首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conformation of adducts derived from the reactions and covalent binding of the (+) and (-) enantiomers of 7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (anti-BaPDE) with double-stranded calf thymus DNA in vitro were investigated utilizing the electric linear dichroism technique. The linear dichroism and absorption spectra of the covalent DNA complexes are interpreted in terms of a superposition of two types of binding sites. One of these conformations (site I) is a complex in which the plane of the pyrene residue is close to parallel (within 30 degrees) to the planes of the DNA bases (quasi-intercalation), while the other (site II) is an external binding site; this latter type of adduct is attributed to the covalent binding of anti-BaPDE to the exocyclic amino group of deoxyguanine (N2-dG), while site I adducts are attributed to the O6-deoxyguanine and N6-deoxyadenine adducts identified in the product analysis of P. Brookes and M.R. Osborne (Carcinogenesis (1982) 3, 1223-1226). Site II adducts are dominant (approximately 90% in the covalent complexes derived from the (+) enantiomer), but account for only 50 +/- 5% of the adducts in the case of the (-)-enantiomer. The orientation of site II complexes is different by 20 +/- 10 degrees in the adducts derived from the binding of the (+) and the (-) enantiomers to DNA, the long axis of the pyrene chromophore being oriented more parallel to the axis of the DNA helix in the case of the (+) enantiomer. These findings support the proposals by Brookes and Osborne that the difference in spatial orientation of the N2-dG adducts of (-)-anti-BaPDE together with their lower abundance may account for the lower biological activity of the (-) enantiomer. The external site II adducts, rather than site I adducts, appear to be correlated with the biological activity of these compounds.  相似文献   

2.
Abstract

The conformation of adducts derived from the reactions and covalent binding of the (+) and (-) enantiomers of 7β, 8α-dihydroxy-9α, 10α-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (anti-BaPDE) with double-stranded calf thymus DNA in vitro were investigated utilizing the electric linear dichroism technique. The linear dichroism and absorption spectra of the covalent DNA complexes are interpreted in terms of a superposition of two types of binding sites. One of these conformations (site I) is a complex in which the plane of the pyrene residue is close to parallel (within 30°) to the planes of the DNA bases (quasi-intercalation), while the other (site II) is an external binding site; this latter type of adduct is attributed to the covalent binding of anti-BaPDE to the exocyclic amino group of deoxyguanine (N2-dG), while site I adducts are attributed to the 06-deoxyguanine and N6-deoxyadenine adducts identified in the product analysis of P. Brookes and M.R. Osborne (Carcinogenesis (1982) 3, 1223–1226). Site II adducts are dominant (~90% in the covalent complexes derived from the (+) enantiomer), but account for only 50±5% of the adducts in the case of the (—)-enantiomer. The orientation of site II complexes is different by 20±10° in the adducts derived from the binding of the (+) and the (—) enantiomers to DNA, the long axis of the pyrene chromophore being oriented more parallel to the axis of the DNA helix in the case of the (+) enantiomer. These findings support the proposals by Brookes and Osborne that the difference in spatial orientation of the N2-dG adducts of (-)-anti-BaPDE together with their lower abundance may account for the lower biological activity of the (—) enantiomer. The external site II adducts, rather than site I adducts, appear to be correlated with the biological activity of these comoounds.  相似文献   

3.
The conformations of the adducts derived from the covalent binding of the two enantiomeric forms of 9,10-epoxy-9,10,11,12-tetrahydrobenzo(e)pyrene (BePE) with native DNA were investigated by the electric linear dichroism technique. Both enantiomers give rise to two major adducts, one of which appears to be a quasi-intercalative site (I) while the other one is an external binding site (II). While the overall linear dichroism spectra are similar, in the case of the (-) enantiomer there is a greater contribution of site II adducts. These results are markedly different from the ones obtained with the two enantiomers of anti-benzo(a)pyrene-7,8-diol-9,10-epoxide (BaPDE), where the (+) enantiomer gives rise almost exclusively to site II binding, while the (-) enantiomer gives rise to both site I and site II covalent binding. The differences in the heterogeneity of binding between BePE and anti-BaPDE enantiomers may be due to the absence of hydroxyl groups in BePE which, in the case of BaPDE, are an important factor in determining the stereoselective properties of the covalent binding to double-stranded DNA.  相似文献   

4.
DNA covalent binding studies with enantiomers of trans-7,8-dihydroxy- anti-9,10-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene (anti-BPDE) have been carried out by means of spectroscopic techniques (UV, CD, and fluorescence). Synthetic polynucleotides are employed to investigate binding differences between the G.C and A.T base pairs and to elucidate the bases for the stereoselective covalent binding of DNA toward anti-BPDE. The results indicate that of all the polynucleotides studied, only poly(dA-dT).poly(dA-dT) exhibits predominant intercalative covalent binding towards (+)-anti-BPDE and suffers the least covalent modification. Only minor intercalative covalent contributions are found in alternating polymer poly(dA-dC).poly(dG-dT). These observations parallel the DNA physical binding results of anti-BPDE and its hydrolysis products. They support the hypothesis that intercalative covalent adducts derive from intercalative physical binding while the external covalent adducts derive from external bimolecular associations. In contrast to the A.T polymers, the guanine containing polymers exhibit pronounced reduction in covalent modification by (-)-anti-BPDE. The intercalative covalent binding mode becomes relatively more important in the adducts formed by the (-) enantiomer as a consequence of decreased external guanine binding. These findings are consistent with the guanine specificity, stereoselective covalent binding at dG, the absence of stereoselectivity at dA for anti-BPDE, and the enhanced binding heterogeneity for the (-) enantiomer as found in the native DNA studies. The possible sequence and/or conformational dependence of such stereoselective covalent binding is indicated by the opposite pyrenyl CD sign exhibited by (+)-anti-BPDE bound to polynucleotides with pyrimidine on one strand and purine on another vs. that bound to polymers containing alternating purine-pyrimidine sequences.  相似文献   

5.
Abstract

DNA covalent binding studies with enantiomers of trans-7,8-dihydroxy- anti-9,10-epoxy- 7,8,9,10-tetrahydro-benzo [a] pyrene (anti-BPDE) have been carried out by means of spectroscopic techniques (UV, CD, and fluorescence). Synthetic polynucleotides are employed to investigate binding differences between the G · C and A · T base pairs and to elucidate the bases for the stereoselective covalent binding of DNA toward anti-BPDE. The results indicate that of all the polynucleotides studied, only poly(dA-dT) · poly(dA-dT) exhibits predominant intercalative covalent binding towards (+)-anti-BPDE and suffers the least covalent modification. Only minor intercalative covalent contributions are found in alternating polymer poly(dA-dC) · poly(dG-dT). These observations parallel the DNA physical binding results of anti-BPDE and its hydrolysis products. They support the hypothesis that intercalative covalent adducts derive from intercalative physical binding while the external covalent adducts derive from external bimolecular associations. In contrast to the A · T polymers, the guanine containing polymers exhibit pronounced reduction in covalent modification by (-)-anti-BPDE. The intercalative covalent binding mode becomes relatively more important in the adducts formed by the (-) enantiomer as a consequence of decreased external guanine binding. These findings are consistent with the guanine specificity, stereoselective covalent binding at dG, the absence of stereoselectivity at dA for anti-BPDE, and the enhanced binding heterogeneity for the (-) enantiomer as found in the native DNA studies. The possible sequence and/or conformational dependence of such stereoselective covalent binding is indicated by the opposite pyrenyl CD sign exhibited by (+)-anti-BPDE bound to polynucleotides with pyrimidine on one strand and purine on another vs. that bound to polymers containing alternating purine-pyrimidine sequences.  相似文献   

6.
The covalent binding of the tumorigenic (+) enantiomer and the nontumorigenic (-) enantiomer of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,19-tetrahydrobenzo(a)pyrene (BPDE) to double-stranded native DNA gives rise to heterogeneous adducts, especially in the case of (-)-BPDE. The covalent (+)-BPDE-DNA adducts are predominantly of the external site II type, while the (-)-BPDE-DNA adducts are predominantly of the quasi-intercalative, site I type (65%), with 35% of site II adducts. The site I adducts can be selectively photodissociated with near-ultraviolet light (quantum yields in the range 0.0003-0.005); the external site II adducts (photodissociation quantum yield 3 X 10(-5) are 10-100-times more stable. The photolability of covalent (-)-BPDE-DNA adducts accounts for the discrepancies in the linear dichroism properties of these complexes reported previously. Fluorescence quenching data, previously utilized to assess the degree of solvent exposure of the pyrenyl residues in covalent adducts, were in some cases significantly influenced by the presence of highly fluorescent tetraol dissociation products. After correcting for this effect, it is shown that the fluorescence of the external site II (+)-BPDE-DNA adducts is sensitive to acrylamide, while the fluorescence of the dominant site I (-)-BPDE-DNA adducts is not affected by this fluorescence quencher, as expected for adducts with considerable carcinogen-base stacking interactions.  相似文献   

7.
Abstract

The conformations of the adducts derived from the covalent binding of the two enantiomeric forms of 9,10-epoxy-9,10,11,12-tetrahydrobenzo(e)pyrene (BePE) with native DNA were investigated by the electric linear dichroism technique. Both enantiomers give rise to two major adducts, one of which appears to be a quasi-intercalative site (I) while the other one is an external binding site (II). While the overall linear dichroism spectra are similar, in the case of the (—) enantiomer there is a greater contribution of site II adducts. These results are markedly different from the ones obtained with the two enantiomers of anti-benzo(a)pyrene-7,8-diol-9,10-epoxide (BaPDE), where the (+) enantiomer gives rise almost exclusively to site II binding, while the (—) enantiomer gives rise to both site I and site II covalent binding. The differences in the heterogeneity of binding between BePE and anti-BaPDE enantiomers may be due to the absence of hydroxyl groups in BePE which, in the case of BaPDE, are an important factor in determining the stereoselective properties of the covalent binding to double-stranded DNA.  相似文献   

8.
Linear dichroism and absorption methods are used to study the orientations of transition moments of absorption bands of polycyclic aromatic epoxide derivatives which overlap with those of the DNA band in the 240-300 nm region. Both the short and long axes of the pyrene residues of 1-oxiranylpyrene (1-OP) and the (+) and (-) enantiomers of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) noncovalently bound to double-stranded native DNA are oriented approximately perpendicular to the axis of the DNA helix, consistent with intercalative modes of binding. The covalent binding of these three epoxide derivatives to DNA is accompanied by reorientations of both the short and long axes of the pyrene residues. Covalent adducts derived from the highly mutagenic (+)-anti-BPDE are characterized by tilts of the short axis within 35 degrees or less, and of the long axis by more than 60-80 degrees, with respect to the planes of the DNA bases. In the adducts derived from the binding of the less mutagenic (-)-anti-BPDE and 1-OP epoxide derivatives to DNA, the long axes of the pyrenyl rings are predominantly oriented within 25 degrees of the planes of the DNA bases; however, in the case of the (-) enantiomer of BPDE, there is significant heterogeneity of conformations. In the case of the 1-OP covalent DNA adducts, the short axis of the pyrene ring system is tilted away from the planes of the DNA bases, and the pyrene ring system is not intercalated between DNA base-pairs as in the noncovalent complexes. The stereochemical properties of the saturated 7,8,9,10-ring in BPDE, or the lack of the 7 and 8 carbon atoms in 1-OP, do not seem to affect noncovalent intercalative complex formation which, most likely, is influenced mainly by the flat pyrenyl residues. These structural features, however, strongly influence the conformations of the covalent adducts, which in turn may be responsible for the differences in the mutagenic activities of these molecules.  相似文献   

9.
The unwinding of supercoiled phi X174 RFI DNA induced by the tumorigenic (+) and non-tumorigenic (-) enantiomers of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) has been investigated by agarose slab-gel and ethidium titration tube gel electrophoresis. The differences in adduct conformations were verified by flow linear dichroism techniques. Both enantiomers cause a reversible unwinding by the formation of noncovalent intercalative complexes. The effects of covalently bound BPDE residues on the electrophoretic mobilities of the RF I DNA form in agarose gels were investigated in detail in the range of binding ratios rb approximately 0.0-0.06 (covalently bound BPDE residues/nucleotide). In this range of rb values, there is a striking difference in the mobilities of (+)-BPDE- and (-)-BPDE-adducted phi X174 DNA in agarose slab-gels, the covalently bound (+)-BPDE residues causing a significantly greater retardation than (-)-BPDE residues. Increasing the level of covalent adducts beyond rb approximately 0.06 in the case of the (+)-BPDE enantiomer, leads to further unwinding and a minimum in the mobilities (corresponding to comigration of the nicked form and the covalently closed relaxed modified form) at rb 0.10 +/- 0.01; at still higher rb values, rewinding of the modified DNA in the opposite sense is observed. From the minimum in the mobility, a mean unwinding angle (per BPDE residue) of theta = 12 +/- 1.5 degrees is determined, which is in good agreement the value of theta = 11 +/- 1.8 degrees obtained by the tube gel titration method. Using this latter method, values of theta = 6.8 +/- 1.7 degrees for (-)-BPDE-phi X174 adducts are observed. It is concluded that agarose slab gel techniques are not suitable for determining unwinding angles for (-)-BPDE-modified phi X174 DNA because the alterations in the tertiary structures for rb < 0.06 are too small to cause sufficiently large changes in the electrophoretic mobilities. The major trans (+)-BPDE-N2-guanosine covalent adduct is situated at external binding sites and the mechanisms of unwinding are therefore different from those relevant to noncovalent intercalative BPDE-DNA complexes or to classical intercalating drug molecules; a flexible hinge joint and a widening of the minor groove at the site of the lesion may account for the observed unwinding effects. The more heterogeneous (-)-BPDE-nucleoside adducts (involving cis and trans N2-guanosine, and adenosine adducts) are less effective in causing unwinding of supercoiled DNA for reasons which remain to be elucidated.  相似文献   

10.
Phosphorescence and optical detection of magnetic resonance measurements applied to the covalent adducts of (+)- and (-)-anti-benzo[a]pyrene with DNA show a marked red shift of the pyrenyl phosphorescence and a lowering of the zero field splitting parameters of the (-) adduct, relative to the (+) adduct and the (solvent-exposed) benzo[a]pyrene tetraol. These results are consistent with a predominance of quasi-intercalative sites in the (-) adduct and external, solvent-exposed sites in the (+) adduct.  相似文献   

11.
F M Chen 《Nucleic acids research》1983,11(20):7231-7250
Solubilization as well as spectral studies of pyrene in natural DNA and synthetic deoxypolynucleotide solutions at neutral pH reveal at least two binding modes. Sites I are predominant in native DNA and in poly(dA-dT): poly(dA-dT) whereas sites II are found with denatured DNA and other polynucleotides such as poly(dA):poly(dT) and three different types of guanine containing copolymers which solubilize pyrene to a lesser extent. Spectral comparison with the covalent adducts of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10- tetrahydro-benzo(a)pyrene (anti-BPDE) and the physical complexes of its tetraols lead to the suggestion of a base sequence specific binding model for this carcinogenic metabolite to account for the puzzling fact that although its physical binding is predominantly intercalative, the covalent adducts appear not to be intercalated. It is speculated that in neutral solutions, intercalation may have little, if any, to do with the chemical lesion of this metabolite to the guanine base of the DNA and may, on the contrary, provide an efficient pathway for detoxification.  相似文献   

12.
R Xu  B Mao  J Xu  B Li  S Birke  C E Swenberg    N E Geacintov 《Nucleic acids research》1995,23(12):2314-2319
The apparent persistence length of enzymatically linearized pIBI30 plasmid DNA molecules approximately 2300 bp long, as measured by a hydrodynamic linear flow dichroism method, is markedly decreased after covalent binding of the highly tumorigenic benzo[a]pyrene metabolite 7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(+)-anti-BPDE]. In striking contrast, the binding of the non-tumorigenic, mirror-image 7S,8R,9R,10S enantiomer [(-)-anti-BPDE] to DNA has no measurable effect on its alignment in hydrodynamic flow gradients (< or = 2.2% of the DNA bases modified). In order to relate this effect to BPDE-nucleotide lesions of defined stereochemistry, the bending induced by site-specifically placed and stereochemically defined (+)- and (-)-anti-BPDE-N2-dG lesions in an 11mer deoxyoligonucleotide duplex was studied by ligation and gel electrophoresis methods. Out of the four stereochemically isomeric anti-BPDE-N2-deoxyguanosyl (dG) adducts with either (+)-trans, (-)-trans, (+)-cis, and (-)-cis adduct stereochemistry, only the (+)-trans adduct gives rise to prominent bends or flexible hinge joints in the modified oligonucleotide duplexes. Since both anti-BPDE enantiomers are known to bind preferentially to dG (> or = 85%), these observations can account for the differences in persistence lengths of DNA modified with either (+)-anti-BPDE or the chiral (-)-anti-BPDE isomer.  相似文献   

13.
14.
The UvrABC nuclease system from Escherichia coli removes DNA damages induced by a wide range of chemical carcinogens with variable efficiencies. The interactions with UvrABC proteins of the following three lesions site-specifically positioned in DNA, and of known conformations, were investigated: (i) adducts derived from the binding of the (-)-(7S,8R,9R,10S) enantiomer of 7,8-dihydroxy-9, 10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(-)-anti-BPDE] by cis-covalent addition to N(2)-2'-deoxyguanosine [(-)-cis-anti-BP-N(2)-dG], (ii) an adduct derived from the binding of the (+)-(1R,2S,3S,4R) enantiomer of 1,2-dihydroxy-3,4-epoxy-1,2,3, 4-tetrahydro-5-methylchrysene [(+)-anti-5-MeCDE] by trans addition to N(2)-2'-deoxyguanosine [(+)-trans-anti-MC-N(2)-dG], and (iii) a C8-2'-deoxyguanosine adduct (C8-AP-dG) formed by reductively activated 1-nitropyrene (1-NP). The influence of these three different adducts on UvrA binding affinities, formation of UvrB-DNA complexes by quantitative gel mobility shift analyses, and the rates of UvrABC incision were investigated. The binding affinities of UvrA varied among the three adducts. UvrA bound to the DNA adduct (+)-trans-anti-MC-N(2)-dG with the highest affinity (K(d) = 17 +/- 2 nM) and to the DNA containing C8-AP-dG with the least affinity (K(d) = 28 +/- 1 nM). The extent of complex formation with UvrB was also the lowest with the C8-AP-dG adduct. 5' Incisions occurred at the eighth phosphate from the modified guanine. The major 3' incision site corresponded to the fifth phosphodiester bond for all three adducts. However, additional 3' incisions were observed at the fourth and sixth phosphates in the case of the C8-AP-dG adduct, whereas in the case of the (-)-cis-anti-BP-N(2)-dG and (+)-trans-anti-MC-N(2)-dG lesions additional 3' cleavage occurred at the sixth and seventh phosphodiester bonds. Both the initial rate and the extent of 5' and 3' incisions revealed that C8-AP-dG was repaired less efficiently in comparison to the (-)-cis-anti-BP-N(2)-dG and (+)-trans-anti-MC-N(2)-dG containing DNA adducts. Our study showed that UvrA recognizes conformational changes induced by structurally different lesions and that in certain cases the binding affinities of UvrA and UvrB can be correlated with the incision rates. The size of the bubble formed around the damaged site with mismatched bases also appears to influence the incision rates. A particularly noteworthy finding in this study is that UvrABC repair of a substrate with no base opposite C8-AP-dG was quite inefficient as compared to the same adduct with a C opposite it. These findings are discussed in terms of the available NMR solution structures.  相似文献   

15.
The reaction mechanisms of two isomeric bay-region diol epoxides of 5-methylchrysene (trans-1,2-dihydroxy-anti-3,4-epoxy-1,2,3,4-tetrahydro-5-methylchrysene (DE-I) and trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydro-5-methylchrysene (DE-II) with double-stranded DNA in aqueous solutions were studied utilizing kinetic flow dichroism and fluorescence techniques. As in the case of the previously studied benzo(a)pyrene-7,8-diol-9,10-oxide isomers (BaPDE), both DE-I and DE-II rapidly form intercalation-type complexes (association constants K = 2700 and 1500 M-1 respectively in a neutral 5mM phosphate solution). The physically bound diol epoxide molecules react on time scales of minutes to form predominantly tetraols; a greater fraction (6 +/- 1%) of DE-I than of DE-II (2-3%) molecules react with the DNA to form covalent products. The DE-II isomer is characterized by a greater reactivity than DE-I, and the rates of reaction are markedly accelerated in the presence of DNA in both cases. The linear dichroism spectra of the covalent adducts reveal that the conformations of both types of adducts are similar, with the long axes of the phenanthrenyl chromophores tilted, on the average, at angles of 38-52 degrees with respect to the average orientations of the transition moments (at 260 nm) of the DNA bases. The conformations of the covalently bound DE-I and DE-II molecules resemble those observed in the case of the highly tumorigenic (+) enantiomer of anti-BaPDE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Abstract

A theoretical model is proposed for the covalent binding of (+) 7 β,8α-dihydroxy-9α, 10α- epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene denoted by BPDE I(+), to N2 on guanine. The DNA must kink a minimum of 39° to allow proper hybrid configurations about the C10 and N2 atoms involved in bond formation and to allow stacking of the pyrene moiety with the non-bonded adjacent base pair. Conservative (same sugar puckers and glycosidic angles as in B-DNA) and non-conservative (alternating sugar puckers as in intercalation sites) conformations are found and they are proposed structures in pathways connecting B-DNA, an intercalation site, and a kink site in the formation of a covalently intercalative bound adduct of BPDE I(+) to N2 on guanine. Stereographic projections are presented for (3′) and (5′) binding in the DNA. Experimental data for bending of DNA by BPDE, orientation of BPDE in DNA and unwinding of superhelical DNA is explained. The structure of a covalent intercalative complex is predicted to result from the reaction. Also, an anti ? syn transition of guanine results in a structure which allows the DNA to resume its overall B-form. The only change is that guanine has been rotated by 200° about its glycosidic bond so that the BPDE I(+) is bound in the major groove. The latter step may allow the DNA to be stored with an adduct which may produce an error in the genetic code.  相似文献   

17.
Abstract

The reaction mechanisms of two isomeric bay-region diol epoxides of 5-methylchrysene (trans-1,2-dihydroxy-anti/-3,4-epoxy-1,2,3,4-tetrahydro-5-methylchrysene (DE-I) and trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydro-5-methylchrysene (DE-II) with double-stranded DNA in aqueous solutions were studied utilizing kinetic flow dichroism and fluorescence techniques. As in the case of the previously studied benzo(a)pyrene-7,8-diol-9,10-oxide isomers (BaPDE), both DE-I and DE-II rapidly form intercalation-type complexes (association constants K = 2700 and 1500 M?1 respectively in a neutral 5mM phosphate solution). The physically bound diol epoxide molecules react on time scales of minutes to form predominantly tetraols; a greater fraction (6±1%) of DE-I than of DE-II (2–3%) molecules react with the DNA to form covalent products. The DE-II isomer is characterized by a greater reactivity than DE-I, and the rates of reaction are markedly accelerated in the presence of DNA in both cases. The linear dichroism spectra of the covalent adducts reveal that the conformations of both types of adducts are similar, with the long axes of the phenanthrenyl chromophores tilted, on the average, at angles of 38-52° with respect to the average orientations of the transition moments (at 260 nm) of the DNA bases. The conformations of the covalently bound DE-I and DE-II molecules resemble those observed in the case of the highly tumorigenic (+) enantiomer of anti-BaPDE. The differences in the biological properties of these and other polycyclic aromatic diol epoxides are discussed in terms of their reactivities with DNA and the conformations of the adducts formed.  相似文献   

18.
The two major metabolic pathways of benzo[a]pyrene (BP) that lead to DNA lesions are monooxygenation that results in diolepoxides (BPDE) and one-electron oxidation that yields a BP radical cation. These pathways result in formation of stable and depurinating DNA adducts, respectively. Most in vivo animal studies with BP, however, have employed dosage/DNA adduct levels several orders of magnitude higher than the DNA damage level expected from environmentally relevant exposures. Presented are results of experiments in which A/J strain mice were intraperitoneally exposed to 50-microg/g doses of BP. It is shown that non-line-narrowed fluorescence and fluorescence line-narrowing spectroscopies possess the selectivity and sensitivity to distinguish between helix-external, base-stacked, and intercalated conformations of DNA-BPDE adducts formed in lung tissue. Concentrations measured by 32P postlabeling 2 and 3 days after intraperitoneal injection were 420-430 and 600-830 amol BPDE-type adducts per microg DNA. The external and base-stacked conformations are attributed mainly to (+)-trans-anti-BPDE-N2dG and the intercalated conformations to (+)-cis-anti adducts. A stable adduct derived from 9-OH-BP-4,5-epoxide was also detected at a concentration about a factor of 10 lower than the above concentrations. The DNA supernatants were analyzed for the presence of depurinating BP-derived adducts by capillary electrophoresis laser-induced fluorescence and high-performance liquid chromatography mass spectrometry.  相似文献   

19.
The effects of secondary structure on DNA modification by (+/-)-7 beta, 9 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzol[a]pyrene [(+/-)BPDE I] were investigated. No differences in the total extent of (+/-) BPDE I binding to double- and single-stranded calf thymus DNA were found. High-performance liquid chromatography (LC) of the nucleoside adducts obtained from hydrolysates of native and denatured calf thymus, as well as from superhelical and linear plasmid DNA, indicated that in all cases the major adduct (60--80% of total adducts) was formed by reaction of the (+) enantiomer of BPDE I with the N-2 position of dG residues in the DNA. A minor adduct formed from the reaction of the (-) enantiomer with dG residues was also detected and was present in greater amounts in denautred DNA than in native DNA. Small amounts of BPDE I--dA and BPDE I--dC adducts were also detected in both the single- and double-stranded DNAs. Restriction enzyme analysis of BPDE I modified SV40 and phage lambda DNA provided evidence that the modification of DNA by this carcinogen is fairly random with respect to nucleotide sequence. Partial hydrolysis of modified plasmid DNA by the single-strand-specific S1 nuclease and LC analysis of the nucleoside adducts in the digested and undigested fractions of the DNA revealed no preferential excision by the S1 nuclease of the different BPDE I--deoxynucleoside adducts. Functional changes in BPDE I modified DNA were demonstrated. With increasing extents of modification, there was a decrease in the ability of plasmid DNA to transfect a receptive Escherichia coli strain to antibiotic resistance.  相似文献   

20.
RecQ helicases are believed to function in repairing replication forks stalled by DNA damage and may also play a role in the intra-S-phase checkpoint, which delays the replication of damaged DNA, thus permitting repair to occur. Since little is known regarding the effects of DNA damage on RecQ helicases, and because the replication and recombination defects in Werner syndrome cells may reflect abnormal processing of damaged DNA associated with the replication fork, we examined the effects of specific bulky, covalent adducts at N(6) of deoxyadenosine (dA) or N(2) of deoxyguanosine (dG) on Werner (WRN) syndrome helicase activity. The adducts are derived from the optically active 7,8-diol 9,10-epoxide (DE) metabolites of the carcinogen benzo[a]pyrene (BaP). The results demonstrate that WRN helicase activity is inhibited in a strand-specific manner by BaP DE-dG adducts only when on the translocating strand. These adducts either occupy the minor groove without significant perturbation of DNA structure (trans adducts) or cause base displacement at the adduct site (cis adducts). In contrast, helicase activity is only mildly affected by intercalating BaP DE-dA adducts that locally perturb DNA double helical structure. This differs from our previous observation that intercalating dA adducts derived from benzo[c]phenanthrene (BcPh) DEs inhibit WRN activity in a strand- and stereospecific manner. Partial unwinding of the DNA helix at BaP DE-dA adduct sites may make such adducted DNAs more susceptible to the action of helicase than DNA containing the corresponding BcPh DE-dA adducts, which cause little or no destabilization of duplex DNA. The single-stranded DNA binding protein RPA, an auxiliary factor for WRN helicase, enabled the DNA unwinding enzyme to overcome inhibition by either the trans-R or cis-R BaP DE-dG adduct, suggesting that WRN and RPA may function together to unwind duplex DNA harboring specific covalent adducts that otherwise block WRN helicase acting alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号