首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Multiple sequence alignments have wide applicability in many areas of computational biology, including comparative genomics, functional annotation of proteins, gene finding, and modeling evolutionary processes. Because of the computational difficulty of multiple sequence alignment and the availability of numerous tools, it is critical to be able to assess the reliability of multiple alignments. We present a tool called StatSigMA to assess whether multiple alignments of nucleotide or amino acid sequences are contaminated with one or more unrelated sequences. There are numerous applications for which StatSigMA can be used. Two such applications are to distinguish homologous sequences from nonhomologous ones and to compare alignments produced by various multiple alignment tools. We present examples of both types of applications.  相似文献   

3.
Accurate multiple sequence alignments of proteins are very important to several areas of computational biology and provide an understanding of phylogenetic history of domain families, their identification and classification. This article presents a new algorithm, REFINER, that refines a multiple sequence alignment by iterative realignment of its individual sequences with the predetermined conserved core (block) model of a protein family. Realignment of each sequence can correct misalignments between a given sequence and the rest of the profile and at the same time preserves the family's overall block model. Large-scale benchmarking studies showed a noticeable improvement of alignment after refinement. This can be inferred from the increased alignment score and enhanced sensitivity for database searching using the sequence profiles derived from refined alignments compared with the original alignments. A standalone version of the program is available by ftp distribution (ftp://ftp.ncbi.nih.gov/pub/REFINER) and will be incorporated into the next release of the Cn3D structure/alignment viewer.  相似文献   

4.
The Jalview Java alignment editor   总被引:26,自引:0,他引:26  
Multiple sequence alignment remains a crucial method for understanding the function of groups of related nucleic acid and protein sequences. However, it is known that automatic multiple sequence alignments can often be improved by manual editing. Therefore, tools are needed to view and edit multiple sequence alignments. Due to growth in the sequence databases, multiple sequence alignments can often be large and difficult to view efficiently. The Jalview Java alignment editor is presented here, which enables fast viewing and editing of large multiple sequence alignments.  相似文献   

5.
Alignment of protein sequences is a key step in most computational methods for prediction of protein function and homology-based modeling of three-dimensional (3D)-structure. We investigated correspondence between "gold standard" alignments of 3D protein structures and the sequence alignments produced by the Smith-Waterman algorithm, currently the most sensitive method for pair-wise alignment of sequences. The results of this analysis enabled development of a novel method to align a pair of protein sequences. The comparison of the Smith-Waterman and structure alignments focused on their inner structure and especially on the continuous ungapped alignment segments, "islands" between gaps. Approximately one third of the islands in the gold standard alignments have negative or low positive score, and their recognition is below the sensitivity limit of the Smith-Waterman algorithm. From the alignment accuracy perspective, the time spent by the algorithm while working in these unalignable regions is unnecessary. We considered features of the standard similarity scoring function responsible for this phenomenon and suggested an alternative hierarchical algorithm, which explicitly addresses high scoring regions. This algorithm is considerably faster than the Smith-Waterman algorithm, whereas resulting alignments are in average of the same quality with respect to the gold standard. This finding shows that the decrease of alignment accuracy is not necessarily a price for the computational efficiency.  相似文献   

6.
Most bioinformatics analyses require the assembly of a multiple sequence alignment. It has long been suspected that structural information can help to improve the quality of these alignments, yet the effect of combining sequences and structures has not been evaluated systematically. We developed 3DCoffee, a novel method for combining protein sequences and structures in order to generate high-quality multiple sequence alignments. 3DCoffee is based on TCoffee version 2.00, and uses a mixture of pairwise sequence alignments and pairwise structure comparison methods to generate multiple sequence alignments. We benchmarked 3DCoffee using a subset of HOMSTRAD, the collection of reference structural alignments. We found that combining TCoffee with the threading program Fugue makes it possible to improve the accuracy of our HOMSTRAD dataset by four percentage points when using one structure only per dataset. Using two structures yields an improvement of ten percentage points. The measures carried out on HOM39, a HOMSTRAD subset composed of distantly related sequences, show a linear correlation between multiple sequence alignment accuracy and the ratio of number of provided structure to total number of sequences. Our results suggest that in the case of distantly related sequences, a single structure may not be enough for computing an accurate multiple sequence alignment.  相似文献   

7.
Multiple sequence alignment is a fundamental tool in a number of different domains in modern molecular biology, including functional and evolutionary studies of a protein family. Multiple alignments also play an essential role in the new integrated systems for genome annotation and analysis. Thus, the development of new multiple alignment scores and statistics is essential, in the spirit of the work dedicated to the evaluation of pairwise sequence alignments for database searching techniques. We present here norMD, a new objective scoring function for multiple sequence alignments. NorMD combines the advantages of the column-scoring techniques with the sensitivity of methods incorporating residue similarity scores. In addition, norMD incorporates ab initio sequence information, such as the number, length and similarity of the sequences to be aligned. The sensitivity and reliability of the norMD objective function is demonstrated using structural alignments in the SCOP and BAliBASE databases. The norMD scores are then applied to the multiple alignments of the complete sequences (MACS) detected by BlastP with E-value<10, for a set of 734 hypothetical proteins encoded by the Vibrio cholerae genome. Unrelated or badly aligned sequences were automatically removed from the MACS, leaving a high-quality multiple alignment which could be reliably exploited in a subsequent functional and/or structural annotation process. After removal of unreliable sequences, 176 (24 %) of the alignments contained at least one sequence with a functional annotation. 103 of these new matches were supported by significant hits to the Interpro domain and motif database.  相似文献   

8.
An algorithm is presented for the multiple alignment of protein sequences that is both accurate and rapid computationally. The approach is based on the conventional dynamic-programming method of pairwise alignment. Initially, two sequences are aligned, then the third sequence is aligned against the alignment of both sequences one and two. Similarly, the fourth sequence is aligned against one, two and three. This is repeated until all sequences have been aligned. Iteration is then performed to yield a final alignment. The accuracy of sequence alignment is evaluated from alignment of the secondary structures in a family of proteins. For the globins, the multiple alignment was on average 99% accurate compared to 90% for pairwise comparison of sequences. For the alignment of immunoglobulin constant and variable domains, the use of many sequences yielded an alignment of 63% average accuracy compared to 41% average for individual variable/constant alignments. The multiple alignment algorithm yields an assignment of disulphide connectivity in mammalian serotransferrin that is consistent with crystallographic data, whereas pairwise alignments give an alternative assignment.  相似文献   

9.
The simple fact that proteins are built from 20 amino acids while DNA only contains four different bases, means that the 'signal-to-noise ratio' in protein sequence alignments is much better than in alignments of DNA. Besides this information-theoretical advantage, protein alignments also benefit from the information that is implicit in empirical substitution matrices such as BLOSUM-62. Taken together with the generally higher rate of synonymous mutations over non-synonymous ones, this means that the phylogenetic signal disappears much more rapidly from DNA sequences than from the encoded proteins. It is therefore preferable to align coding DNA at the amino acid level and it is for this purpose we have constructed the program RevTrans. RevTrans constructs a multiple DNA alignment by: (i) translating the DNA; (ii) aligning the resulting peptide sequences; and (iii) building a multiple DNA alignment by 'reverse translation' of the aligned protein sequences. In the resulting DNA alignment, gaps occur in groups of three corresponding to entire codons, and analogous codon positions are therefore always lined up. These features are useful when constructing multiple DNA alignments for phylogenetic analysis. RevTrans also accepts user-provided protein alignments for greater control of the alignment process. The RevTrans web server is freely available at http://www.cbs.dtu.dk/services/RevTrans/.  相似文献   

10.
Automatic assessment of alignment quality   总被引:1,自引:0,他引:1  
Multiple sequence alignments play a central role in the annotation of novel genomes. Given the biological and computational complexity of this task, the automatic generation of high-quality alignments remains challenging. Since multiple alignments are usually employed at the very start of data analysis pipelines, it is crucial to ensure high alignment quality. We describe a simple, yet elegant, solution to assess the biological accuracy of alignments automatically. Our approach is based on the comparison of several alignments of the same sequences. We introduce two functions to compare alignments: the average overlap score and the multiple overlap score. The former identifies difficult alignment cases by expressing the similarity among several alignments, while the latter estimates the biological correctness of individual alignments. We implemented both functions in the MUMSA program and demonstrate the overall robustness and accuracy of both functions on three large benchmark sets.  相似文献   

11.
The question of multiple sequence alignment quality has received much attention from developers of alignment methods. Less forthcoming, however, are practical measures for addressing alignment quality issues in real life settings. Here, we present a simple methodology to help identify and quantify the uncertainties in multiple sequence alignments and their effects on subsequent analyses. The proposed methodology is based upon the a priori expectation that sequence alignment results should be independent of the orientation of the input sequences. Thus, for totally unambiguous cases, reversing residue order prior to alignment should yield an exact reversed alignment of that obtained by using the unreversed sequences. Such "ideal" alignments, however, are the exception in real life settings, and the two alignments, which we term the heads and tails alignments, are usually different to a greater or lesser degree. The degree of agreement or discrepancy between these two alignments may be used to assess the reliability of the sequence alignment. Furthermore, any alignment dependent sequence analysis protocol can be carried out separately for each of the two alignments, and the two sets of results may be compared with each other, providing us with valuable information regarding the robustness of the whole analytical process. The heads-or-tails (HoT) methodology can be easily implemented for any choice of alignment method and for any subsequent analytical protocol. We demonstrate the utility of HoT for phylogenetic reconstruction for the case of 130 sequences belonging to the chemoreceptor superfamily in Drosophila melanogaster, and by analysis of the BaliBASE alignment database. Surprisingly, Neighbor-Joining methods of phylogenetic reconstruction turned out to be less affected by alignment errors than maximum likelihood and Bayesian methods.  相似文献   

12.
When aligning biological sequences, the choice of parameter values for the alignment scoring function is critical. Small changes in gap penalties, for example, can yield radically different alignments. A rigorous way to compute parameter values that are appropriate for aligning biological sequences is through inverse parametric sequence alignment. Given a collection of examples of biologically correct alignments, this is the problem of finding parameter values that make the scores of the example alignments close to those of optimal alignments for their sequences. We extend prior work on inverse parametric alignment to partial examples, which contain regions where the alignment is left unspecified, and to an improved formulation based on minimizing the average error between the score of an example and the score of an optimal alignment. Experiments on benchmark biological alignments show we can find parameters that generalize across protein families and that boost the accuracy of multiple sequence alignment by as much as 25%.  相似文献   

13.
14.
MOTIVATION: Computationally identifying non-coding RNA regions on the genome has much scope for investigation and is essentially harder than gene-finding problems for protein-coding regions. Since comparative sequence analysis is effective for non-coding RNA detection, efficient computational methods are expected for structural alignments of RNA sequences. On the other hand, Hidden Markov Models (HMMs) have played important roles for modeling and analysing biological sequences. Especially, the concept of Pair HMMs (PHMMs) have been examined extensively as mathematical models for alignments and gene finding. RESULTS: We propose the pair HMMs on tree structures (PHMMTSs), which is an extension of PHMMs defined on alignments of trees and provides a unifying framework and an automata-theoretic model for alignments of trees, structural alignments and pair stochastic context-free grammars. By structural alignment, we mean a pairwise alignment to align an unfolded RNA sequence into an RNA sequence of known secondary structure. First, we extend the notion of PHMMs defined on alignments of 'linear' sequences to pair stochastic tree automata, called PHMMTSs, defined on alignments of 'trees'. The PHMMTSs provide various types of alignments of trees such as affine-gap alignments of trees and an automata-theoretic model for alignment of trees. Second, based on the observation that a secondary structure of RNA can be represented by a tree, we apply PHMMTSs to the problem of structural alignments of RNAs. We modify PHMMTSs so that it takes as input a pair of a 'linear' sequence and a 'tree' representing a secondary structure of RNA to produce a structural alignment. Further, the PHMMTSs with input of a pair of two linear sequences is mathematically equal to the pair stochastic context-free grammars. We demonstrate some computational experiments to show the effectiveness of our method for structural alignments, and discuss a complexity issue of PHMMTSs.  相似文献   

15.
Multiple alignment of protein sequences with repeats and rearrangements   总被引:3,自引:0,他引:3  
Multiple sequence alignments are the usual starting point for analyses of protein structure and evolution. For proteins with repeated, shuffled and missing domains, however, traditional multiple sequence alignment algorithms fail to provide an accurate view of homology between related proteins, because they either assume that the input sequences are globally alignable or require locally alignable regions to appear in the same order in all sequences. In this paper, we present ProDA, a novel system for automated detection and alignment of homologous regions in collections of proteins with arbitrary domain architectures. Given an input set of unaligned sequences, ProDA identifies all homologous regions appearing in one or more sequences, and returns a collection of local multiple alignments for these regions. On a subset of the BAliBASE benchmarking suite containing curated alignments of proteins with complicated domain architectures, ProDA performs well in detecting conserved domain boundaries and clustering domain segments, achieving the highest accuracy to date for this task. We conclude that ProDA is a practical tool for automated alignment of protein sequences with repeats and rearrangements in their domain architecture.  相似文献   

16.
多序列比对是生物信息学中基础而又重要的序列分析方法.本文提出一种新的多序列比对算法,该算法综合了渐进比对方法和迭代策略,采用加权函数以调整序列的有偏分布,用neighbor-joining方法构建指导树以确定渐进比对的顺序.通过对BAlibASE中142组蛋白质序列比对的测试,验证了本算法的有效性.与Multalin算法比较的结果表明,本算法能有效地提高分歧较大序列的比对准确率.  相似文献   

17.
Alignment of protein sequences by their profiles   总被引:7,自引:0,他引:7  
The accuracy of an alignment between two protein sequences can be improved by including other detectably related sequences in the comparison. We optimize and benchmark such an approach that relies on aligning two multiple sequence alignments, each one including one of the two protein sequences. Thirteen different protocols for creating and comparing profiles corresponding to the multiple sequence alignments are implemented in the SALIGN command of MODELLER. A test set of 200 pairwise, structure-based alignments with sequence identities below 40% is used to benchmark the 13 protocols as well as a number of previously described sequence alignment methods, including heuristic pairwise sequence alignment by BLAST, pairwise sequence alignment by global dynamic programming with an affine gap penalty function by the ALIGN command of MODELLER, sequence-profile alignment by PSI-BLAST, Hidden Markov Model methods implemented in SAM and LOBSTER, pairwise sequence alignment relying on predicted local structure by SEA, and multiple sequence alignment by CLUSTALW and COMPASS. The alignment accuracies of the best new protocols were significantly better than those of the other tested methods. For example, the fraction of the correctly aligned residues relative to the structure-based alignment by the best protocol is 56%, which can be compared with the accuracies of 26%, 42%, 43%, 48%, 50%, 49%, 43%, and 43% for the other methods, respectively. The new method is currently applied to large-scale comparative protein structure modeling of all known sequences.  相似文献   

18.
Lin HN  Notredame C  Chang JM  Sung TY  Hsu WL 《PloS one》2011,6(12):e27872
Most sequence alignment tools can successfully align protein sequences with higher levels of sequence identity. The accuracy of corresponding structure alignment, however, decreases rapidly when considering distantly related sequences (<20% identity). In this range of identity, alignments optimized so as to maximize sequence similarity are often inaccurate from a structural point of view. Over the last two decades, most multiple protein aligners have been optimized for their capacity to reproduce structure-based alignments while using sequence information. Methods currently available differ essentially in the similarity measurement between aligned residues using substitution matrices, Fourier transform, sophisticated profile-profile functions, or consistency-based approaches, more recently.In this paper, we present a flexible similarity measure for residue pairs to improve the quality of protein sequence alignment. Our approach, called SymAlign, relies on the identification of conserved words found across a sizeable fraction of the considered dataset, and supported by evolutionary analysis. These words are then used to define a position specific substitution matrix that better reflects the biological significance of local similarity. The experiment results show that the SymAlign scoring scheme can be incorporated within T-Coffee to improve sequence alignment accuracy. We also demonstrate that SymAlign is less sensitive to the presence of structurally non-similar proteins. In the analysis of the relationship between sequence identity and structure similarity, SymAlign can better differentiate structurally similar proteins from non- similar proteins. We show that protein sequence alignments can be significantly improved using a similarity estimation based on weighted n-grams. In our analysis of the alignments thus produced, sequence conservation becomes a better indicator of structural similarity. SymAlign also provides alignment visualization that can display sub-optimal alignments on dot-matrices. The visualization makes it easy to identify well-supported alternative alignments that may not have been identified by dynamic programming. SymAlign is available at http://bio-cluster.iis.sinica.edu.tw/SymAlign/.  相似文献   

19.
The programs described herein function as part of a suite ofprograms designed for pairwise alignment, multiple alignment,generation of randomized sequences, production of alignmentscores and a sorting routine for analysis of the alignmentsproduced. The sequence alignment programs penalize gaps (absencesof residues) within regions of protein secondary structure andhave the added option of ‘fingerprinting’ structurallyor functionally important protein residues. The multiple alignmentprogram is based upon the sequence alignment method of Needlemanand Wunsch and the multiple alignment extension of Barton andSternberg. Our application includes the feature of optionallyweighting active site, monomer-monomer, ligand contact or otherimportant template residues to bias the alignment toward matchingthese residues. A sum-score for the alignments is introduced,which is independent of gap penalties. This score more adequatelyreflects the character of the alignments for a given scoringmatrix than the gap-penalty-dependent total score describedpreviously in the literature. In addition, individual aminoacid similarity scores at each residue position in the alignmentsare printed with the alignment output to enable immediate quantitativeassessment of homology at key sections of the aligned chains.  相似文献   

20.
Although multiple sequence alignments (MSAs) are essential for a wide range of applications from structure modeling to prediction of functional sites, construction of accurate MSAs for distantly related proteins remains a largely unsolved problem. The rapidly increasing database of spatial structures is a valuable source to improve alignment quality. We explore the use of 3D structural information to guide sequence alignments constructed by our MSA program PROMALS. The resulting tool, PROMALS3D, automatically identifies homologs with known 3D structures for the input sequences, derives structural constraints through structure-based alignments and combines them with sequence constraints to construct consistency-based multiple sequence alignments. The output is a consensus alignment that brings together sequence and structural information about input proteins and their homologs. PROMALS3D can also align sequences of multiple input structures, with the output representing a multiple structure-based alignment refined in combination with sequence constraints. The advantage of PROMALS3D is that it gives researchers an easy way to produce high-quality alignments consistent with both sequences and structures of proteins. PROMALS3D outperforms a number of existing methods for constructing multiple sequence or structural alignments using both reference-dependent and reference-independent evaluation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号