首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well recognized that assemblage structure of stream macroinvertebrates changes with alterations in catchment or local land use. Our objective was to understand how the trophic ecology of benthic macroinvertebrate assemblages responds to land use changes in tropical streams. We used the isotope methodology to assess how energy flow and trophic relations among macroinvertebrates were affected in environments affected by different land uses (natural cover, pasture, sugar cane plantation). Macroinvertebrates were sampled and categorized into functional feeding groups, and available trophic resources were sampled and evaluated for the isotopic composition of 13C and 15N along streams located in the Cerrado (neotropical savanna). Streams altered by pasture or sugar cane had wider and more overlapped trophic niches, which corresponded to more generalist feeding habits. In contrast, trophic groups in streams with native vegetation had narrower trophic niches with smaller overlaps, suggesting greater specialization. Pasture sites had greater ranges of resources exploited, indicating higher trophic diversity than sites with natural cover and sugar cane plantation. We conclude that agricultural land uses appears to alter the food base and shift macroinvertebrate assemblages towards more generalist feeding behaviors and greater overlap of the trophic niches.  相似文献   

2.
1. Use of the natural ratios of carbon and nitrogen stable isotopes as tracers of trophic interactions has some clear advantages over alternative methods for food web analyses, yet is limited to situations where organic materials of interest have adequate isotopic separation between potential sources. This constrains the use of natural abundance stable isotope approaches to a subset of ecosystems with biogeochemical conditions favourable to source separation. 2. Recent studies suggest that stable hydrogen isotopes (δD) could provide a robust tracer to distinguish contributions of aquatic and terrestrial production in food webs, but variation in δD of consumers and their organic food sources are poorly known. To explore the utility of the stable hydrogen isotope approach, we examined variation in δD in stream food webs in a forested catchment where variation in δ13C has been described previously. 3. Although algal δD varied by taxa and, to a small degree, between sites, we found consistent and clear separation (by an average of 67‰) from terrestrial carbon sources. Environmental conditions known to affect algal δ13C, such as water velocity and stream productivity did not greatly influence algal δD, and there was no evidence of seasonal variation. In contrast, algal δ13C was strongly affected by environmental factors both within and across sites, was seasonally variable at all sites, and partially overlapped with terrestrial δ13C in all streams with catchment areas larger than 10 km2. 4. While knowledge of isotopic exchange with water and trophic fractionation of δD for aquatic consumers is limited, consistent source separation in streams suggests that δD may provide a complementary food web tracer to δ13C in aquatic food webs. Lack of significant seasonal or spatial variation in δD is a distinct advantage over δ13C for applications in many aquatic ecosystems.  相似文献   

3.
Southern African forests are naturally fragmented yet hold a disproportionately high number of bird species. Carbon and nitrogen stable isotopes were measured in feathers from birds captured at Woodbush (n = 27 species), a large afromontane forest in the eastern escarpment of Limpopo province, South Africa. The δ13C signatures of a range of forest plants were measured to categorise the food base. Most plants sampled, including two of five grass species, had δ13C signatures typical of a C3 photosynthetic pathway (?29.5 ± 1.9‰). Three grass species had a C4 signature (?12.0 ± 0.6‰). Most bird species had δ13C values representing a predominantly C3‐based diet (?24.8‰ to ?20.7‰). δ15N values were as expected, with higher levels of enrichment associated with a greater proportion of dietary animal matter. The cohesive isotopic niche defining most species (n = 22), where the ranges for δ13C and δ15N were 2.4‰ and 3.4‰, respectively, highlight the difficulties in understanding diets of birds in a predominantly C3‐based ecosystem using carbon and nitrogen stable isotopes. However, variation in isotopic values between and within species provides insight into possible niche width and the use of resources by different birds within a forest environment.  相似文献   

4.
Potential trophic competition between two sympatric mullet species, Mugil cephalus and Mugil curema, was explored in the hypersaline estuary of the Saloum Delta (Senegal) using δ13C and δ15N composition of muscle tissues. Between species, δ15N compositions were similar, suggesting a similar trophic level, while the difference in δ13C compositions indicated that these species did not feed from exactly the same basal production sources or at least not in the same proportions. This result provides the first evidence of isotopic niche segregation between two limno‐benthophageous species belonging to the geographically widespread, and often locally abundant, Mugilidae family.  相似文献   

5.
The aim of this study was to determine the trophic level, trophic breadth, and dietary overlap of two species of otariids (Zalophus californianus and Arctocephalus philippii townsendi) at the San Benito Islands in Baja California, Mexico, using scat analysis, and stable isotope analyses (SIA) of carbon and nitrogen in pup hair and dental collagen. Scat samples were collected during summer and winter. The most important prey for both species during summer was squid, comprising 74% of the A. p. townsendi diet and 45% of that of Z. californianus. In winter, squid was 87% of the A. p. townsendi diet, whereas fish was the predominant food (76%) for Z. californianus. Both species were specialist feeders and reached maximum trophic overlap during the summer (CH = 0.9). SIA of the hair of otariid pups showed significant differences in δ15N (P = 0.001), coinciding with A. p. townsendi's greater consumption of squid. The average δ13C value was significantly lower for A. p. townsendi (?16.3‰ ± 0.2‰), reflecting the species' consumption of squid from pelagic habitats, whereas that of Z. californianus (?15.9‰ ± 0.3‰) was significantly higher, reflecting their consumption of benthic fish. Difference in habitat use was confirmed in δ13C values of dental collagen.  相似文献   

6.
Insects are the most diverse organisms and often the most abundant animals in some ecosystems. Despite the importance of their functional roles and of the knowledge for conservation, the trophic ecology of many insect species is not fully understood. In this review, I present how stable carbon (C) and nitrogen (N) isotopes have been used to reveal the trophic ecology of insects over the last 30 years. The isotopic studies on insects have used differences in C isotope ratios between C3 and C4 plants, along vertical profiles of temperate and tropical forest stands, and between terrestrial and aquatic resources. These differences enable exploration of the relative importance of the food resources, as well as movement and dispersal of insects across habitats. The 13C‐enrichment (approximately 3‰) caused by saprotrophic fungi can allow the estimation of the importance of fungi in insect diets. Stable N isotopes have revealed food resource partitioning across diverse insect species above and belowground. Detritivorous insects often show a large trophic enrichment in 13C (up to 3‰) and 15N (up to 10‰) relative to the food substrates, soil organic matter. These values are greater than those commonly used for estimation of trophic level. This enrichment likely reflects the prevalence of soil microbial processes, such as fungal development and humification, influencing the isotopic signatures of diets in detritivores. Isotope analysis can become an essential tool in the exploration of insect trophic ecology in terms of biogeochemical C and N cycles, including trophic interactions, plant physiological and soil microbial processes.  相似文献   

7.
8.
A proper assessment of the foraging habits of the Guadalupe fur seal (GFS; Arctocephalus townsendi) is a priority to better understand its recovery, in which the potential for intraspecific competition for prey and space resources is expected to lead to segregation. This study aimed to determine the foraging habits of different sex and age classes. A total of 146 GFS fur samples was collected at Guadalupe Island, Mexico (2014–2020) for stable isotopes (δ13C and δ15N) analysis. Isotopic areas were created (SIBER package in R). Significant isotopic differences were observed between classes. Male (3.6‰2) and female (3.0‰2) juveniles had the largest isotopic areas due to a greater foraging dispersion. Adult females showed the lowest mean δ15N value (16.1‰ ± 0.5‰) due to foraging trips that are mostly performed towards high latitudes. Except for pups, adult and subadult males presented the highest mean δ15N (17.4‰ ± 0.4‰) and δ13C values (−17.0‰ ± 0.8‰) due to a possible higher trophic level and coastal foraging habits, whereas pups presented the highest mean δ15N value (17.6‰ ± 0.3‰) because of lactation, which reflects their mothers δ15N signal plus their own enrichment. Our findings suggest a segregation explained by differences in life history, energy requirements, and a possible strategy to avoid competition.  相似文献   

9.
Stable isotopes are widely used to identify trophic interactions and to determine trophic positions of organisms in food webs. Comparative studies have provided general insights into the variation in isotopic composition between consumers and their diet (discrimination factors) in predator–prey and herbivore–plant relationships while other major components of food webs such as host–parasite interactions have been largely overlooked. In this study, we conducted a literature‐based comparative analysis using phylogenetically‐controlled mixed effects models, accounting for both parasite and host phylogenies, to investigate patterns and potential drivers in Δ13C and Δ15N discrimination factors in metazoan parasitic trophic interactions. Our analysis of 101 parasite–host pairs revealed a large range in Δ13C (–8.2 to 6.5) and Δ15N (–6.7 to 9.0) among parasite species, with no significant overall depletion or enrichment of 13C and 15N in parasites. As previously found in other trophic interactions, we identified a scaling relationship between the host isotopic value and both discrimination factors with Δ13C and Δ15N decreasing with increasing host δ13C and δ15N, respectively. Furthermore, parasite phylogenetic history explained a large fraction (>60%) of the observed variation in the Δ15N discrimination factor. Our findings suggest that the traditional isotope ecology framework (using an average Δ15N of 3.4‰) applies poorly to parasitic trophic interactions. They further indicate the need for a scaled rather than a fixed trophic discrimination factor framework along gradients of host δ15N. We also identified several conceptual and methodological issues which should to be considered in future research to help integrate parasitic interactions into a holistic isotope ecology framework across diverse trophic interactions.  相似文献   

10.
Stable carbon and nitrogen isotope ratios (δ13C and δ15N) of serum, red blood cells (RBC), muscle, and blubber were measured in captive and wild northeast Pacific harbor seals (Phoca vitulina richardii) at three coastal California sites (San Francisco Bay, Tomales Bay, and Channel Islands). Trophic discrimination factors (ΔTissue‐Diet) were calculated for captive seals and then applied in wild counterparts in each habitat to estimate trophic position and feeding behavior. Trophic discrimination factors for δ15N of serum (+3.8‰), lipid‐extracted muscle (+1.6‰), and lipid‐blubber (+6.5‰) are proposed to determine trophic position. An offset between RBC and serum of +0.3‰ for δ13C and ?0.6‰ for δ15N was observed, which is consistent with previous research. Specifically, weaner seals (<1 yr) had large offsets, suggesting strong trophic position shifts during this life stage. Isotopic values indicated an average trophic position of 3.6 at both San Francisco Bay and Tomales Bay and 4.2 at Channel Islands. Isotopic means were strongly dependent on age class and also suggested that mean diet composition varies considerably between all locations. Together, these data indicate that isotopic composition of blood fractions can be an effective approach to estimate trophic position and dietary behavior in wild pinnipeds.  相似文献   

11.
Stable isotopes provide a powerful means of elucidating the trophic ecology of organisms. Analyses of variation in the ratio of nitrogen isotopes (δ15N) can provide insights into the trophic position of species with broad diets and the ability to occupy multiple positions in food webs, such as ants. The most powerful studies compare subjects across various spatial scales, but to do so, local variation in δ15N baselines must be taken into account. To date, a wide variety of baseline calibration methods have been employed, leading some authors to suggest that a standard approach is needed, and that the reality of environmental variation necessitates that this should be at fine scales. In this study, we examine the fine‐scale variation in δ15N value of colonies of the ant Formica kozlovi Dlussky (Hymenoptera: Formicidae: Formicini) along a sloped transect in Mongolia, and compare these with values for associated soils in an effort to shed further light on this issue. We find variation in ant δ15N to the order of one trophic level (ca. 3‰), over a distance of only 1 km. Ant δ15N was highly correlated with soil δ15N, and variation in mineral soil δ15N explained ca. 81% of the variation in ant δ15N. This study underlines the importance of local‐scale baseline corrections for isotopic studies, particularly in environments where baseline variation might be expected. It further suggests that δ15N of mineral soils may provide a suitable baseline for ecological studies of terrestrial arthropods.  相似文献   

12.
Stable nitrogen isotopic composition of amino acids (δ15NAA) has recently been employed as a powerful tool in ecological food web studies, particularly for estimating the trophic position (TP) of animal species in food webs. However, the validity of these estimates depends on the consistency of the trophic discrimination factor (TDF; = Δδ15NAA at each shift of trophic level) among a suite of amino acids within the tissues of consumer species. In this study, we determined the TDF values of amino acids in tadpoles (the Japanese toad, Bufo japonicus) reared exclusively on one of three diets that differed in nutritional quality. The diets were commercial fish‐food pellets (plant and animal biomass), bloodworms (animal biomass), and boiled white rice (plant carbohydrate), representing a balanced, protein‐rich, and protein‐poor diet, respectively. The TDF values of two “source amino acids” (Src‐AAs), methionine and phenylalanine, were close to zero (0.3–0.5‰) among the three diets, typifying the values reported in the literature (~0.5‰ and ~0.4‰, respectively). However, TDF values of “trophic amino acids” (Tr‐AAs) including alanine, valine, leucine, isoleucine, and glutamic acid varied by diet: for example, the glutamic acid TDF was similar to the standard value (~8.0‰) when tadpoles were fed either the commercial pellets (8.0‰) or bloodworms (7.9‰), but when they were fed boiled rice, the TDF was significantly reduced (0.6‰). These results suggest that a profound lack of dietary protein may alter the TDF values of glutamic acid (and other Tr‐AAs and glycine) within consumer species, but not the two Src‐AAs (i.e., methionine and phenylalanine). Knowledge of how a nutritionally poor diet can influence the TDF of Tr‐ and Src‐AAs will allow amino acid isotopic analyses to better estimate TP among free‐roaming animals.  相似文献   

13.
The length and mass ratio, diet and isotopic composition of Aplochiton zebra and Aplochiton taeniatus inhabiting a Salmo trutta‐invaded and a S. trutta‐free lake in southern Patagonia were compared. Results indicate that S. trutta exercises important trophic interference over A. zebra and A. taeniatus, causing changes in their dietary composition by reducing the consumption of winged Diptera through changes in feeding behaviours that involve jumping out of the water. This effect is significantly higher in A. zebra than in A. taeniatus a species that has a highly specialized diet. The dietary changes of A. zebra and A. taeniatus in sympatry with S. trutta lead to an impoverishment of their isotopic nitrogen signals (δ15N), suggesting a reduction of their trophic position. In the case of A. zebra, this translates into a significant decrease in its body condition factor. Such interference could lead to a population decline of this species and would explain the current distribution range decline and allopatry with S. trutta in fluvial systems.  相似文献   

14.
The isotopic (δ13C and δ15N) and stoichiometric (C:N:P) compositions of four fish species (Family Centrarchidae: Lepomis auritus, Lepomis cyanellus; Family Cyprinidae: Nocomis leptocephalus, Semotilus atromaculatus) were examined across four North Carolina Piedmont streams arrayed along an urbanization gradient. Both isotopic and stoichiometric composition of fishes appeared to track changes occurring in basal resource availability. Values of δ13C of basal resources and consumers were more enriched at the most urbanized streams. Similarly, basal resources and consumers were δ15N–enriched at more urbanized streams. Basal resource stoichiometry varied across streams, with periphyton being the most variable. Primary consumers stoichiometry also differed across streams. Intraspecific variation in fish stoichiometry correlated with the degree of urbanization, as the two cyprinids had higher N content and L. cyanellus had higher P content in more urbanized streams, probably due to enrichment of basal resources. Intrinsic factors, specifically species identity and body size also affected stoichiometric variation. Phosphorus (P) content increased significantly with body size in centrarchids, but not in cyprinids. These results suggest that although species identity and body size are important predictors of elemental stoichiometry, the complex nature of altered urban streams may yield imbalances in the elemental composition of consumers via their food resources.  相似文献   

15.
Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) were used to investigate feeding patterns of larval and early juvenile pelagic fishes in slope waters of the Gulf of Mexico. Contribution of organic matter supplied to fishes and trophic position within this pelagic food web was estimated in 2007 and 2008 by comparing dietary signatures of the two main producers in this ecosystem: phytoplankton [based on particulate organic matter (POM)] and Sargassum spp. Stable isotope ratios of POM and pelagic Sargassum spp. were significantly different from one another with δ13C values of POM depleted by 3–6‰ and δ15N values enriched by 2 relative to Sargassum spp. Stable isotope ratios were significantly different among the five pelagic fishes examined: blue marlin Makaira nigricans, dolphinfish Coryphaena hippurus, pompano dolphinfish Coryphaena equiselis, sailfish Istiophorus platypterus and swordfish Xiphias gladius. Mean δ13C values ranged almost 2 among fishes and were most depleted in I. platypterus. In addition, mean δ15N values ranged 4–5 with highest mean values found for both C. hippurus and C. equiselis and the lowest mean value for M. nigricans during both years. Increasing δ13C or δ15N with standard length suggested that shifts in trophic position and diet occurred during early life for several species examined. Results of a two‐source mixing model suggest approximately an equal contribution of organic matter by both sources (POM = 55%; pelagic Sargassum spp. = 45%) to the early life stages of pelagic fishes examined. Contribution of organic matter, however, varied among species, and sensitivity analyses indicated that organic source estimates changed from 2 to 13% for a δ13C fractionation change of ±0·25‰ or a δ15N fractionation change of ± 1·0‰ relative to original fractionation values.  相似文献   

16.
Using bulk tissue and fatty acid 13C analysis we investigated major trophic pathways from soil microorganisms to microbial consumers to predators in conventional versus organic farming systems planted for the first time with maize. Organic farming led to an increase in microbial biomass in particular that of fungi as indicated by phospholipid fatty acids (PLFAs). Microbial PLFAs reflected the conversion from C3 to C4 plants by a shift in δ13C of 2‰, whereas the isotopic signal in fatty acids (FAs) of Collembola was much more pronounced. In the euedaphic Protaphorura fimata the δ13C values in maize fields exceeded that in C3 (soybean) fields by up to 10‰, indicating a close relationship between diet and vegetation cover. In the epedaphic Orchesella villosaδ13C values shifted by 4‰, suggesting a wider food spectrum including carbon of former C3 crop residues. Differences in δ13C of corresponding FAs in consumers and resources were assessed to assign food web links. P. fimata was suggested as root and fungal feeder in soybean fields, fungal feeder in conventional and leaf consumer in organically managed maize fields. O. villosa likely fed on root and bacteria under soybean, and bacteria and fungi under maize. Comparison of δ13C values in FAs of the cursorial spider Pardosaagrestis and O. villosa implied the latter as important prey species in soybean fields. In contrast, the web‐building spider Mangora acalypha showed no predator–prey relationship with Collembola. The determination of δ13C values in trophic biomarker FAs allowed detailed insight into the structure of the decomposer food web and identified diet‐shifts in both consumers at the base of the food web and in top predators in organic versus conventional agricultural systems. The results indicate changes in major trophic links and therefore carbon flux through the food web by conversion of conventional into organic farming systems.  相似文献   

17.
1. Stable isotopes of nitrogen are useful for quantifying the trophic structure of food webs, but only if the variation in trophic enrichment (ΔN), which is the difference in δ15N between a consumer and its food, is small relative to the value of ΔN itself. 2. We examined the sources of variation in zooplankton ΔN by measuring the trophic enrichment (ΔN) of seven species of freshwater cladocerans, and by testing for an effect of age and temperature on the ΔN of Daphnia pulicaria. 3. We found that ΔN was similar among Cladocera and was not correlated with body size. Overall, the ΔN for D. pulicaria was 1.4‰ (SE = 0.69, n = 57), as was expected for the detritus diet that we used in our experiments. We found no effect of temperature (15–25 °C) on ΔN, but found that ΔN of D. pulicaria increased with increasing age (10–30 days). 4. We developed a new method to test for trophic‐level variation in a group of consumers that explicitly accounts for the uncertainty in ΔN. Using this approach, we confirmed that natural assemblages of zooplankton feed at several trophic levels in lake food webs.  相似文献   

18.
Fish trophic niches reflect important ecological interactions and provide insight into the structure of mangrove food webs. Few studies have been conducted in mangrove fish predators to investigate interpopulation trophic niches and ontogenetic shifts. Using stable isotope analysis and two complementary approaches, the authors investigated trophic niche patterns within and between two ontogenetic groups (juveniles and sub-adults) of a generalist predator (Acentrogobius viridipunctatus) in four mangroves with heterogeneous environmental conditions (e.g., tidal regimes, salinity fluctuations and mangrove tree community). The authors hypothesized that the trophic niche between populations would vary regionally and trophic position would increase consistently from juvenile to sub-adult stages. The results revealed that both δ13C and δ15N values varied greatly across populations and between ontogenetic groups, and complex spatio-ontogenetic variations were expressed by Layman's metrics. They also found some niche separation in space, which is most likely related to resource availability in spatially diverse ecosystems. In addition, trophic niche position increased consistently from juveniles to sub-adults, indicating ontogenetic feeding shifts. The isotopic plasticity index and Fulton's condition index also showed significant spatial-ontogenetic variation, which is consistent with optimal foraging theory. The findings highlight that trophic plasticity has a high adaptive value for mangrove fish predators in dynamic ecosystems.  相似文献   

19.
General linear models (GLMs) were used to determine the relative importance of interspecific, ontogenetic and spatial effects in explaining variability in stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) of the co‐occurring Cape hakes Merluccius capensis and Merluccius paradoxus off South Africa. Significant GLMs were derived for both isotopes, explaining 74 and 56% of observed variance in Merluccius spp. δ15N and δ13C, respectively. Spatial effects (west or south coast) contributed most towards explaining variability in the δ15N model, with Merluccius spp. off the west coast having higher (by c. 1·4‰) δ15N levels than Merluccius spp. off the south coast. Fish size and species were also significant in explaining variability in δ15N, with both species showing significant linear increases in δ15N with size and M. capensis having higher (by c. 0·7‰) δ15N values than M. paradoxus. Species and coast explained most and similar amounts of variability in the δ13C model, with M. capensis having higher (by c. 0·8‰) δ13C values than M. paradoxus, and values being lower (by c. 0·7‰) for fishes off the west coast compared with the south coast. These results not only corroborate the knowledge of Merluccius spp. feeding ecology gained from dietary studies, in particular the ontogenetic change in trophic level corresponding to a changing diet, but also that M. capensis feeds at a slightly higher trophic level than M. paradoxus. The spatial difference in Merluccius spp. δ15N appears due to a difference in isotopic baseline, and not as a result of Merluccius spp. feeding higher in the food web off the west than the south coast, and provides new evidence that corroborates previous observations of biogeographic differences in isotopic baselines around the South African coast. This study also provides quantitative data on the relative trophic level and trophic width of Cape hakes over a large size range that can be used in ecosystem models of the southern Benguela.  相似文献   

20.
In this study, components of the food-web in Macao wetlands were quantified using stable isotope ratio techniques based on carbon and nitrogen values. The δ13C and δ15N values of particulate organic matter (δ13CPOM and δ15NPOM, respectively) ranged from ?30.64 ± 1.0 to ?28.1 ± 0.7 ‰, and from ?1.11 ± 0.8 to 3.98 ± 0.7 ‰, respectively. The δ13C values of consumer species ranged from ?33.94 to ?16.92 ‰, showing a wide range from lower values in a freshwater lake and inner bay to higher values in a mangrove forest. The distinct dietary habits of consumer species and the location-specific food source composition were the main factors affecting the δ13C values. The consumer 15N-isotope enrichment values suggested that there were three trophic levels; primary, secondary, and tertiary. The primary consumer trophic level was represented by freshwater herbivorous gastropods, filter-feeding bivalves, and plankton-feeding fish, with a mean δ15N value of 5.052 ‰. The secondary consumer level included four deposit-feeding fish species distributed in Fai Chi Kei Bay and deposit-feeding gastropods in the Lotus Flower Bridge flat, with a mean δ15N value of 6.794 ‰. The tertiary consumers group consisted of four crab species, one shrimp species, and four fish species in the Lotus Flower Bridge Flat, with a mean δ15N value of 13.473 ‰. Their diet mainly comprised organic debris, bottom fauna, and rotten animal tissues. This study confirms the applicability of the isotopic approach in food web studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号