首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Electromyogram (EMG) radio telemetry was used in conjunction with physiological biopsy to relate prior physiological condition and subsequent swimming energetics and behaviours to passage success of 13 wild adult sockeye salmon Oncorhynchus nerka at a vertical-slot fishway on the Seton River, British Columbia. At the time of capture, plasma lactate, glucose and cortisol levels indicated that fish were not exhibiting unusually high levels of physiological stress. Very few differences existed between successful and unsuccessful fish in body size, initial plasma physiology and energy state and mean swim speed and energy use during passage. Generally, fish did not employ burst swimming during successful or failed attempts at passage, indicating that failure was probably not related to metabolic acidosis. Plasma Na+ concentration was significantly lower in unsuccessful fish ( P < 0·05), which is suggestive of a depressed ionic state or a possible stress component, although values in all fish were within an expected range for migrant adult O. nerka . Nevertheless, six of 13 fish failed to reascend the fishway and remained in the tailrace of the dam for more than a day on average before moving downstream and away from the dam. During this time, fish were observed actively seeking a means of passage, suggesting that there may have been other, undetermined causes of passage failure.  相似文献   

2.
The results of a test of a mechanistic encounter model that predicts the size-frequency composition of the diet of drift-feeding coho salmon ( Oncorhynchus kisulch , Walbaum) are described. When all taxa in the drift were included in the model the predicted and actual diets differed significantly, although the model explained most of the variance between the diet and the predictions of a null model. When non-consumed taxa, including the distasteful and aposematic taxon Hydracarina, were excluded from the drift composition there was no significant difference between predicted and actual diets. The model's goodness of fit increased when it was modified to predict the biomass size-frequency diet composition, explaining 99% of the weighted sum of squared deviations between the diet and a null model. A number of alternate models are tested and a potentially useful simplification of the model is identified.  相似文献   

3.
Little is known about the behaviour patterns and swimming speed strategies of anadromous upriver migrating fish. We used electromyogram telemetry to estimate instantaneous swimming speeds for individual sockeye (Oncorhynchus nerka) and pink salmon (O. gorbuscha) during their spawning migrations through reaches which spanned a gradient in river hydraulic features in the Fraser River, British Columbia. Our main objectives were to describe patterns of individual-specific swim speeds and behaviours, identify swimming speed strategies and contrast these between sexes, species and reaches. Although mean swimming speeds did not differ between pink salmon (2.21 BL s–1) and sockeye salmon (1.60 BL s–1), sockeye salmon were over twice as variable (mean CV; 54.78) in swimming speeds as pink salmon (mean CV; 22.54). Using laboratory-derived criteria, we classified swimming speeds as sustained (<2.5 BL s–1), prolonged (2.5–3.2 BL s–1), or burst (>3.2 BL s–1). We found no differences between sexes or species in the proportion of total time swimming in these categories – sustained (0.76), prolonged (0.18), burst (0.06); numbers are based on species and sexes combined. Reaches with relatively complex hydraulics and fast surface currents had migrants with relatively high levels of swimming speed variation (e.g., high swimming speed CV, reduced proportions of sustained speeds, elevated proportions of burst speeds, and high rates of bursts) and high frequency of river crossings. We speculate that complex current patterns generated by river constrictions created confusing migration cues, which impeded a salmon's ability to locate appropriate pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号