 40 ppt was not different from 30 or 50 ppt. The 2+ year‐old whiting had a more pronounced increase in plasma osmolality and plasma ions at high salinities, indicating poorer osmoregulatory capacity in older fish. This study provides physiological evidence to partially explain habitat occupancy and growth in relation to salinity of different age groups of whiting in southern Australia.  相似文献   

3.
The osmoregulatory capabilities of 6-month-old juvenile obscure puffer Takifugu obscurus, transferred directly from fresh water to different salinities (0‰, freshwater control; 10‰; 20‰ and 30‰), were studied over an 8-day period. After transfer, plasma osmolality of the fish at 30‰ was significantly higher than those at all other salinities throughout the experiment. The Na+/K+ ATPase activity in the gills of the fish treated with various salinities increased significantly, peaking at 48 h, then decreased gradually to the control level at 192 h. Similar fluctuation trends of the Na+/K+ ATPase activity were observed in the kidneys. Modified Gaussian model provided accurate fits for the time-course changes in the Na+/K+ ATPase activities after abrupt salinity challenge. The results demonstrated that obscure puffer has strong capacity to tolerate abrupt salinity changes and can osmoregulate well over a wide range of salinities even in juvenile stage.  相似文献   

4.
The present study determined the behavioural salinity preference of a freshwater stock of juvenile yellow perch Perca flavescens acclimated to salinities of 0 and 10. The preferred salinities ranged between 7·3 and 13·0 (mean ± s.d . = 10·4 ± 1·7; n = 13) with no significant effect of acclimation salinity. The results showed that juvenile P. flavescens prefers near isoosmotic salinities, which could be due to a lowered energetic cost of osmoregulation.  相似文献   

5.
Routine metabolism (i.e. standard metabolism plus a low level of activity) of coastal largemouth bass Micropterus salmoides from Mobile‐Tensaw Delta, AL, U.S.A. was examined as a function of temperature (15, 20, 25 and 30° C), salinity (0, 4, 8 and 12) and body mass (range 24–886 g) using flow‐through respirometry. Functionally, a cubic relationship best described the effect of salinity on respiration; the magnitude of these effects increased with temperature and body mass. The best model predicted that specific respiration (mg O2 g?1 h?1) at temperatures >20° C was lowest at salinities of 0·0 and 9·7, and elevated at 3·2 and 12·0; salinity had little to no effect at temperatures ≤20° C. Respiration increased exponentially with temperature, but when compared with previously published respiration rates for M. salmoides from northern latitudes, predicted respiration was higher at cool temperatures and lower at high temperatures. The reduced energetic cost near the isosmotic level (i.e. c. 9) may be an adaptive mechanism to tolerate periods of moderate salinity levels and may help explain why M. salmoides do not flee an area in response to increased salinity. Further, these results suggest that salinity has high energetic costs for coastal populations of M. salmoides and may contribute to the observed slow growth and small maximum size within coastal systems relative to inland freshwater populations.  相似文献   

6.
In this study we assessed changes in the osmoregulatory system of juvenile sub-Antarctic Eleginops maclovinus submitted to different environmental salinities (5, 15, 32 and 45 psu) using two different acclimation trials: (1) an end-point experiment (exposure for 14 days) and (2) a time course experiment (specimens were sampled on days 1, 3, 7 and 14 post-transfer). Plasma osmolality, cortisol and metabolites (glucose, lactate and protein) values as well as Na+, K+-ATPase (NKA) activity were assessed in several osmoregulatory tissues (gills, kidney and intestine). In both trials, acclimation to different environmental salinities for 14 days induced changes in plasma metabolites (glucose, lactate and proteins) as well as cortisol values related to salinity challenges. Plasma osmolality and gill NKA activity presented a direct and positive relationship with respect to environmental salinity, while kidney NKA activity showed a “U-shaped” relationship. Anterior intestinal NKA activity increased in response to environmental salinity and apparently did not change in the middle portion of this organ, while it was enhanced in the posterior portion in environmental salinities different than seawater. Plasma metabolite values increased under hypo- and hypersaline conditions, indicating the importance of these energy substrates in extreme environments. The time course study revealed that specimens of E. maclovinus are able to accommodate their osmotic and metabolic system to respond to osmoregulatory challenges by allostatic changes.  相似文献   

7.
We exposed snails of an invasive species of golden apple snail (Pomacea canaliculata) to five artificial sea water treatments at salinity levels of 0, 5, 10, 15 or 20 parts per thousand (ppt) to assess their salinity tolerance. We observed the behaviour, heart rate, total haemocyte counts, haemolymph ionic concentration and Na+/K+-ATPase activity in the mantle at 0, 12, 24, 48, 72 and 96 h post salinity exposures. The heart rate declined with increasing salinity, while Na+/K+-ATPase activity in the mantle presented a reverse trend, possibly to maintain normal osmolality. A trend of rising total haemocyte count was observed from 0 ppt and 5 ppt to 10 ppt salinities, while a sudden increase in the count was observed at 15 ppt and 20 ppt salinity groups. Furthermore, haemolymph Cl?, Na+ and K+ concentrations increased directly with elevated salinity. An additional trial was performed to assess the growth performance of the snails under exposure to low salinities. During a 1 month trial, snails grew better at 5 ppt salinity treatment. Taken together, our results demonstrate that P. canaliculata can tolerate salt stress to some extent. The finding also obviously implies a possible invasive risk to estuaries.  相似文献   

8.
This study investigated the influence of salinity and cadmium on the survival and osmoregulatory capability of two decapod crustaceans, Callianassa kraussi and Chiromantes eulimene. Callianassa kraussi was able to survive in salinities of 5–55 over 96 h, whilst C. eulimene survived in 0–55 over the same time period. The 96-hour cadmium LC50 for both species decreased progressively at salinities above and below their respective isosmotic conditions, with the decrease being slightly more pronounced below compared to above isosmotic salinity. A hypo-iso-osmoregulatory strategy was followed by C. kraussi as it hyper-osmoregulated at salinities between 5 and 25 and osmoconformed at salinities greater than 25. Chiromantes eulimene followed a hyper-hypo-osmoregulatory strategy; it hyper-regulated in salinities from 0 up to isosmotic conditions at about 28 (c. 780 mOsm kg?1), followed by hypo-regulation up to 55. The effect of cadmium exposure on the osmoregulatory capacity of C. kraussi was more pronounced at hyper-regulating salinities (5–25) whilst on C. eulimene the influence was more pronounced at salinities above the isosmotic point (28). The influence of salinity and cadmium on both survival and osmoregulation of the two crustaceans are discussed by outlining the chemical and physiological mechanisms involved.  相似文献   

9.
Summary The gammarid amphipod Onisimus litoralis, which inhabits arctic and subarctic intertidal and under-ice habitats, is a euryhaline hyperosmotic regulator. It survives 10 d exposures to salinities from 5 to 55 ppt. It hyperregulates its hemolymph osmolality during 3 h exposures to dilutions of 33 ppt seawater and remains hyperosmotic for at least 2 w. The hemolymph is isosmotic to the medium after 12 h exposures to salinities higher than 33 ppt. The gammarid amphipod Anonyx nugax, which inhabits arctic and subarctic subtidal areas, tolerates salinities from 23 to 45 ppt with little mortality. Unlike Onisimus, however, it is an osmoconformer and its hemolymph becomes isosmotic to all dilute salinities within its tolerance range after 12 h and to concentrated media after 3 h. The salinity tolerances and osmoregulatory abilities of both species are reflected in their distributions in the field.  相似文献   

10.
Synopsis Blood samples from cannulated young adult (2.5–15 kg) white sturgeon, acclimated to San Francisco Bay water (24 ppt) had plasma values of 248.8 ± 13.5 mOsm kg−1 H2O, [Na+] = 125 ± 8.0 mEq 1−1, [K+] = 2.6 ± 0.8 mEq 1−1 and [CL] = 122 ± 3.0 mEq 1−1. Freshwater acclimated sturgeon had an osmolality of 236 ± 7, [Na+] = 131.6 + 4.4, [K+] = 2.5 ± 0.7 and [CL] = 110.6 ± 3.6. Freshwater acclimated fish gradually exposed to sea water (increase of 5 ppt h−1) had higher plasma osmolalities than did the bay water acclimated fish. These young adult sturgeon are able to tolerate transfer from fresh water to sea water as well as gradual transfer from sea water to fresh water. Plasma electrolytes in transferred fish are regulated, but tend to differ from long term acclimated fish at the same salinities. There is a gradual increase in the upper salinity tolerance (abrupt transfer) of juvenile white sturgeon with weight: 5–10 ppt for 0.4–0.9 g fish, 10–15 ppt for 0.7–1.8 g fish, and 15 ppt for 4.9–50.0 g fish. The ability of juveniles to regulate plasma osmolality is limited. The young adult fish are able to tolerate higher salinities (35 ppt) than juvenile sturgeon but probably are also characterized by low activity of the necessary ion exchange mechanisms in the gills which permit rapid adjustment of blood electrolytes with graduate change in external salinity.  相似文献   

11.
Wrasse used as cleaner fish with farmed Atlantic salmon Salmo salar can be subjected to large and rapid temperature and salinity fluctuations in late autumn and early winter, when summer-warmed surface water is affected by early snowmelt episodes. Because of their containment in sea cages, wrasse which are essentially acclimated to summer temperatures may be rapidly exposed to winter conditions. Short-term tolerance of low temperature and low salinity by three species of wrasse, goldsinny Ctenolabrus rupestris rock cook Centrolabrus exoletus corkwing Crenilabrus melops caught during the summer, and winter-caught corkwing, was investigated. A 3–day period at 30 or 32‰ salinity and temperature 8, 6 or 4° C (for summer-caught fish; 4° C only for winter-caught) was followed by a decline in salinity to 24, 16 or 8‰ over c. 36 h, followed by a further 24 h at these salinities held constant, at each of the three temperatures. Controls in 30 or 32‰ were maintained at 8, 6 or 4° C. Mortality of summer-caught corkwing and rock cook was high at 4° C, whereas the influence of salinity on mortality was small. Mortality of goldsinny was low or zero in all treatments. Surviving corkwing and rock cook after 3 days at 4° C and 32‰ salinity had elevated plasma osmolality: in summer-caught corkwing, plasma [Cl°] and [Na+] were high, whereas in rock cook only [Na+] was high. Haematocrit was low in summer-caught corkwing, high in rock cook. In survivors of all three species at the end of the experiment, values of all these parameters were comparable with those of fish at the beginning of the experiment, except that survivors at low salinity (8, 16‰) had low plasma osmolality, at all temperatures, and in surviving rock cook in these treatments haematocrit was high and plasma [Cl?] was low. Winter-caught corkwing had higher osmolality, [Na+] and [Cl?] than summer-caught corkwing; there was no difference in haematocrit. Survival of wintercaught corkwing exposed to four salinities at 4° C was much higher than that of summercaught corkwing under the same conditions. Little change in blood physiology was recorded for winter-caught corkwing, with only fish subjected to 8‰ and 4° C showing signs of osmoregulatory stress. The interspecific and seasonal differences in survival and blood physiology at low temperature and low salinity are discussed in relation to wrasse survival over winter, both in the field and in salmon farms.  相似文献   

12.
  • 1.1. Osmolality and chloride concentrations in the hemolymph of Penaeus monodon became stable 1 day after molting in 32 ppt, while total protein and calcium concentrations remained stable throughout the molting cycle. When intermolt (≥ 36 hr postmolt) animals were transferred from control (32 ppt) to experimental (8–40 ppt) salinities, osmolality, chloride and total protein, but not calcium, concentrations in the hemolymph achieved steady state values 24–48 hr after transfer.
  • 2.2. The hemolymph osmolality was a linear function (slope = 0.28) of medium osmolality at salinities between 8 and 40 ppt. It was isosmotic to seawater at 698 mOsm (10 g prawns) and 752 mOsm (30 g), and was hyperosmotic to the medium below isosmotic concentrations, and hypoosmotic to those above.
  • 3.3. Hemolymph chloride concentration was isoionic to seawater at 334 mM, and was hyperregulated below isoionic concentrations, and hyporegulated to those above.
  • 4.4. P. monodon maintained its hemolymph calcium concentration between 6.4 and 10 mM when medium salinities increased from 8 to 40 ppt.
  • 5.5. Total protein concentration in the hemolymph was independent of medium salinity (8–40 ppt) and hemolymph osmolality (540–850 mOsm).
  相似文献   

13.
The flounder, Paralichthys orbignyanus, is found in coastal and estuarine waters of the Western South Atlantic Ocean. It is being considered for aquaculture due to its high market price and wide tolerance to environmental factors such as salinity, pH, and nitrogenous compounds. The objective of this study was to characterize the ionic and osmotic regulation of P. orbignyanus over the range of its tolerated ambient salinities (0-40‰) and to evaluate the survival and growth in freshwater (0‰) and seawater (30‰) over 90 days. After 15 days of exposure to different salinities (0‰, 10‰, 20‰, 30‰ and 40‰), plasma osmolality and ionic (Na+, Cl, K+ and Ca2+) concentrations slightly increased with salinity. The isosmotic point was estimated as 328.6 mOsm kg−1 H2O and corresponded to 10.9‰ salinity. After 90 days, survival was similar in freshwater and seawater, but osmo- and ionoregulation was significantly affected in freshwater and flounders reared in this medium showed a lower growth rate than those reared in seawater. Based on the results from this study, P. orbignyanus can be characterized as a marine/estuarine euryhaline teleost capable of hyper/hypo iono- and osmoregulation over the fluctuating salinity regime faced by this species in the environment. Furthermore, results suggest that the lower growth rate exhibited by P. orbignyanus in freshwater could be due, at least partially, to a higher energy expenditure associated to a higher branchial Na+, K+-ATPase activity in this environment.  相似文献   

14.
The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20° C, where it was 28%. The results show that P. fluviatilis have capacity to osmoregulate in hyper‐osmotic environments. This contradicts previous studies and indicates intraspecific variability in osmoregulatory capabilities among P. fluviatilis populations or habitat origins. An apparent cost of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity on MMR is possibly due to a reduction in gill permeability, initiated to reduce osmotic stress. An interaction between salinity and temperature on aerobic scope shows that high salinity habitats are energetically beneficial during warm periods (summer), whereas low salinity habitats are energetically beneficial during cold periods (winter). It is suggested, therefore, that the seasonal migrations of P. fluviatilis between brackish and fresh water is to select an environment that is optimal for metabolism and aerobic scope.  相似文献   

15.
The ichthyotoxic flagellate Pseudochattonella has formed recurrent blooms in the North Sea, Skagerrak and Kattegat since 1998. Five strains of Pseudochattonella farcimen and two strains of P. verruculosa were examined in an assay comparing the light response of specific growth rates over a range of temperatures and salinities to get further knowledge on the autecology of members of this genus. Temperature optima were lower in P. farcimen (9°C–15°C) than in P. verruculosa (12°C–20°C). P. farcimen also showed a somewhat lower salinity optimum (18–26) than P. verruculosa (20–32). All strains showed light‐dependent growth responses reaching saturation between 18 and 52 μmol · photons · m?2 · s?1 at optimal temperature and salinity conditions. Compensation point estimates ranged from 4.2 to 15 μmol · photons · m?2 · s?1. Loss rates increased with temperature and were lowest at salinities close to optimal growth conditions. Blooms of P. farcimen have been recorded in nature under conditions more similar to those minimizing loss rates rather than those maximizing growth rates in our culture study.  相似文献   

16.
Isolated perfused gills of stenohaline crabs Cancer pagurus adapted to seawater, brackish water-adapted euryhaline shore crabs Carcinus maenas and freshwater-adapted extremely euryhaline Chinese crabs Eriocheir sinensis were tested for their capacity to excrete ammonia. Gills were perfused with haemolymph-like salines and bathed with salines equal in adaptation osmolality. Applying 100 μmol · l−1 NH4Cl in the perfusion saline and concentrations of NH4Cl in the bath that were stepwise increased from 0 to 4000 μmol · l−1 allowed us to measure transbranchial fluxes of ammonia along an outwardly as well as various inwardly directed gradients. The gills of all three crab species were capable – to different extents – of active excretion of ammonia against an inwardly directed gradient. Of the three crab species, the gills of Cancer pagurus revealed the highest capacity for active excretion of ammonia, being able to excrete it from the haemolymph (100 μmol · l−1 NH+ 4) through the gill epithelium against ambient concentrations of up to 800 μmol · l−1, i.e. against an eightfold gradient. Carcinus maenas and E. sinensis were able to actively excrete ammonia against approximately fourfold gradients. Within the three crab species, the gills of E. sinensis exhibited the greatest capacity to resist influx at very high external concentrations of up to 4000 μmol · l−1. We consider the observed capacities for excretion of ammonia against the gradient as ecologically meaningful. These benthic crustaceans protect themselves by burying themselves in the sediment, where, in contrast to the water column, concentrations of ammonia have previously been reported that greatly increase haemolymph levels. Electrophysiological results indicate that the permeabilities of the gill epithelia are a clue to understanding the species-specific differences in active excretion of ammonia. During the invasion of brackish water and freshwater, the permeabilities of the body surfaces greatly decreased. The gills of marine Cancer pagurus exibited the greatest permeability (ca. 250 mS cm−2), thus representing practically no influx barrier for ions including NH+ 4. We therefore assume that C. pagurus had to develop the strongest mechanism of active excretion of ammonia to counteract influx. On the other hand, freshwater-adapted E. sinensis exhibited the lowest ion permeability (ca. 4 mS cm−2) which may reduce passive NH+ 4 influxes at high ambient levels. Accepted: 14 October 1998  相似文献   

17.
Dunaliella salina (Dunal) Teodor, when treated over 25 d with a wide range of NaCl salinities (0.6–4.5 M), showed its maximal growth potentialities at 1.5–3.0 M NaCl and was able to survive even at 4.5 M NaCl. Sodium concentrations increased significantly at the supraoptimal salinities, reaching up to 5 mmol · g?1 dry weight (dwt) at 4.5 M NaCl. Interestingly, ability of D. salina to take up essential mineral nutrients was not impaired by increased salinity. As for growth, chl concentrations were maximal in the 1.5–3.0 M NaCl range. Interestingly, carotenoid concentrations increased with the increasing salinity. The highest values of total antioxidant activity (5.2–6.9 mg gallic acid equivalents [GAE] · g?1 dwt), antiradical activity, and reducing power were measured at 1.5–3.0 M NaCl. As a whole, these results showed that at 1.5–3.0 M NaCl, D. salina produce appreciable antioxidant level. But, once it reaches its growth maximum, a salt addition up to 4.5 M could enhance its carotenoid yield.  相似文献   

18.
By increasing water use efficiency and carbon assimilation, increasing atmospheric CO2 concentrations could potentially improve plant productivity and growth at high salinities. To assess the effect of elevated CO2 on the salinity response of a woody halophyte, we grew seedlings of the mangrove Avicennia germinans under a combination of five salinity treatments [from 5 to 65 parts per thousand (ppt)] and three CO2 concentrations (280, 400 and 800 ppm). We measured survivorship, growth rate, photosynthetic gas exchange, root architecture and foliar nutrient and ion concentrations. The salinity optima for growth shifted higher with increasing concentrations of CO2, from 0 ppt at 280 ppm to 35 ppt at 800 ppm. At optimal salinity conditions, carbon assimilation rates were significantly higher under elevated CO2 concentrations. However, at salinities above the salinity optima, salinity had an expected negative effect on mangrove growth and carbon assimilation, which was not alleviated by elevated CO2, despite a significant improvement in photosynthetic water use efficiency. This is likely due to non‐stomatal limitations to growth at high salinities, as indicated by our measurements of foliar ion concentrations that show a displacement of K+ by Na+ at elevated salinities that is not affected by CO2. The observed shift in the optimal salinity for growth with increasing CO2 concentrations changes the fundamental niche of this species and could have significant effects on future mangrove distribution patterns and interspecific interactions.  相似文献   

19.
The salinity tolerance ofVaucheria dichotoma, a siphonous Xanthophycean alga was investigated. The alga survived an external osmotic potential range between 74 and 1, 176 mOsmol (ca. 2.5 and 40.0 ppt. (parts per thousand]). Turgor pressure was regulated in salinities ranging from 74 to 441 mOsmol. With further increase of the salinity, turgor pressure decreased from 153 to 9 mOsmol (0.44 to 0.08 MPa). At 441 mOsmol salinity the major intracellular ions were present in the following concentrations (mM/l cell water): K+, 145; Na+; 90; sulphate, 91; Cl, 91. Under the most severe salinity stress (1,176 mOsmol) the ionic concentration increased to (mM/l cell water): K+, 250; Na+, 75; sulphate, 35; Cl, 351. The content of amino acids: alanine (Ala), threonine (Thr and glutamic acid (Glu) was lower, nerver exceeding 5–11 mM, however; the concentrations were positively correlated with salinity.  相似文献   

20.
急性盐度胁迫对军曹鱼稚鱼渗透压调节的影响   总被引:11,自引:0,他引:11  
研究了环境盐度急性胁迫对军曹鱼(Rachycentron canadum)稚鱼鳃Na+-K+ATPase(NKA)活性及血清渗透压、Na+、K+和Cl-离子调节的影响.结果表明:将稚鱼从盐度37中直接转移至盐度0、5、15、25、37(对照)和45的水体中,12 h后仅盐度0处理出现死亡(死亡率100%).各处理鳃NKA活性和血清渗透压在最初3 h内出现一定波动,随后变化平稳.试验结束时(12 h), NKA活性与盐度梯度呈“U”型分布,盐度5处理酶活性显著高于其它处理(P<0.05),盐度15处理活性最低,而各处理的血清渗透压大小(293~399 mOsmol·kg-1)与盐度呈正相关;在3~12 h内稚鱼血清Na+和Cl-浓度随盐度升高而升高,但增幅较小,血清K+浓度则与盐度呈负相关;12 h稚鱼的等渗点为328.2 mOsm·kg-1,相当于盐度11.48,而Na+、K+和Cl-等离子点分别为155.2、6.16和137.1 mmol·L-1,分别相当于盐度10.68、20.44及8.41.军曹鱼在生理上具有广盐性鱼类的“低渗环境高NKA活性”特征,有较强及迅速的渗透压和离子调节与平衡能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号