首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two pigmentation related genes have recently been cloned which map to the brown (b) and albino (c) loci of mice; these loci influence the quality and quantity, respectively, of melanin produced by melanocytes. Both these gene products are biochemically similar and have extensive amino acid sequence similarity to each other and to lower forms of tyrosinase (EC 1.14.18.1), a copper binding enzyme responsible for melanin production. In order to characterize the catalytic activities of these molecules, we have synthesized peptides and prepared antibodies to them which specifically recognize the gene products in question. By use of immune affinity purification protocols, we have isolated the proteins encoded by the brown and albino loci and have determined that both have the catalytic functions ascribed to tyrosinase, i.e. hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine (DOPA) and the oxidation of DOPA to DOPAquinone. These are the critical reactions to melanogenesis since melanin pigment can be spontaneously produced from those products. The specific activity of the albino locus encoded product is considerably higher than that of the protein encoded by the brown locus, although the latter protein is present in higher quantity in melanocytes than is the protein encoded by the albino locus. These results are surprising since it was anticipated that tyrosinase was the product of single gene locus, and suggest that regulation of melanogenesis in mammals is controlled at the enzymatic level by several different gene products.  相似文献   

2.
We introduced a mouse tyrosinase minigene, mg-Tyrs-J, in which the authentic genomic 5' non-coding flanking sequence was fused to a mouse tyrosinase cDNA, into fertilized egges of albino mice. Of the 25 animals that developed from the injected eggs, four mice exhibited pigmented hair and eyes. Histological analysis of the transgenic mice revealed that the melanogenesis was restricted to hair bulbs and eyes. These results suggest that this minigene encodes active tyrosinase protein and that its 5' flanking region contains the sequences regulating expression of mouse tyrosinase gene. This is the first report of a successful expression of tyrosinase gene and of pigment production in transgenic mice.  相似文献   

3.
Up-regulation of tyrosinase gene by nitric oxide in human melanocytes   总被引:5,自引:0,他引:5  
Ultraviolet light (UV) radiation causes skin-tanning, which is thought to be mediated by stimulating the release of melanogenic factors from keratinocytes as well as other cells. Nitric oxide (NO) has been reported to be generated after UV radiation and to stimulate melanocytes as one of the melanogens. In a previous experiment by another group on melanogenesis induced by NO, increases in both tyrosinase activity and tyrosinase protein levels were observed after daily stimulation of NO for 4 days. In the present study, we investigated tyrosinase gene expression within the first 24 hr of NO-induced melanogenesis. Tyrosinase mRNA expression was found to be induced 2 hr after a single treatment with S-nitroso-N-acetyl-L-arginine. An increase of tyrosinase activity was also detected time-dependently within the 24-hr period, accompanied by an increase of tyrosinase protein levels. The induction of mRNA expression was suppressed by a cyclic guanosine 3',5'-monophosphate (cGMP)-dependent protein kinase (cGMP/PKG) inhibitor. These results suggest that the enhancement of tyrosinase gene expression via the cGMP pathway may be a primary mechanism for NO-induced melanogenesis.  相似文献   

4.
In vertebrates, melanin production is restricted to pigment cells. This cell type-specific melanogenesis is considered to involve cell type-specific expression of the tyrosinase gene. Recently, there have been several reports that sequences in the 5’ flanking region of the mouse tyrosinase gene are responsible for cell type-specific expression of the transgene in mice. As the first step in the study of the evolution of the regulatory mechanisms for tyrosinase gene function in vertebrates, we constructed a fused gene, hg-Tyrs-J which includes a 1.0-kb 5’ flanking sequence of the human tyrosinase gene fused with mouse tyrosinase cDNA. By introducing the fused gene into fertilized eggs of albino mice, we obtained two mice that exhibited pigmentation in the skin and eyes and established a transgenic line from one of them. Further analyses revealed that the transgene was expressed cell type-specifically in these transgenic mice. We conclude, therefore, that the 1.0 kb 5’ upstream region of the human tyrosinase gene contains conserved cis-elements essential for cell type-specific expression of the tyrosinase genes in mice and humans. Results of our study may provide a clue to elucidate the evolutionary process of regulatory mechanisms of the tyrosinase gene.  相似文献   

5.
Ultraviolet light (UV) radiation causes skin‐tanning, which is thought to be mediated by stimulating the release of melanogenic factors from keratinocytes as well as other cells. Nitric oxide (NO) has been reported to be generated after UV radiation and to stimulate melanocytes as one of the melanogens. In a previous experiment by another group on melanogenesis induced by NO, increases in both tyrosinase activity and tyrosinase protein levels were observed after daily stimulation of NO for 4 days. In the present study, we investigated tyrosinase gene expression within the first 24 hr of NO‐induced melanogenesis. Tyrosinase mRNA expression was found to be induced 2 hr after a single treatment with S‐nitroso‐N‐acetyl‐ l ‐arginine. An increase of tyrosinase activity was also detected time‐dependently within the 24‐hr period, accompanied by an increase of tyrosinase protein levels. The induction of mRNA expression was suppressed by a cyclic guanosine 3′,5′‐monophosphate (cGMP)‐dependent protein kinase (cGMP/PKG) inhibitor. These results suggest that the enhancement of tyrosinase gene expression via the cGMP pathway may be a primary mechanism for NO‐induced melanogenesis.  相似文献   

6.
The synthesis of melanin pigments, or melanogenesis, is regulated by the balance of a variety of signal transduction pathways. Among these pathways, p38 MAPK signaling was found to be involved in stress-induced melanogenesis and to be activated by α-melanocyte-stimulating hormone (α-MSH) and ultraviolet irradiation. Previous studies have shown that α-MSH-stimulated melanogenesis can be inhibited by blocking p38 MAPK activity with SB203580, a pyridinyl imidazole compound. Consistent with this, we observed that pyridinyl imidazoles (SB203580 and SB202190) inhibited both basal and α-MSH-induced melanogenesis in B16 melanoma cells. However, SB202474, which has no ability to inhibit p38 MAPK activity and is usually used as a negative control compound in p38 MAPK studies, also suppressed melanin synthesis induction. Furthermore, the independence of the p38 kinase pathway from the repression of melanogenesis by pyridinyl imidazole compounds was also confirmed by small interfering RNA experiments. Interfering with p38 MAPK expression surprisingly stimulated melanogenesis and tyrosinase family protein expression. Although the molecular mechanism(s) by which p38 promotes the degradation of melanogenic enzymes remain to be determined, the involvement of the ubiquitin-proteasome pathway was demonstrated by co-treatment with the proteasome-specific inhibitor MG132 and the relative decrease in the ubiquitination of tyrosinase in cells transfected with p38-specific small interfering RNA.  相似文献   

7.
人与大猩猩,黑猩猩和猩猩亲缘关系的探讨   总被引:3,自引:0,他引:3  
张亚平 Oliv.  AR 《遗传学报》1999,26(6):604-609
有关人锆超科的系统发育仍然存在刍议。争论焦点在与大猩猩和黑猩猩哪 个关系更近一点。酪氨酸酶是黑色素合成中的关键酶,酪氨酶基因的突变将导致白化病。测定了人猿科中大猩猩,黑猩猩、猩猩和长臂锆产基因全部5个外显子的DNA序列。  相似文献   

8.
9.
Melanin biosynthesis is a multistep process with the first step being the conversion of L-tyrosine to L-Dopa catalyzed by the enzyme tyrosinase. The enzymes which catalyze the other steps of melanogenesis are not known. One murine pigmentation gene, the brown (b) locus, when mutated, leads to a brown or hypopigmented coat. The b-locus protein has been shown to display catalase activity. The human b-locus, therefore, is designated as CAS2. We used the mouse b-locus cDNA to isolate the human homologue, which in turn, was used to map the CAS2 locus to a human chromosome. The potential CAS2 protein codes for 527 amino acids containing a putative signal sequence and transmembrane domain. The CAS2 protein has primary and probably secondary structures similar to human tyrosinase. The CAS2 was mapped to human Chromosome 9 by somatic cell hybridization and, more specifically, to 9p22-pter by in situ hybridization. The assignment of CAS2 on the human Chromosome 9 extends this region of known homology on mouse Chromosome 4.  相似文献   

10.
11.
The albino (tyrosinase, Tyrc), brown (tyrosinase-related protein 1, Tyrp1b) and slaty (tyrosinase-related protein 2, tyrp2slt) loci are all involved in the regulation of melanogenesis. Phenotypes of inbred mice mutant at two or more of these loci are not always explicable by simple summation of the established or suspected catalytic functions of the gene products. These phenotypes suggest that relationships among the proteins extend beyond the obvious fact that they catalyze different steps in the same melanogenic pathway, and that they may also interact intimately in such a way that a mutation in one impacts the function of the other(s). Previous studies have attributed catalytic activities to each member of this trio; however, it has been difficult to study the proteins individually, either in vivo or in tissues or cells. Therefore, we undertook to transfect the genes, in revealing combinations, into COS-7 cells (which have no melanogenic apparatus of their own) to clarify the interacting functions of their encoded proteins. Specifically, we attempted to evaluate the effects of Tyrp1 and Tyrp2 proteins on tyrosinase protein. We report evidence that Tyrp1 stabilizes tyrosinase, confirming previous observations, and, in addition, demonstrate that Tyrp1 decreases tyrosinase activity. By contrast, Tyrp2 increases tyrosinase activity by stabilizing the protein. We conclude that both Tyrp1 and Tyrp2, in addition to other catalytic functions they may possess, act together to modulate tyrosinase activity.  相似文献   

12.
The effect of cysteine and glutathione on mammalian melanogenesis has been studied. It has been shown that their action is mediated by two different mechanisms. (a) The reaction of the thiol groups with dopaquinone after the tyrosinase-catalyzed oxidation of tyrosine and dopa. This mechanism leads to the formation of sulfhydryl-dopa conjugates and finally sulfur-containing pigments, phaeomelanins instead of eumelanins. This fact might produce an inhibition of melanogenesis due to the slower rate of chemical reactions involved in the polymerization of such thiol-conjugates when compared to that of indoles. (b) The direct interaction between the sulfhydryl compounds and the tyrosinase active site. This interaction may regulate the activity of the enzyme. It is shown that Harding-Passey mouse melanoma tyrosinase is more sensitive to sulfhydryl compounds than mushroom tyrosinase. Cysteine always produces an inhibition of the tyrosinase hydroxylase and dopa oxidase activities of melanoma tyrosinase, this inhibition becoming greater as the cysteine concentration increases. On the other hand, glutathione produces an activation of the tyrosine hydroxylase activity below 3 mM and an inhibition at higher concentrations. The limit between the enzymatic activation and inhibition appears at glutathione concentrations similar to the physiological levels of this compound found in melanocytes. Although the switch from eumelanogenesis to phaeomelanogenesis occurs at much lower concentrations of glutathione, taking into account these data it is discussed that this sulfhydryl compound may regulate not only the type but also the amount of melanin formed inside melanocytes.  相似文献   

13.
Several genes critical to the regulation of melanin production in mammals have recently been cloned and characterized. They map to the albino, brown, and slaty loci in mice, and encode proteins with similar structures and features, but with distinct catalytic capacities. The albino locus encodes tyrosinase, an enzyme with three distinct catalytic activities—tyrosine hydroxylase, 3,4-dihydroxyphenylalanine (DOPA) oxidase and DHI (5,6-dihydroxyindole) oxidase. The brown locus encodes TRP-l (tyrosinase-related protein-I), which has the same, but greatly reduced, catalytic potential. The slaty locus encodes TRP-2, another tyrosinase related-protein, which has DOPAchrome tautomerase activity. In this study we have examined the enzymatic interactions of these proteins, and their regulation by a novel melanogenic inhibitor. We observed that tyrosinase activity is more stable in the presence of TRP-l and/or TRP-2, but that the catalytic function of TRP-2 is not affected by the presence of TRP-1 or tyrosinase. Other factors also may influence melanogenesis and a unique melanogenic inhibitor suppresses tyrosinase and DOPAchrome tautomerase activities, but does not affect the spontaneous rate of DOPAchrome decarboxylation to DHI. The results demonstrate the catalytic functions of these proteins and how they stably interact within a melanogenic complex in the melanosome to regulate the quantity and quality of melanin synthesized by the melanocyte.  相似文献   

14.
Analysis of mammalian pigmentation at the molecular level   总被引:18,自引:0,他引:18  
There has been great interest lately in the cloning of pigment-related genes; several laboratories have succeeded in isolating melanocyte-specific genes which have many of the characteristics expected for tyrosinase. In this paper, we review the selection criteria, the physical properties, and the functional characteristics of several of these gene products. Two of the clones map to the brown (b) and albino (c) loci, genes that are involved in the regulation of the quantity and quality of melanin production. The functional characteristics of these gene products are not easily reconciled with existing schemes of melanogenesis, and a reevaluation of our concepts of melanogenic regulation may be necessary. The altered expression of these gene products in normal and in transformed melanocytes, and the alternative mRNA processing that occurs in those cells, makes this system an appropriate and interesting one for studies of normal metabolic regulation of gene expression, as well as altered gene expression by neoplastic cells.  相似文献   

15.
Although the administration of melanocyte-stimulating hormone (MSH) peptides results in skin darkening in man, cultured human melanocytes have been reported to be unresponsive to these peptides. This may be a consequence of the conditions under which the cells were maintained in vitro, particularly the use of phorbol esters and cholera toxin as melanocyte mitogens. By culturing the cells in the absence of these additives, we demonstrate that α-MSH and its synthetic analogue Nle4DPhe7α-MSH (NDP-MSH) induce dose-related increases in melanin content and tyrosinase activity and affect cell morphology in the majority of human melanocyte cultures. In addition, NDP-MSH induces increases in tyrosinase mRNA and tyrosinase-related protein-1 (TRP-1) mRNA. The dose-response curves for the MSH peptides are sigmoidal and the two peptides are equipotent in their effects on human melanocytes. Adrenocorticotropic hormone (ACTH) also affects morphology and stimulates melanogenesis and tyrosinase activity in human melanocytes. However, the dose-response curves for ACTH are biphasic, and the melanocytes respond to lower concentrations of ACTH than MSH peptides, similar to those normally present in human plasma. These findings may be important in understanding the role of these pro-opiomelanocortin peptides in human skin pigmentation.  相似文献   

16.
Tyrosinase plays a core role in melanogenesis of the various organisms. Therefore, the regulation of the tyrosinase activity is directly related with melanin synthesis. In this study, we investigated the Cl(-)-induced inhibition of human tyrosinase and the potent role of Cl(-) as a negative regulator in melanogenesis. For the inhibition kinetic studies, human tyrosinase was differently prepared from the TXM13 melanotic cells as well as from cells that had undergone gene transfection. We found that Cl(-) inhibited tyrosinase in a slope-parabolic competitive manner and tyrosinase gene transfection into HEK293 cell significantly down-regulated the expression levels of solute carrier family 12, member 4 (potassium/chloride transporters, SLC12A7) and solute carrier family 12, member 7 (potassium/chloride transporters, SLC12A7), which are known to be Cl(-) transporters. From the results of the inhibition kinetic studies and the Cl(-) transporter expression level, we suggested that Cl(-) might act as a potent regulatory factor in melanogenesis. It is worth notice that a high content of Cl(-) exists physiologically and tyrosinase reacts sensitively to Cl- in a complex interaction manner.  相似文献   

17.
Enzymatic control of pigmentation in mammals.   总被引:34,自引:0,他引:34  
Visible pigmentation in mammals results from the synthesis and distribution of melanin in the skin, hair bulbs, and eyes. The melanins are produced in melanocytes and can be of two basic types: eumelanins, which are brown or black, and phaseomelanins, which are red or yellow. In mammals typically there are mixtures of both types. The most essential enzyme in this melanin biosynthetic pathway is tyrosinase and it is the only enzyme absolutely required for melanin production. However, recent studies have shown that mammalian melanogenesis is not regulated solely by tyrosinase at the enzymatic level, and have identified additional melanogenic factors that can modulate pigmentation in either a positive or negative fashion. In addition, other pigment-specific genes that are related to tyrosinase have been cloned which encode proteins that apparently work together at the catalytic level to specify the quantity and quality of the melanins synthesized. Future research should provide a greater understanding of the enzymatic interactions, processing, and tissue specificity that are important to pigmentation in mammals.  相似文献   

18.
Melanocyte function and its control by melanocortin peptides.   总被引:32,自引:0,他引:32  
Melanocytes are cells of neural crest origin. In the human epidermis, they form a close association with keratinocytes via their dendrites. Melanocytes are well known for their role in skin pigmentation, and their ability to produce and distribute melanin has been studied extensively. One of the factors that regulates melanocytes and skin pigmentation is the locally produced melanocortin peptide alpha-MSH. The effects of alpha-MSH on melanogenesis are mediated via the MC-1R and tyrosinase, the rate-limiting enzyme in the melanogenesis pathway. Binding of alpha-MSH to its receptor increases tyrosinase activity and eumelanin production, which accounts for the skin-darkening effect of alpha-MSH. Other alpha-MSH-related melanocortin peptides, such as ACTH1-17 and desacetylated alpha-MSH, are also agonists at the MC-1R and could regulate melanocyte function. Recent evidence shows that melanocytes have other functions in the skin in addition to their ability to produce melanin. They are able to secrete a wide range of signal molecules, including cytokines, POMC peptides, catecholamines, and NO in response to UV irradiation and other stimuli. Potential targets of these secretory products are keratinocytes, lymphocytes, fibroblasts, mast cells, and endothelial cells, all of which express receptors for these signal molecules. Melanocytes may therefore act as important local regulators of a range of skin cells. It has been shown that alpha-MSH regulates NO production from melanocytes, and it is possible that the melanocortins regulate the release of other signalling molecules from melanocytes. Therefore, the melanocortin signaling system is one of the important regulators of skin homeostasis.  相似文献   

19.
Although a number of melanogenesis inhibitors have recently been reported and used as cosmetic additives, none is completely satisfactory, leaving a need for novel skin-depigmenting agents. Thus, to develop a novel skin-depigmenting agent from natural sources, the inhibition of melanogenesis by Chinese plants was evaluated. A methanolic extract of Nigella glandulifera Freyn was found to inhibit the melanin synthesis of murine B16F10 melanoma cells by 43.7% and exhibited a low cytotoxicity (8.1 %) at a concentration of 100 microg/ml. Thus, to identify the melanogenesis-inhibiting mechanism, the inhibitory activity towards tyrosinase, the key enzyme of melanogenesis, was further evaluated, and the results showed inhibitory effects on the activity of intracellular tyrosinase yet not on mushroom tyrosinase. Finally, to isolate the compounds with a hypopigmenting capability, activity-guided isolation was performed, and Dioctyl phthalate identified as inhibiting melanogenesis.  相似文献   

20.
In the current study, the involvement of calpain, a cysteine proteinase in the regulation of melanogenesis was examined using mouse B16 melanoma cells. In response to α-melanocyte-stimulating hormone (α-MSH), B16 melanoma cells underwent differentiation characterized by increased melanin biosynthesis. The total calapain activity was decreased within 2 h following α-MSH-treatment, and restored to the initial level in 6–12 h. To further investigate the involvement of calpain in the regulation of melanogenesis, the effect of calpain inhibitors on α-MSH-induced melanogenesis was examined. Inhibition of calpain by either N-acetyl-Leu-Leu-norleucinal (ALLN) or calpastatin (CS) peptide blocked α-MSH-induced melanogenesis. The magnitude of inhibition of melanin biosynthesis was well correlated with a decrease in the activity of tyrosinase, a key regulatory enzyme in melanogenesis. Treatment of B16 cells with ALLN caused marked decrease in both tyrosinase protein and mRNA levels. These results indicate that calpain would be involved in the melanogenic signaling by modulating the expression of tyrosinase in mouse B16melanoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号