首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Isolated hepatocytes and isolated adipocytes incubated in the absence of added calcium ions respond to insulin with a decrease in tissue cyclic AMP levels, and an increase in low Km phosphodiesterase activity. Isolated hepatocytes also showed a diminution of glucagon stimulated glucose output in response to insulin, while adipocytes responded with increased rates of glucose oxidation, lipid synthesis and decreased glycerol output. These responses to insulin are the same as those seen when the cells are incubated in buffers containing physiological concentrations of calcium ions. When extracellular concentrations of calcium ions were made extremely low by using either gelatine or albumin which had been pretreated to remove calcium, and/or the incubation buffers contained EGTA, both the hepatocytes and adipocytes continued to respond to insulin. These results suggest that extracellular calcium ions are not required for insulin action.  相似文献   

2.
Kim J  Rusch S  Luirink J  Kendall DA 《FEBS letters》2001,505(2):245-248
In Escherichia coli, protein export from the cytoplasm may occur via the signal recognition particle (SRP)-dependent pathway or the Sec-dependent pathway. Membrane proteins utilize the SRP-dependent route, whereas many secretory proteins use the cytoplasmic Sec machinery. To examine the possibility that signal peptide hydrophobicity governs which targeting route is utilized, we used a series of PhoA signal sequence mutants which vary only by incremental hydrophobicity changes. We show that depletion of SRP, but not trigger factor, affects all the mutants examined. These results suggest secretory proteins with a variety of signal sequences, as well as membrane proteins, require SRP for export.  相似文献   

3.
4.
The process of inferring phylogenetic trees from molecular sequences almost always starts with a multiple alignment of these sequences but can also be based on methods that do not involve multiple sequence alignment. Very little is known about the accuracy with which such alignment-free methods recover the correct phylogeny or about the potential for increasing their accuracy. We conducted a large-scale comparison of ten alignment-free methods, among them one new approach that does not calculate distances and a faster variant of our pattern-based approach; all distance-based alignment-free methods are freely available from http://www.bioinformatics.org.au (as Python package decaf+py). We show that most methods exhibit a higher overall reconstruction accuracy in the presence of high among-site rate variation. Under all conditions that we considered, variants of the pattern-based approach were significantly better than the other alignment-free methods. The new pattern-based variant achieved a speed-up of an order of magnitude in the distance calculation step, accompanied by a small loss of tree reconstruction accuracy. A method of Bayesian inference from k-mers did not improve on classical alignment-free (and distance-based) methods but may still offer other advantages due to its Bayesian nature. We found the optimal word length k of word-based methods to be stable across various data sets, and we provide parameter ranges for two different alphabets. The influence of these alphabets was analyzed to reveal a trade-off in reconstruction accuracy between long and short branches. We have mapped the phylogenetic accuracy for many alignment-free methods, among them several recently introduced ones, and increased our understanding of their behavior in response to biologically important parameters. In all experiments, the pattern-based approach emerged as superior, at the expense of higher resource consumption. Nonetheless, no alignment-free method that we examined recovers the correct phylogeny as accurately as does an approach based on maximum-likelihood distance estimates of multiply aligned sequences.  相似文献   

5.
When phagocytic leukocytes interact with soluble or particulate stimuli, the cells increase their production of oxidative metabolites. This increased production can be measured as luminol amplified light emission or chemiluminescence. From the literature it can be concluded that the chemiluminescence reaction is dependent on oxygen radicals produced by the cells and on the enzyme myeloperoxidase. Since the radical producing system and the peroxidase are localized to different subcellular compartments, it is proposed that a lysosomal fusion, bringing the two reactants together into the same subcellular compartment, is a prerequisite for the chemiluminescence reaction.  相似文献   

6.
Tabone CJ  Ramaswami M 《Neuron》2012,74(5):767-769
The Mg2+ block of NMDA-type glutamate receptors (NMDARs) is crucial to their function as synaptic coincidence detectors. An analysis of Drosophila expressing a Mg2+-independent NMDAR by in this issue of Neuron concludes that the Mg2+ block is required primarily for long-term memory.  相似文献   

7.
In contrast to a published report [Wali et al. Arch Microbiol 118:49–53 (1978)], an organic acid is not essential for the growth of thermophilic fungi. The thermophilic fungus, Thermomyces lanuginosus, grows satisfactorily in a synthetic medium containing glucose as carbon source if the pH of the medium is controlled. The control of pH is essential for the concentration of carbon dioxide in the growth medium and the activity of anaplerotic enzyme, pyruvate carboxylase.Abbreviations PEP phosphoenolpyruvate - GDP guanosine 5-diphosphate  相似文献   

8.
The factors that explain the competition between intramolecular NO linkage photoisomerization and NO photorelease in five ruthenium nitrosyl complexes were investigated. By applying DFT-based methods, it was possible to characterize the ground states and lowest triplet potential energy surfaces of these species, and to establish that both photoisomerization and photorelease processes can occur in the lowest triplet state of each species. This work highlights the crucial role of the sideways-bonded isomer, a metastable state also known as the MS2 isomer, in the photochemical loss of NO, while the results obtained also indicate that the population of the triplet state of this isomer is compulsory for both processes and show how photoisomerization and photorelease interfere.
Graphical Abstract Illustration of the crucial role of the 3MS2 state in the photoreactivities of ruthenium nitrosyl complexes
  相似文献   

9.
10.
11.
Shen Y  Chou CY  Chang GG  Tong L 《Molecular cell》2006,22(6):807-818
Acetyl-coenzyme A carboxylases (ACCs) have crucial roles in fatty acid metabolism. The biotin carboxylase (BC) subunit of Escherichia coli ACC is believed to be active only as a dimer, although the crystal structure shows that the active site of each monomer is 25 A from the dimer interface. We report here biochemical, biophysical, and structural characterizations of BC carrying single-site mutations in the dimer interface. Our studies demonstrate that two of the mutants, R19E and E23R, are monomeric in solution but have only a 3-fold loss in catalytic activity. The crystal structures of the E23R and F363A mutants show that they can still form the correct dimer at high concentrations. Our data suggest that dimerization is not an absolute requirement for the catalytic activity of the E. coli BC subunit, and we propose a new model for the molecular mechanism of action for BC in multisubunit and multidomain ACCs.  相似文献   

12.
Increasing evidence has shown that probably all malignant mouse cells, even those of spontaneous sporadic cancers, are endowed with tumor-specific antigens. Stimulation of cancer growth, rather than inhibition by the immune reaction, is seemingly the prevalent effect in the animal of origin (the autochthonous animal). Small initial dosages of even strong tumor antigens tend to produce stimulatory immune reactions rather than tumor inhibition in any animal. Thus, an immune response at a low level may be an essential growth-driving feature of nascent cancers, and this may be why all cancers apparently have tumor-specific antigens. Inasmuch as a low level of immunity is stimulatory to tumor growth while larger dosages are inhibitory, immuno-selection via this low response may tend to keep the antitumor immune reaction weak and at a nearly maximal stimulatory level throughout most of a tumor's existence. These facts suggest that both suppression of tumor immunity and a heightened immune reaction might each be therapeutic although very contrasting modalities.  相似文献   

13.
Langer M  Langosch D 《FEBS letters》2011,585(7):1021-1024
It has been suggested that lipids translocate between the outer and inner leaflets of fusing membranes, or flip-flop, to facilitate changes in bilayer leaflet areas at various stages of fusion. Here, we investigated the lipid flip activity of synthetic peptides that mimic SNARE transmembrane domains (TMDs). These peptides indeed induce flip of marker lipids. However, mutations that reduce flip activity do not diminish fusogenicity and cholesterol blocks flip much more efficiently than fusion. Therefore, our data do not support a role for flip in membrane fusion. On the other hand, the ability of SNARE TMDs to catalyze flip is consistent with a role of SNAREs in biogenic lipid flip.  相似文献   

14.
To determine whether phospholipid is required for the activity of mammalian signal peptidase, the enzyme was partially purified from porcine pancreas and then extensively freed of phospholipid by SP-Sephadex C-50 chromatography. The delipidated enzyme showed signal peptidase activity, with a low concentration of detergent. Phospholipid was found to release the enzyme from the inhibition due to excess detergent.  相似文献   

15.
Is an intact cytoskeleton required for red cell urea and water transport?   总被引:1,自引:0,他引:1  
In order to determine the membrane protein(s) responsible for urea and water transport across the human red cell membrane, we planned to reconstitute purified membrane proteins into phosphatidylcholine vesicles. In preparatory experiments, we reconstituted a mixture of all of the red cell integral membrane proteins into phosphatidylcholine vesicles, but found that p-chloromercuribenzenesulfonate (pCMBS), which normally inhibits osmotic water permeability by approximately 90%, has no effect on this preparation. The preparation was also unable to transport urea at the high rates found in red cells, though glucose transport was normal. White ghosts, washed free of hemoglobin and resealed, also did not preserve normal urea and pCMBS-inhibitable water transport. One-step ghosts, prepared in Hepes buffer in a single-step procedure, without washing, retained normal urea and pCMBS-inhibitable water transport. Perturbations of the cytoskeleton in one-step ghosts, by removal of tropomyosin, or by severing the ankyrin link which binds band 3 to spectrin, caused the loss of urea and pCMBS-inhibitable water transport. These experiments suggest that an unperturbed cytoskeleton may be required for normal urea and pCMBS-inhibitable water transport. They also show that the pCMBS inhibition of water transport is dissociable from the water transport process and suggest a linkage between the pCMBS water transport inhibition site and the urea transport protein.  相似文献   

16.
CER cells infected with vesicular stomatitis virus showed a morphology similar to that observed after cytochalasin B treatment. Temperature-sensitive mutants affected in envelope protein maturation did not induce those morphological changes at a nonpermissive temperature. In addition, the cytoskeleton was not implicated in vesicular stomatitis virus reproduction.  相似文献   

17.
The supra-molecular assembly of the main respiratory chain enzymatic complexes in the form of "super-complexes" has been proved by structural and functional experimental evidence. This evidence strongly contrasts the previously accepted Random Diffusion Model stating that the complexes are functionally connected by lateral diffusion of small redox molecules (i.e. Coenzyme Q and cytochrome c). This review critically examines the available evidence and provides an analysis of the functional consequences of the intermolecular association of the respiratory complexes pointing out the role of Coenzyme Q and of cytochrome c as channeled or as freely diffusing intermediates in the electron transfer activity of their partner enzymes.  相似文献   

18.
In the tunicate, Polyandrocarpa misakiensis , transdifferentiation occurs in the multipotent atrial epithelium during morphallactic bud development. Irradiation (10–80 Gy) or aphidicolin (10 μg/mL) blocked this process severely, although the atrial epithelium could form organ placodes. The placodes consisted of cuboidal cells with a high nucleus : cytoplasm ratio and were lacking the alkaline phosphatase antigen from the cell surface, suggesting that the atrial epithelium might undergo dedifferentiation without initiating cell cycling. Irradiated buds could resume organogenesis in temporal accordance with the restoration of mitotic activity. Bud pieces irradiated at 40 Gy were juxtaposed with unirradiated counterparts. In the operated buds, irradiated, non-dividing cells participated in organogenesis at the site of juxtaposition in cooperation with the unirradiated, dividing cells. These results have shown that in P. misakiensis the cell division cycle, probably DNA replication, is indispensable for transdifferentiation of the atrial epithelium, although every cell in the organ rudiment need not enter cell cycling. We suggest that homoiogenetic induction occurs between dividing cells and non-dividing cells.  相似文献   

19.
Despite being widely recognized as the important bone-derived phosphaturic hormone, whether fibroblast growth factor (FGF)-23 modulated intestinal calcium absorption remained elusive. Since FGF-23 could reduce the circulating level of 1,25-dihydroxyvitamin D? [1,25(OH)?D?], FGF-23 probably compromised the 1,25(OH)?D?-induced intestinal calcium absorption. FGF-23 may also exert an inhibitory action directly through FGF receptors (FGFR) in the intestinal cells. Herein, we demonstrated by Ussing chamber technique that male mice administered 1 μg/kg 1,25(OH)?D? sc daily for 3 days exhibited increased duodenal calcium absorption, which was abolished by concurrent intravenous injection of recombinant mouse FGF-23. This FGF-23 administration had no effect on the background epithelial electrical properties, i.e., short-circuit current, transepithelial potential difference, and resistance. Immunohistochemical evidence of protein expressions of FGFR isoforms 1-4 in mouse duodenal epithelial cells suggested a possible direct effect of FGF-23 on the intestine. This was supported by the findings that FGF-23 directly added to the serosal compartment of the Ussing chamber and completely abolished the 1,25(OH)?D?-induced calcium absorption in the duodenal tissues taken from the 1,25(OH)?D?-treated mice. However, direct FGF-23 exposure did not decrease the duodenal calcium absorption without 1,25(OH)?D? preinjection. The observed FGF-23 action was mediated by MAPK/ERK, p38 MAPK, and PKC. Quantitative real-time PCR further showed that FGF-23 diminished the 1,25(OH)?D?-induced upregulation of TRPV5, TRPV6, and calbindin-D(9k), but not PMCA(1b) expression in the duodenal epithelial cells. In conclusion, besides being a phosphatonin, FGF-23 was shown to be a novel calcium-regulating hormone that acted directly on the mouse intestine, thereby compromising the 1,25(OH)?D?-induced calcium absorption.  相似文献   

20.
1α,25-dihydroxyvitamin D(3) (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-κB p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-κB mediated activation of human na?ve B cells. Na?ve B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human na?ve B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-κB activation by interference with NF-κB p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in na?ve B cells, namely by reducing CD40 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号