首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We studied testate amoebae (testates) in the soils of coniferous and deciduous forests and in the wetland and aquatic habitats of Mexico. In 141 samples we found 205 taxa identified to the species or intraspecies level and 68 testate amoebae, which could not be identified to the species level. The highest species diversity of testates was found in the soils of the tropical rainforest (126 species and intraspecific taxa, including spp.) and in tropical wetlands (144 species and intraspecific taxa, including spp.). The study documented testate amoebae with a limited geographical distribution (genera Centropyxis, Cornuapyxis, Ellipsopyxis, Hoogenraadia, Planhoogenraadia, Apolimia, Certesella, Apodera, and Alocodera). We found that testate amoebae in the soils of Mexico had a high level of polymorphism and individual variability. We discuss the value of soil testate amoebae for defining biogeographical regions of Mexico.  相似文献   

2.
Testate amoebae (Protozoa) were studied in spring, summer, and fall from the same microhabitats in a small Sphagnum-dominated peatland in southern Ontario, Canada. A total of 32 sampling stations were established in two wetland plant communities, 19 in an open Ericaceae low-shrub community and 13 in a closed Picea mariana and Larix laricina swamp community. Sphagnum was collected in each station for analysis of testate amoebae and measurement of soil water content parameters and water table depth in May, August, and October 2001. pH and dissolved oxygen of the groundwater under the Sphagnum were measured also. A total of 52 taxa including the rotifer, Habrotrocha angusticollis, were identified. Soil water content and water table variables emerged as the primary factors separating testate amoebae between the open bog/fen community and swamp community. Testate amoebae in the open bog/fen community showed a clear separation between the May sampling period and the August and October sampling periods. Sampling stations in May had much higher water table and were wetter than those in August and October. Conversely, testate amoebae in the swamp community did not show a clear difference between sampling periods. Soil moisture and water tables appear to be more constant in the swamp communities. Biological factors or other microscale environmental factors may need to be considered to explain seasonal changes in testate amoebae. A greater understanding of relationships between testate amoebae and microenvironmental factors is necessary to track seasonality in testate amoebae distributions.  相似文献   

3.
Testate amoebae are a group of moisture-sensitive, shell-producing protozoa that have been widely used as indicators of changes in mean water-table depth within oligotrophic peatlands. However, short-term environmental variability (i.e., sub-annual) also probably influences community composition. The objective of this study was to assess the potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum-dominated peatlands. Testate amoebae and environmental conditions, including hourly measurements of relative humidity within the upper centimeter of the peatland surface, were examined throughout the 2008 growing season at 72 microsites within 11 peatlands of Pennsylvania and Wisconsin, USA. Relationships among testate amoeba communities, vegetation, depth to water table, pH, and an index of short-term environmental variability (EVI), were examined using nonmetric multidimensional scaling and correlation analysis. Results suggest that EVI influences testate amoeba communities, with some taxa more abundant under highly variable conditions (e.g., Arcella discoides, Difflugia pulex, and Hyalosphenia subflava) and others more abundant when environmental conditions at the peatland surface were relatively stable (e.g., Archerella flavum and Bullinularia indica). The magnitude of environmental variability experienced at the peatland surface appears to be primarily controlled by vegetation composition and density. In particular, sites with dense Sphagnum cover had lower EVI values than sites with loose-growing Sphagnum or vegetation dominated by vascular plants and/or non-Sphagnum bryophytes. Our results suggest that more environmental information may be inferred from testate amoebae than previously recognized. Knowledge of relationships between testate amoebae and short-term environmental variability should lead to more detailed and refined environmental inferences.  相似文献   

4.
The ecology of peatland testate amoebae is well studied along broad gradient from very wet (pool) to dry (hummock) micro-sites where testate amoebae are often found to respond primarily to the depth to water table (DWT). Much less is known on their responses to finer-scale gradients, and nothing is known of their possible response to phenolic compounds, which play a key role in carbon storage in peatlands. We studied the vertical (0–3, 3–6, and 6–9 cm sampling depths) micro-distribution patterns of testate amoebae in the same microhabitat (Sphagnum fallax lawn) along a narrow ecological gradient between a poor fen with an almost flat and homogeneous Sphagnum carpet (fen) and a “young bog” (bog) with more marked micro-topography and mosaic of poor fen and bog vegetation. We analyzed the relationships between the testate amoeba data and three sets of variables (1) “chemical” (pH, Eh potential, and conductivity), (2) “physical” (water temperature, altitude, i.e., Sphagnum mat micro-topography, and DWT), and (3) phenolic compounds in/from Sphagnum (water-soluble and primarily bound phenolics) as well as the habitat (fen/bog) and the sampling depth. Testate amoeba Shannon H′ diversity, equitability J of communities, and total density peaked in lower parts of Sphagnum, but the patterns differed between the fen and bog micro-sites. Redundancy analyses revealed that testate amoeba communities differed significantly in relation to Eh, conductivity, water temperature, altitude, water-soluble phenolics, habitat, and sampling depth, but not to DWT, pH, or primarily bound phenolics. The sensitivity of testate amoebae to weak environmental gradients makes them particularly good integrators of micro-environmental variations and has implications for their use in paleoecology and environmental monitoring. The correlation between testate amoeba communities and the concentration of water-soluble phenolic suggests direct (e.g., physiological) and/or indirect (e.g., through impact on prey organisms) effects on testate amoebae, which requires further research.  相似文献   

5.
We investigated the relationships between testate amoebae (Arcellinida, Euglyphida), vegetation and water chemistry along environmental gradients in minerotrophic peatlands (fens) in western Poland. We hypothesized that: a) hydrochemistry significantly influences structure of testate amoeba communities, and b) testate amoeba communities are more closely correlated with the hydrochemical variables (environment) than with the vegetation data. Testate amoeba communities and vegetation from 71 sample plots were investigated together with the hydro‐chemistry and hydrology based on 16 environmental variables and vegetation composition. Testate amoeba communities revealed a distinctive poor‐rich gradient in analysed fens. Mineral‐rich habitats, which were dominated by brown mosses, were preferred by a higher number of taxa than acidic habitats, which were dominated by Sphagnum. We recorded a total of 107 testate amoebae taxa. The average species richness of testate amoebae for brown mosses was higher (20) than for Sphagnum (13). We found that testate amoebae communities were similarly correlated with vascular plants, mosses and environmental parameters. Results of direct ordination demonstrate that hydrology, pH, Mg2+ and sodium remain the most important environmental control for the entire data set. CCA showed that in case of brown mosses hydrology, sodium and oxygen affect testate amoeba communities significantly whereas in Sphagnum only sodium emerge as most significant determining testate amoeba assemblages. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We studied the relationship between testate amoebae (Protozoa) communities and the depth to the water table (DWT), pH, conductivity, and microhabitat type in Sphagnum dominated peatlands of north-western Poland and built predictive (transfer function) models for inferring DWT and pH based on the testate amoebae community structure. Such models can be used for peatland monitoring and paleoecology. A total of 52 testate amoebae taxa were recorded. In a redundancy analysis, DWT and pH explained 20.1% of the variation in the species data and allowed us to identify three groups of taxa: species that are associated with (1) high DWT and low pH, (2) low DWT and low pH, and (3) high pH and mid-range DWT. Our transfer function models allow DWT and pH to be estimated with mean errors of 9.89 cm and 0.71 pH units. The prediction error of the DWT model and the tolerance of the species both increase with increasing dryness. This pattern mirrors the ecology of Sphagnum mosses: Species growing in wet habitats are more sensitive to change in water table depth than the species growing in drier microhabitats. Our results are consistent with studies of testate amoeba ecology in other regions, and they provide additional support for the use of these organisms in paleoecological and biomonitoring contexts.  相似文献   

7.
Testate amoebae (Protozoa: Rhizopoda) are common inhabitants of peatlands. Strong relationships between community composition and substrate moisture in Sphagnum‐dominated peatlands have made them particularly useful as hydrological proxies in environmental and palaeoenvironmental research. However, stability of these relationships in geographical space is important for widespread applicability. In this study, we compared testate amoeba communities inhabiting Sphagnum‐dominated peatlands of the Great Lakes and Rocky Mountain regions of North America. Our primary objectives were to describe patterns of community composition in the two regions, develop hypotheses to explain differences, and determine if taxa occupy similar ecological niches with respect to substrate moisture in both places. Our results indicated that testate amoeba communities are relatively different in the two regions, and these differences are probably caused by differences in climate and peatland trophic status, although other factors may also play a role. However, many taxa do occur in both regions and these taxa had comparable moisture preferences in each region, suggesting that the ecological niches of taxa with respect to substrate moisture are similar even within communities of relatively different composition.  相似文献   

8.
Monitoring tools are needed to assess changes in peatland biotic communities and ecosystem functions in response to on-going climate and other environmental changes. Although the responses of soil organisms and plants to ecological gradients and perturbations do not always correlate, peatland monitoring is mainly based on vegetation surveys. Testate amoebae, a group of protists, are important contributors to carbon and nitrogen cycling in organic soils and are useful bioindicators in peatland ecology and paleoecology. There is however little comparative data on the value of testate amoebae, vascular plants and bryophytes as bioindicators of micro-environmental gradients in peatlands.We compared the relationships of testate amoebae, bryophytes, and vascular plants with soil temperature, water table depth, micro-habitats and the carbon and nitrogen content of Sphagnum mosses in four peatlands along a 1300 m altitudinal gradient in Switzerland. We used the full diversity of vascular plants and bryophyte but only a selection of ten easily identifiable testate amoeba morpho-taxa (i.e. species or species-complexes).Indirect and direct gradient ordinations, multiple factor analysis (MFA) and transfer function models for inferring water table depth showed that a selection of ten testate amoeba taxa are more powerful (% variance explained in RDA) and accurate (discrimination among habitats) indicators of local conditions (micro-habitat type, water table depth and Sphagnum C/N ratio) than the vegetation (vascular plants and bryophytes either individually or combined and considering the full diversity).Our study showed that a limited list of ten easily identifiable testate amoeba taxa have higher bioindication value than the full bryophytes and vascular plants. Furthermore, testate amoebae can be analyzed on samples collected at any season (accessibility allowing and if precise sampling sites are well marked) – a clear advantage for biomonitoring and can be used to infer past changes from the peat record at the same taxonomic resolution. This simple approach could therefore be very useful for biomonitoring of peatlands.  相似文献   

9.
The structure and functioning of decomposer systems heavily relies on soil moisture. However, this has been primarily studied in temperate ecosystems; little is known about how soil moisture affects the microfaunal food web in tropical regions. This lack of knowledge is surprising, since the microfaunal food web controls major ecosystem processes. To evaluate the role of precipitation in the structure of soil food web components (i.e., microorganisms and testate amoebae), we excluded water input by rain in montane rainforests at different altitudes in Ecuador. Rain exclusion strongly reduced microbial biomass and respiration by about 50?%, and fungal biomass by 23?%. In testate amoebae, rain exclusion decreased the density of live cells by 91?% and caused a shift in species composition at each of the altitudes studied, with ergosterol concentrations, microbial biomass, and water content explaining 25?% of the variation in species data. The results document that reduced precipitation negatively affects soil microorganisms, but that the response of testate amoebae markedly exceeds that of bacteria and fungi. This suggests that, in addition to food, low precipitation directly affects the community structure of testate amoebae, with the effect being more pronounced at lower altitudes. Overall, the results show that microorganisms and testate amoebae rapidly respond to a reduction in precipitation, with testate amoebae—representatives of higher trophic levels—being more sensitive. The results imply that precipitation and soil moisture in tropical rainforests are the main factors regulating decomposition and nutrient turnover.  相似文献   

10.
The community structure of testate amoebae inhabiting different microhabitats (soil and tree-moss) within a tropical forest biome in Nameri National Park, northeastern India, was investigated. A total of 33 testate amoebae species belonging to 13 genera were identified. Species belonging to the class Lobosea constituted 73% of total testate amoebae density in the soil habitat, whereas the class Filosea constituted the most dominant forms (58%) in the moist tree-moss habitat. The relative abundance of species was higher in the tree-moss habitat compared to the soil habitats of the forest. Although multivariate analysis suggested a significant difference in assemblage patterns between the habitats, the turnover in species (i.e., beta diversity) was insignificant. Species accumulation curves (SAC) constructed using both parametric and non-parametric species richness estimators revealed that the asymptote of species richness was achieved by a low number of sample replicates in both habitats. The temperature and pH of the substratum on testate amoebae distribution patterns suggest the importance of additional background factors on testate amoebae community structure. Further studies involving more biotopes, seasons, and trophic interactions are recommended to document a complete record of testate amoebae diversity and their interactions with environmental gradients in the tropical forest biomes of northeastern India.  相似文献   

11.
Diverse species of Legionella and Legionella‐like amoebal pathogens (LLAPs) have been identified as intracellular bacteria in many amoeboid protists. There are, however, other amoeboid groups such as testate amoeba for which we know little about their potential to host such bacteria. In this study, we assessed the occurrence and diversity of Legionella spp. in cultures and environmental isolates of freshwater arcellinid testate amoebae species, Arcella hemispherica, Arcella intermedia, and Arcella vulgaris, via 16S rRNA gene sequence analyses and fluorescent in situ hybridization (FISH). Analysis of the 16S rRNA gene sequences indicated that A. hemispherica, A. intermedia, and A. vulgaris host Legionella‐like bacteria with 94–98% identity to other Legionella spp. based on NCBI BLAST search. Phylogenetic analysis placed Legionella‐like Arcella‐associated bacteria (LLAB) in three different clusters within a tree containing all other members of Legionella and LLAPs. The intracellular localization of the Legionella within Arcella hosts was confirmed using FISH with a Legionella‐specific probe. This study demonstrates that the host range of Legionella and Legionella‐like bacteria in the Amoebozoa extends beyond members of “naked” amoebae species, with members of the testate amoebae potentially serving an ecological role in the dispersal, protection, and replication of Legionella spp. in natural environments.  相似文献   

12.
Tropical peatlands represent globally important carbon sinks with a unique biodiversity and are currently threatened by climate change and human activities. It is now imperative that proxy methods are developed to understand the ecohydrological dynamics of these systems and for testing peatland development models. Testate amoebae have been used as environmental indicators in ecological and palaeoecological studies of peatlands, primarily in ombrotrophic Sphagnum-dominated peatlands in the mid- and high-latitudes. We present the first ecological analysis of testate amoebae in a tropical peatland, a nutrient-poor domed bog in western (Peruvian) Amazonia. Litter samples were collected from different hydrological microforms (hummock to pool) along a transect from the edge to the interior of the peatland. We recorded 47 taxa from 21 genera. The most common taxa are Cryptodifflugia oviformis, Euglypha rotunda type, Phryganella acropodia, Pseudodifflugia fulva type and Trinema lineare. One species found only in the southern hemisphere, Argynnia spicata, is present. Arcella spp., Centropyxis aculeata and Lesqueresia spiralis are indicators of pools containing standing water. Canonical correspondence analysis and non-metric multidimensional scaling illustrate that water table depth is a significant control on the distribution of testate amoebae, similar to the results from mid- and high-latitude peatlands. A transfer function model for water table based on weighted averaging partial least-squares (WAPLS) regression is presented and performs well under cross-validation (r \(^{2}_{apparent} \,=\, 0.76, \text {RMSE} \,=\, 4.29; \mathrm {r}^{2}_{jack} \,=\, 0.68, \text {RMSEP} \,=\, 5.18\) ). The transfer function was applied to a 1-m peat core, and sample-specific reconstruction errors were generated using bootstrapping. The reconstruction generally suggests near-surface water tables over the last 3,000 years, with a shift to drier conditions at c. cal. 1218-1273 AD.  相似文献   

13.
Aim A current debate in microbial biogeography contrasts two views concerning the distribution of free‐living microorganisms. The first view assumes a ubiquitous distribution, while the second assumes that at least some species have limited geographical distributions. We tested for limited geographical distributions by identifying testate amoebae morphospecies from an extremely remote oceanic island where the potential for endemism is high. Location Amsterdam Island, Indian Ocean. Methods Sixty moss and water samples collected from the top of the volcano to the lowland were investigated for their testate amoeba content. Due to taxonomic uncertainties among the Argynnia (Nebela) dentistoma species complex (including A. antarctica), we also performed light and scanning electron microscopy investigations on the shell ultrastructure and biometric analyses on several specimens of this taxon. Results We identified a total of 43 testate amoeba taxa belonging to 15 genera. Only four testate amoeba taxa had previously been recorded on this island. Testate amoeba communities of Amsterdam Island are dominated by cosmopolitan ubiquitous euglyphid taxa such as Trinema lineare, Assulina muscorum and Corythion dubium. The length and width ranges for Argynnia dentistoma on Amsterdam Island overlap with other records of this species and of A. antarctica, suggesting that A. antarctica is not a distinct taxon. Main conclusions Although Amsterdam Island is among the most remote islands in the world, an extensive inventory of testate amoeba morphospecies provided no clear evidence for endemism. On the one hand, our detailed morphometric analysis of the A. dentistoma complex revealed that A. antarctica, a morphospecies previously suggested to display endemism, cannot be confidently distinguished from the cosmopolitan morphospecies A. dentistoma. On the other hand, five morphotaxa could not be identified with certainty and might represent new species, potentially with limited distribution. These examples illustrate how taxonomic uncertainties undermine biogeographical studies of testate amoebae. In order to allow better interpretation of morphology‐based testate amoeba distribution data, an assessment of genetic diversity among and within morphotaxa in relation to geographical distance for some common testate amoebae should be given high priority.  相似文献   

14.
Extreme precipitation events are recognised as important drivers of ecosystem responses to climate change and can considerably affect high-latitude ombrotrophic bogs. Therefore, understanding the relationships between increased rainfall and the biotic components of these ecosystems is necessary for an estimation of climate change impacts. We studied overall effects of increased magnitude, intensity and frequency of rainfall on assemblages of Sphagnum-dwelling testate amoebae in a field climate manipulation experiment located in a relatively dry subarctic bog (Abisko, Sweden). The effects of the treatment were estimated using abundance, species diversity and structure of living and empty shell assemblages of testate amoebae in living and decaying layers of Sphagnum. Our results show that increased rainfall reduced the mean abundance and species richness of living testate amoebae. Besides, the treatment affected species structure of both living and empty shell assemblages, reducing proportions of hydrophilous species. The effects are counterintuitive as increased precipitation-related substrate moisture was expected to have opposite effects on testate amoeba assemblages in relatively dry biotopes. Therefore, we conclude that other rainfall-related factors such as increased infiltration rates and frequency of environmental disturbances can also affect testate amoeba assemblages in Sphagnum and that hydrophilous species are particularly sensitive to variation in these environmental variables.  相似文献   

15.
Arcellinid testate amoebae (Amoebozoa) form a group of free-living microbial eukaryotes with one of the oldest fossil records known, yet several aspects of their evolutionary history remain poorly understood. Arcellinids occur in a range of terrestrial, freshwater and even brackish habitats; however, many arcellinid morphospecies such as Hyalosphenia papilio are particularly abundant in Sphagnum-dominated peatlands, a relatively new ecosystem that appeared during the diversification of Sphagnum species in the Miocene (5–20 Myr ago). Here, we reconstruct divergence times in arcellinid testate amoebae after selecting several fossils for clock calibrations and then infer whether or not arcellinids followed a pattern of diversification that parallels the pattern described for Sphagnum. We found that the diversification of core arcellinids occurred during the Phanerozoic, which is congruent with most arcellinid fossils but not with the oldest known amoebozoan fossil (i.e. at ca. 662 or ca. 750 Myr). Overall, Sphagnum and the Hyalospheniidae exhibit different patterns of diversification. However, an extensive molecular phylogenetic analysis of distinct clades within H. papilio species complex demonstrated a correlation between the recent diversification of H. papilio, the recent diversification of Sphagnum mosses, and the establishment of peatlands.  相似文献   

16.
Freshwater microbial diversity is subject to multiple stressors in the Anthropocene epoch. However, the effects of climate changes and human activities on freshwater protozoa remain poorly understood. In this study, the diversity and distribution of testate amoebae from the surface sediments were investigated in 51 Chinese lakes and reservoirs along two gradients, latitude and trophic status. A total of 169 taxa belonging to 24 genera were identified, and the most diverse and dominant genera were Difflugia (78 taxa), Centropyxis (26 taxa) and Arcella (12 taxa). Our analysis revealed that biomass of testate amoebae decreased significantly along the latitudinal gradient, while Shannon-Wiener indices and species richness presented an opposite trend (P?P?相似文献   

17.
Sphagnum peatlands host a high abundance of protists, especially testate amoebae. Here, we designed a study to investigate the functional diversity of testate amoebae in relation to wetness and forest cover in Baltic bogs. We provided new data on the influence of openness/wetness gradient on testate amoebae communities, showing significant differences in selected testate amoebae (TA) traits. Three key messages emerged from our investigations: 1) we recorded an effect of peatland surface openness on testate amoebae functional traits that led us to accept the hypothesis that TA traits differ according to light intensity and hydrology. Mixotrophic species were recorded in high relative abundance in open plots, whereas they were nearly absent in forested sites; 2) we revealed a hydrological threshold for the occurrence of mixotrophic testate amoebae that might be very important in terms of peatland functioning and carbon sink vs. source context; and 3) mixotrophic species with organic tests were nearly absent in forested sites that were dominated by heterotrophic species with agglutinated or idiosomic tests. An important message from this study is that taxonomy of TA rather indicates the hydrological gradient whereas traits of mixotrophs the openness gradient.  相似文献   

18.
We present the first detailed analysis of subfossil testate amoebae from a tropical peatland. Testate amoebae were analysed in a 4-m peat core from western Amazonia (Peru) and a transfer function developed from the site was applied to reconstruct changes in water table over the past ca. 8,000 years. Testate amoebae were in very low abundance in the core, especially in the lower 125 cm, due to a combination of poor preservation and obscuration by other organic matter. A modified preparation method enabled at least 50 testate amoebae to be counted in each core sample. The most abundant taxa preserved include Centropyxis aculeata, Hyalosphenia subflava, Phryganella acropodia and Trigonopyxis arcula. Centropyxis aculeata, an unambiguous wet indicator, is variably present and indicates several phases of near-surface water table. Our work shows that even degraded, low-abundance assemblages of testate amoebae can provide useful information regarding the long-term ecohydrological developmental history of tropical peatlands.  相似文献   

19.
A total of 42 species and forms have been revealed in the testate amoebae community of a transitional bog at the initial stage of transformation into a typical sphagnum bog. A distinctive features of its species composition is dominance of widespread species Assulina muscorum, Arcella arenaria, Phryganella hemisphaerica, and Euglypha laevis in the absence of common sphagnobionts of the genera Nebela, Hyalosphenia, and Heleopera. Vertical heterogeneity of the community structure is weakly manifested, since dominant species are abundant in all horizons. The highest species richness is characteristic of the marginal community formed at the boundary between a sphagnum quagmire and a reed grass-dominated fen.  相似文献   

20.
ABSTRACT. Amber‐preserved shells of testate amoebae often provide as many diagnostic features as the tests of modern taxa. Most of these well‐preserved microfossils are morphologically assignable to modern species indicating either evolutionary stasis or convergent evolution. Here we describe two Lower Cretaceous testate amoebae that are clearly distinguishable from modern species. Centropyxis perforata n. sp. and Leptochlamys galippei n. sp. possessed perforate shells that were previously unknown in these genera. They are preserved in highly fossiliferous amber pieces from the Upper Albian (ca. 100 million years old) of Archingeay/Les Nouillers (Charente‐Maritime, southwestern France). Syninclusions of soil and litter dwelling arthropods and microorganisms indicate a limnetic‐terrestrial microhabitat at the floor of a coastal conifer forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号