首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new colpodid ciliate, Bresslauides pratensis n. sp., was discovered in soil from a meadow field in Turkey. Its morphology was investigated using live observation, protargol impregnation, silver nitrate impregnation, and scanning electron microscopy. The new species differs from the congeners by the following combination of features: the cell size in vivo is about 135-180 μm × 130-160 μm; the body has an almost circular outline with a conspicuous bulge on the ventral side; the somatic cilia are arranged in about 105 densely spaced, sigmoidal kineties; a diagonal groove extends to the left cell side, terminating in a pronounced postoral sack; one almost globular macronucleus and usually two globular micronuclei; the oral structures occupy almost the anterior half of the cell and comprise a distally elongated right polykinetid and a crescentic left oral polykinetid, both restricted to the vestibulum; on average 12 vestibular, 31 postoral, and 55 left oral kineties. Based on the morphological data, it was concluded that B. pratensis is a well-outlined and distinctive member of the genus Bresslauides. Additionally, the most recent molecular data on the order Colpodida and genera Colpoda, Bresslaua, and Bresslauides are briefly discussed.  相似文献   

2.
The living morphology, infraciliature and morphogenesis of a new marine cyrtophorid ciliate, Hartmannula sinica nov. spec., collected from Qingdao, north China, have been investigated. The new species is characterized by: size in vivo 90–130×40–50 μm, body long elliptical in outline, cilium-free field covered with a conspicuous alveolar layer; 24–31 ventral kineties, the rightmost 6–9 of which extend apically; 20–24 nematodesmal rods; about 15 sparsely distributed contractile vacuoles; a yellowish pigment spot is always present near the anterior tip of the cell. Morphogenetic events exhibit a pattern, which is homologous with that of related cyrtophorids. The main features are as follows: (1) preoral and circumoral kineties of opisthe develop from the oral primordium that forms in mid-body from sections of 3 postoral kineties, while parental preoral and circumoral kineties are retained; (2) parental cytostome and nematodesmal rods are resorbed in middle divisional stages and then replaced by newly formed structures; (3) the heteromerous macronucleus unifies in the late divisional stage.  相似文献   

3.
Knowledge of the rate and fitness effects of mutations is essential for understanding the process of evolution. Mutations are inherently difficult to study because they are rare and are frequently eliminated by natural selection. In the ciliate Tetrahymena thermophila, mutations can accumulate in the germline genome without being exposed to selection. We have conducted a mutation accumulation (MA) experiment in this species. Assuming that all mutations are deleterious and have the same effect, we estimate that the deleterious mutation rate per haploid germline genome per generation is U = 0.0047 (95% credible interval: 0.0015, 0.0125), and that germline mutations decrease fitness by s = 11% when expressed in a homozygous state (95% CI: 4.4%, 27%). We also estimate that deleterious mutations are partially recessive on average (h = 0.26; 95% CI: –0.022, 0.62) and that the rate of lethal mutations is <10% of the deleterious mutation rate. Comparisons between the observed evolutionary responses in the germline and somatic genomes and the results from individual-based simulations of MA suggest that the two genomes have similar mutational parameters. These are the first estimates of the deleterious mutation rate and fitness effects from the eukaryotic supergroup Chromalveolata and are within the range of those of other eukaryotes.  相似文献   

4.
Ciliates are microbial eukaryotes that separate their nuclear functions into a germline micronucleus and a somatic macronucleus. During development of the macronucleus the genome undergoes a series of reorganization events that includes the precise excision of intervening DNA. Here, we determine the architecture of four loci in the micronuclear and macronuclear genomes of the ciliate Chilodonella uncinata and compare the levels of variation in micronuclear-limited sequences to macronuclear destined sequences at two of these loci. We find that within a population, germline-limited sequences are evolving at the same rate as other putatively neutral sites, but between populations germline-limited sequences are accumulating mutations at a much faster rate than other sites. We also find evidence of macronuclear recombination and incomplete elimination of intervening DNA, which result in increased diversity in the macronuclear genome. Our results support the assertion that the unusual genomic features of ciliates can result in rapid and unpredicted patterns of diversification.  相似文献   

5.
Mutational (genetic) robustness is phenotypic constancy in the face of mutational changes to the genome. Robustness is critical to the understanding of evolution because phenotypically expressed genetic variation is the fuel of natural selection. Nonetheless, the evidence for adaptive evolution of mutational robustness in biological populations is controversial. Robustness should be selectively favored when mutation rates are high, a common feature of RNA viruses. However, selection for robustness may be relaxed under virus co-infection because complementation between virus genotypes can buffer mutational effects. We therefore hypothesized that selection for genetic robustness in viruses will be weakened with increasing frequency of co-infection. To test this idea, we used populations of RNA phage φ6 that were experimentally evolved at low and high levels of co-infection and subjected lineages of these viruses to mutation accumulation through population bottlenecking. The data demonstrate that viruses evolved under high co-infection show relatively greater mean magnitude and variance in the fitness changes generated by addition of random mutations, confirming our hypothesis that they experience weakened selection for robustness. Our study further suggests that co-infection of host cells may be advantageous to RNA viruses only in the short term. In addition, we observed higher mutation frequencies in the more robust viruses, indicating that evolution of robustness might foster less-accurate genome replication in RNA viruses.  相似文献   

6.
Disematostoma colpidioides von Gelei, 1954, is a Peniculina which stands out principally by a very markedly-twisted shape, resulting from the allometric growth of some of the right somatic kineties, and by the sigmoid curvature of the postoral suture. During the fission of the macronucleus, it is possible to observe the expulsion of a small chromatic mass which degenerates quickly. A part of the buccal apparatus undergoes a dedifferentiation during the encystment, so that the three "peniculi" disappear while the vestibulary kineties persist.  相似文献   

7.
Transposable element activity is thought to be responsible for a large portion of all mutations, but its influence on the evolution of populations has not been well studied. Using mutation accumulation experiments with the nematode Caenorhabditis elegans, we investigated the impact of transposable element activity on the production of mutational variances and covariances. The experiments involved the use of two mutator strains (RNAi-deficient mutants) that are characterized by high levels of germline transposition, as well as the Bristol N2 strain, which lacks germline transposition. We found that transposition led to an increase in mutational heritabilities, as well as to the intensification of correlation patterns observed in the absence of transposition. No mutational trade-offs were detected and mutations generally had a deleterious effect on components of fitness. We also tested whether the pattern of mutational covariation could be used to predict observed patterns of population divergence in this species. Using 15 natural populations, we found that population divergence of C. elegans in multivariate phenotypic space occurred in directions only partially concordant with mutation, and thus other evolutionary factors, such as natural selection and genetic drift, must be acting to produce divergence within this species. Our results suggest that mutations induced by mobile elements in C. elegans are similar to other spontaneous mutations with respect to their contribution to the microevolution of quantitative traits.  相似文献   

8.
Ciliated protozoans present several features of chromosome segregation that are unique among eukaryotes, including their maintenance of two nuclei: a germline micronucleus, which undergoes conventional mitosis and meiosis, and a somatic macronucleus that divides by an amitotic process. To study ciliate chromosome segregation, we have identified the centromeric histone gene in the Tetrahymena thermophila genome (CNA1). CNA1p specifically localizes to peripheral centromeres in the micronucleus but is absent in the macronucleus during vegetative growth. During meiotic prophase of the micronucleus, when chromosomes are stretched to twice the length of the cell, CNA1p is found localized in punctate spots throughout the length of the chromosomes. As conjugation proceeds, CNA1p appears initially diffuse, but quickly reverts to discrete dots in those nuclei destined to become micronuclei, whereas it remains diffuse and is gradually lost in developing macronuclei. In progeny of germline CNA1 knockouts, we see no defects in macronuclear division or viability of the progeny cells immediately following the knockout. However, within a few divisions, progeny show abnormal mitotic segregation of their micronucleus, with most cells eventually losing their micronucleus entirely. This study reveals a strong dependence of the germline micronucleus on centromeric histones for proper chromosome segregation.  相似文献   

9.
Endo M  Sugai T 《Zoological science》2011,28(7):482-490
The macronucleus of the ciliate Tetrahymena cell contains euchromatin and numerous heterochromatins called chromatin bodies. During cell division, a chromatin aggregate larger than chromatin body appears in the macronucleus. We observed chromatin aggregates in the dividing macronucleus in a living T. thermophila cell, and found that these were globular in morphology and homogeneous in size. To observe globular chromatin clearly, optimal conditions for making it compact were studied. Addition of Mg ion, benomyl and oryzalin, microtubule inhibitors, to cell suspension was effective. Globular chromatin appeared when the micronuclear anaphase began at the cell cortex, and disappeared long after cell separation. Using living cells with a small macronucleus at early log phase, we counted the number of globular chromatin per nucleus and measured the DNA content of globular chromatin in the macronucleus which was stained with Hoechst 33342 by using ImageJ. The number of globular chromatin per nucleus was reduced by half after division, indicating the globular chromatin is a distribution unit of DNA. A globular chromatin contained similar DNA content as that of the macronuclear genome. We developed methods for inducing and isolating a cell with an extremely small macronucleus with a DNA amount of one globular chromatin. These cells grew, divided, and give clones, suggesting that the macronuclear genome is not dispersed within the macronucleus and the globular chromatin may be a macronuclear genome. We named this globular chromatin "macronuclear genome unit" (MGU).  相似文献   

10.
Wong L  Klionsky L  Wickert S  Merriam V  Orias E  Hamilton EP 《Genetics》2000,155(3):1119-1125
The macronucleus of the ciliate Tetrahymena thermophila contains a fragmented somatic genome consisting of several hundred identifiable chromosome pieces. These pieces are generated by site-specific fragmentation of the germline chromosomes and most of them are represented at an average of 45 copies per macronucleus. In the course of successive divisions of an initially heterozygous macronucleus, the random distribution of alleles of loci carried on these copies eventually generates macronuclei that are pure for one allele or the other. This phenomenon is called phenotypic assortment. We have previously reported the existence of loci that assort together (coassort) and hypothesized that these loci reside on the same macronuclear piece. The work reported here provides new, rigorous genetic support for the hypothesis that macronuclear autonomously replicating chromosome pieces are the physical basis of coassortment groups. Thus, coassortment allows the mapping of the somatic genome by purely genetic means. The data also strongly suggest that the random distribution of alleles in the Tetrahymena macronucleus is due to the random distribution of the MAC chromosome pieces that carry them.  相似文献   

11.
Ciliated protozoa have separate germline and somatic nuclei, yet unlike larger organisms, both nuclei reside in the same cytoplasm. The micronuclei contain the germline and the macronucleus is the somatic nucleus. Thousands of DNA elements are normally removed from the micronuclear genome as it forms a new macronucleus during each sexual cycle. A recent study directly links the excision of these internal eliminated sequences (IESs) to mating type determination by showing that a pleiotropic mutation affecting mating type also prevents the excision of an IES from a surface protein gene(1). Remarkably, once the IES is present in the old macronucleus it prevents excision of that specific IES during formation of the next macronucleus.  相似文献   

12.
Two recent theoretical studies of adaptation suggest that more complex organisms tend to adapt more slowly. Specifically, in Fisher's "geometric" model of a finite population where multiple traits are under optimizing selection, the average progress ensuing from a single mutation decreases as the number of traits increases--the "cost of complexity." Here, I draw on molecular and histological data to assess the extent to which on a large phylogenetic scale, this predicted decrease in the rate of adaptation per mutation is mitigated by an increase in the number of mutations per generation as complexity increases. As an index of complexity for multicellular organisms, I use the number of visibly distinct types of cell in the body. Mutation rate is the product of mutational target size and population mutation rate per unit target. Despite much scatter, genome size appears to be positively correlated with complexity (as indexed by cell-type number), which along with other considerations suggests that mutational target size tends to increase with complexity. In contrast, effective population mutation rate per unit target appears to be negatively correlated with complexity. The net result is that mutation rate probably does tend to increase with complexity, although probably not fast enough to eliminate the cost of complexity.  相似文献   

13.
Many properties of organisms show great robustness against mutations. Whether this robustness is an evolved property or intrinsic to genetic systems is by and large unknown. An evolutionary origin of robustness would require a rethinking of key concepts in the field of molecular evolution, such as gene-specific neutral mutation rates, or the context-independence of deleterious mutations. We provide evidence that mutational robustness of the genome of RNA viruses to mutational changes in secondary structure has evolved. J. Exp. Zool. ( Mol. Dev. Evol.) 285:119-127, 1999.  相似文献   

14.
The evolution of canalization, the robustness of the phenotype to environmental or genetic perturbation, has attracted considerable recent interest. A key step toward understanding the evolution of any phenotype is characterizing the rate at which mutation introduces genetic variation for the trait (the mutational variance, V(M)) and the average directional effects of mutations on the trait mean (DeltaM). In this study, the mutational parameters for canalization of productivity and body volume are quantified in two sets of mutation accumulation lines of nematodes in the genus Caenorhabditis and are compared with the mutational parameters for the traits themselves. Four results emerge: (1) spontaneous mutations consistently decanalize the phenotype; (2) the mutational parameters for decanalization, V(M) (quantified as mutational heritability) and DeltaM, are of the same order of magnitude as the same parameters for the traits themselves; (3) the mutational parameters for canalization are roughly correlated with the parameters for the traits themselves across taxa; and (4) there is no evidence that residual segregating overdominant loci contribute to the decay of canalization. These results suggest that canalization is readily evolvable and that any evolutionary factor that causes mutations to accumulate will, on average, decanalize the phenotype.  相似文献   

15.
16.
Wickert S  Nangle L  Shevel S  Orias E 《Genetics》2000,154(3):1155-1167
The genetics of the ciliate Tetrahymena thermophila are richer than for most other eukaryotic cells, because Tetrahymena possesses two genomes: a germline (micronuclear) genome that follows a Mendelian model of genetic transmission and a somatic (macronuclear) genome, derived from the micronuclear genome by fragmentation, which follows a different genetic transmission model called phenotypic assortment. While genetic markers in the micronucleus fall into classical linkage groups under meiotic recombination and segregation, the same markers in the macronucleus fall into coassortment groups (CAGs) under phenotypic assortment by the random distribution of MAC chromosome pieces. We set out to determine whether genomic mapping in the macronucleus by genetic means is feasible. To investigate the relationship between the micronuclear map and coassortment groups, we systematically placed into CAGs all of the markers lying on chromosome 1L that are also found in the macronucleus. Sixteen CAGs were identified, 7 of which contain at least two loci. We have concluded that CAGs represent a fundamental genetic feature of the MAC. The MIC and MAC maps on 1L are colinear; that is, CAGs consist exclusively of markers that map to a continuous segment in a given region of the micronuclear map, with no intervening markers from other CAGs. These findings provide a solid foundation for exploiting the MAC chromosome pieces to build a physical map of the Tetrahymena genome.  相似文献   

17.
Mackay TF  Lyman RF  Lawrence F 《Genetics》2005,170(4):1723-1735
Our ability to predict long-term responses to artificial and natural selection, and understand the mechanisms by which naturally occurring variation for quantitative traits is maintained, depends on detailed knowledge of the properties of spontaneous polygenic mutations, including the quantitative trait loci (QTL) at which mutations occur, mutation rates, and mutational effects. These parameters can be estimated by mapping QTL that cause divergence between mutation-accumulation lines that have been established from an inbred base population and selected for high and low trait values. Here, we have utilized quantitative complementation to deficiencies to map QTL at which spontaneous mutations affecting Drosophila abdominal and sternopleural bristle number have occurred in 11 replicate lines during 206 generations of divergent selection. Estimates of the numbers of mutations were consistent with diploid per-character mutation rates for bristle traits of 0.03. The ratio of the per-character mutation rate to total mutation rate (0.023) implies that >2% of the genome could affect just one bristle trait and that there must be extensive pleiotropy for quantitative phenotypes. The estimated mutational effects were not, however, additive and exhibited dependency on genetic background consistent with diminishing epistasis. However, these inferences must be tempered by the potential for epistatic interactions between spontaneous mutations and QTL affecting bristle number on the deficiency-bearing chromosomes, which could lead to overestimates in numbers of QTL and inaccurate inference of gene action.  相似文献   

18.
Lethal mutagenesis is a promising new antiviral therapy that kills a virus by raising its mutation rate. One potential shortcoming of lethal mutagenesis is that viruses may resist the treatment by evolving genomes with increased robustness to mutations. Here, we investigate to what extent mutational robustness can inhibit extinction by lethal mutagenesis in viruses, using both simple toy models and more biophysically realistic models based on RNA secondary-structure folding. We show that although the evolution of greater robustness may be promoted by increasing the mutation rate of a viral population, such evolution is unlikely to greatly increase the mutation rate required for certain extinction. Using an analytic multi-type branching process model, we investigate whether the evolution of robustness can be relevant on the time scales on which extinction takes place. We find that the evolution of robustness matters only when initial viral population sizes are small and deleterious mutation rates are only slightly above the level at which extinction can occur. The stochastic calculations are in good agreement with simulations of self-replicating RNA sequences that have to fold into a specific secondary structure to reproduce. We conclude that the evolution of mutational robustness is in most cases unlikely to prevent the extinction of viruses by lethal mutagenesis.  相似文献   

19.
Ciliates exhibit nuclear dimorphism, i.e. they have a germline micronucleus and a somatic macronucleus. Macronuclei are differentiated from mitotic sisters of micronuclei. The macronuclei of "higher ciliates" are polyploid and divide acentromerically ("amitotically"); they differentiate once per life cycle. By contrast, Karyorelict (KR) ciliate macronuclei are nearly diploid and cannot divide; they must differentiate at every cell cycle. Diverse lines of evidence are presented to support the hypothesis that ancestral ciliate macronuclei were incapable of division (as in living karyorelict ciliates) and that higher ciliates gained, perhaps independently more than once, the ability to divide the macronucleus. Selective pressures that could have driven the evolution and macronuclear division and two plausible step-wise pathways for the evolution of macronuclear division are proposed. These hypotheses are relevant to our understanding of amitosis mechanisms, evolution of nuclear dimorphism, and phylogenetic classification of ciliates.  相似文献   

20.
Although all genetic variation ultimately stems from mutations, their properties are difficult to study directly. Here, we used multiple mutation accumulation (MA) lines derived from five genetic backgrounds of the green algae Chlamydomonas reinhardtii that have been previously subjected to whole genome sequencing to investigate the relationship between the number of spontaneous mutations and change in fitness from a nonevolved ancestor. MA lines were on average less fit than their ancestors and we detected a significantly negative correlation between the change in fitness and the total number of accumulated mutations in the genome. Likewise, the number of mutations located within coding regions significantly and negatively impacted MA line fitness. We used the fitness data to parameterize a maximum likelihood model to estimate discrete categories of mutational effects, and found that models containing one to two mutational effect categories (one neutral and one deleterious category) fitted the data best. However, the best‐fitting mutational effects models were highly dependent on the genetic background of the ancestral strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号