首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Analysis of a morphological dataset containing 152 parsimony‐informative characters yielded the first phylogenetic reconstruction spanning the South American characiform family Anostomidae. The reconstruction included 46 ingroup species representing all anostomid genera and subgenera. Outgroup comparisons included members of the sister group to the Anostomidae (the Chilodontidae) as well as members of the families Curimatidae, Characidae, Citharinidae, Distichodontidae, Hemiodontidae, Parodontidae and Prochilodontidae. The results supported a clade containing Anostomus, Gnathodolus, Pseudanos, Sartor and Synaptolaemus (the subfamily Anostominae sensu Winterbottom) albeit with a somewhat different set of relationships among the species within these genera. Anostomus as previously recognized was found to be paraphyletic and is split herein into two monophyletic components, a restricted Anostomus and the new genus Petulanos gen. nov. , described herein. Laemolyta appeared as sister to the clade containing Anostomus, Gnathodolus, Petulanos, Pseudanos, Sartor and Synaptolaemus. Rhytiodus and Schizodon together formed a well‐supported clade that was, in turn, sister to the clade containing Anostomus, Gnathodolus, Laemolyta, Petulanos, Pseudanos, Sartor and Synaptolaemus. Anostomoides was sister to the clade formed by these nine genera. Leporinus as currently defined was not found to be monophyletic, although certain clades within that genus were supported, including the species with subterminal mouths in the former subgenus Hypomasticus which we recognize herein as a genus. Abramites nested in Leporinus, and Leporellus was found to be the most basal anostomid genus. The presence of cis‐ and trans‐Andean species in Abramites, Leporellus, Leporinus and Schizodon, all relatively basal genera, suggests that much of the diversification of anostomid species pre‐dates the uplift of the Andean Cordilleras circa 11.8 million years ago. Several important morphological shifts in anostomid evolution are illustrated and discussed, including instances of convergence and reversal. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 70–210.  相似文献   

2.
Although virtually no phylogenetic evidence (in the sense advocated by Hennig, 1966) had been previously presented to support the monophyly of the Characidiinae, and most 'diagnostic' characters used by previous authors were found to be unacceptable in a cladistic classification, i t is still possible to diagnose the Characidiinae in a phylogenetic sense. This study revealed the existence of 13 synapomorphies supporting the monophyly of the group. Several of these synapomorphies, such as the modifications associated with the mesethmoid, the jaw bones, and the ribs of the fifth vertebra, are unique to the Characidiinae, thus providing a solid basis for recognizing the group as a monophyletic unit of characiform fishes. Demonstration of characidiin monophyly provides a solid foundation for further phylogenetic analysis of characidiin interrelationships, and higher level relationships among characiform fishes.  相似文献   

3.
We present evidence from adult and larval morphology for the monophyly and relationships of Atheriniformes, using other atherinomorphs, mugilids and acanthomorph fishes as outgroups. Atheriniformes is diagnosed by ten characters (larval: short preanal length, single mid-dorsal row of melanophores; adult: vomerine ventral face concave, long Al muscle tendon to lacrimal, two anterior infraorbital bones, pelvic-rib ligament, pelvic medial plate not extended to anterior end, and second dorsal-fin spine flexible). We recognize six families within the order, the hierarchical relationships among which are: (Atherinopsidae (Notocheiridae (Melanotaeniidae (Atherionidae (Phallostethidae, Atherinidae))))). Other major conclusions include: (1) Atherinopsidae (Menidiinae, Atherinopsinae) is diagnosed by 20 characters (e.g. ethmomaxillary ligament attached to palatine dorsal process, ventral postcleithrum with two dorsal rami); (2) Melanotaeniidae (Bedotiinae (Melanotaeniinae (Telmatherinini, Pseudomugilini))) is diagnosed by six characters (e.g. absence of second dorsal-fin spine, sexual dimorphism in body colour and median-fin development, greater body depth); (3) Dentatherina is in Phallostethidae; (4) Atherinidae (Atherinomorinae (Craterocephalinae, Atherininae)) is diagnosed by three characters (lacrimal notch, ventral postcleithrum between first and second pleural ribs, pelvic ventral spine); (5) Atherinidae and Phallostethidae form the Atherinoidea clade diagnosed by seven characters (e.g. interopercle dorsal process absent, dorsal wings of urohyal absent, ventral postcleithrum laminar, pelvic medial plate extended to anterior end, presence of anal plate). Bedotia, Rhodes , and melanotaeniines are shown to be derived within atheriniforms rather than the plesiomorphic sister groups to a paraphyletic 'atherinoid' group. We also demonstrate that groups traditionally placed in Atherinidae (Menidiinae, Atherininae, Atherioninae, etc.) comprise a paraphyletic assemblage.  相似文献   

4.
5.
Interrelationships of the ostariophysan fishes (Teleostei)   总被引:2,自引:0,他引:2  
The history of ostariophysan classification is summarized and it is noted that traditional concepts of relationships have never been supported by characters found to be unique to the taxa. We present a new hypothesis of relationships among four of the five major ostariophysan lineages: Cypriniformes, Characiformes, Siluroidei, and Gymnotoidei (Otophysi). Cypriniforms are the sister-group of the remaining three (Characiphysi), and characiforms are the sister-group of siluroids plus gymnotoids (Siluriformes). Placement of the Gonorynchiformes as the sister-group of the Otophysi is supported by additional evidence. Each of the five lineages is monophyletic. Analysis was concentrated upon species thought to be the least specialized within each lineage; choices of these species are discussed. Chanos is determined to be a relatively primitive gonorynchiform morphologically and the sister-group of all other Recent members of the order. Opsariichthys and Zacco are found to be morphologically primitive cypriniforms. We propose that a monophyletic group comprising the Citharinidae and Distichodontidae forms the sister-group of all other characiforms. Within the two families, Xenocharax is the least specialized. We suggest that Hepsetus, the erythrinids, and the ctenoluciids are more derived than the distichodontids and citharinids, and may form a monophyletic group within die characiforms. The traditional hypothesis that Diplomystes is the primitive sister-group of all Recent siluroids is substantiated. Our evidence suggests that Sternopygus is the most primitive gymnotoid morphologically; but rather than being the sister-group of all other gymnotoids, it is the primitive sister-group within a lineage called the Sternopygidae by Mago-Leccia. Previous explanations of otophysan distribution have been based on notions of relationships which are unsupported by the evidence presented herein. Our own analysis of relationships serves primarily to make clear the extent of sympatry, and therefore the probability of dispersal, among the major ostariophysan lineages. The extent of sympatry, together with the widespread distribution of ostariophysans, suggests that the group is older than previously supposed, and our hypotheses of relationships among the characiforms implies that many of the extent characiform lineages evolved before the separation of Africa and South America. Further understanding of ostariophysan distribution must await phylogenetic analysis within each of the five major lineages so that distributions linked with vicariance patterns and dispersal events can be sorted out.  相似文献   

6.
Analysis of 88 characters of external and internal body systems yielded a phylogenetic reconstruction of the Neotropical electric knifefish genus Sternarchorhynchus (Apteronotidae; Gymnotiformes). The results support a hypothesis of Sternarchorhynchus as the sister group to Platyurosternarchus. A series of synapomorphies, many involving major innovations of the neurocranium, jaws, suspensorium, and associated systems that permit an unusual mode of grasp‐suction feeding, support the monophyly of both genera. Synapomorphies largely resolve relationships within Sternarchorhynchus with basal nodes strongly supported by characters pertinent to prey capture and initial processing of food items. These possible key innovations may provide Sternarchorhynchus with a competitive advantage over other clades of the Apteronotidae and account for the species diversity of the genus in Neotropical rivers. Adaptive radiation in Sternarchorhynchus was analysed. Habitat preference transitions repeatedly occurred in the genus between deep‐river channel dwelling species and rheophilic species with preferences for higher energy setting including rapids and swift‐flowing fluviatile settings. Twenty‐two species of Sternarchorhynchus are described as new based on samples that originated in the smaller rivers draining into the Golfo de Paria, the Marowijne and Essequibo River basins, the Río Orinoco and in particular the Amazon River basin. The 32 species in Sternarchorhynchus make it the most speciose genus in the Apteronotidae. No claim to original US government works. Journal compilation © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159 , 223–371.  相似文献   

7.
A total of 104 osteological and external morphological features were examined in 13 species of Acestrorhynchus and 15 outgroup taxa to advance a hypothesis of relationships within the genus. Two most parsimonious hypotheses corroborate the monophyly of Acestrorhynchus but differ in the hypothesized relationships of Acestrorhynchus heterolepis . Three proposed supraspecific assemblages are at least partially correlated with groups of species previously diagnosed on the basis of colour pattern: (1) Acestrorhynchus britskii , Acestrorhynchus grandoculis , Acestrorhynchus microlepis , and Acestrorhynchus minimus ; (2) Acestrorhynchus falcirostris , Acestrorhynchus isalineae , and A. Acestrorhynchus nasutus ; and (3) Acestrorhynchus abbreviatus , Acestrorhynchus altus , Acestrorhynchus falcatus , Acestrorhynchus lacustris , and Acestrorhynchus pantaneiro . In one hypothesis A. heterolepis is proposed as the closest relative of the clade formed by A. falcirostris , A. isalineae , and A. nasutus , and in the alternative hypothesis it is proposed as a sister species of the clade formed by A. abbreviatus , A. altus , A. falcatus , A. lacustris , and A. pantaneiro . Relationships among species of the latter clade remain unresolved. Two independent episodes of reduction of body size are hypothesized to have occurred within the genus: one associated with the clade formed by A. grandoculis and A. minimus , and the other with the clade formed by A. isalineae and A. nasutus . © 2007 The Linnean Society of London, Zoological Journal of the Linnean Society , 2007, 151 , 691–757.  相似文献   

8.
Although the order Gonorynchiformes includes only 31 species assigned to seven genera and four families, it exhibits a large variety of anatomical structures, making difficult the reconstruction of phylogenetic relationships among its representatives. Within the basal teleosts, the Gonorynchiformes belong to the Otocephala where they have been alternatively placed as the sister group of the Otophysi and of the Clupeiformes. In this context, we investigated the phylogeny of the Gonorynchiformes using whole mitogenome sequences from 40 species (six being newly determined for this study). Our taxonomic sampling included at least one species of each gonorynchiform genus and of each other major otocephalan lineage. Unambiguously aligned, concatenated mitogenomic sequences (excluding the ND6 gene and control region) were divided into five partitions (1st, 2nd, and 3rd codon positions, tRNA genes, and rRNA genes) and partitioned Bayesian analyses were conducted. The resultant phylogenetic trees were fully resolved, with most of the nodes well supported by the high posterior probabilities. As expected, the Otocephala were recovered as monophyletic. Within this group, the mitogenome data supported the monophyly of Alepocephaloidei, Gonorynchiformes, Otophysi, and Clupeiformes. The Gonorynchiformes and the Otophysi formed a sister group, rending the Ostariophysi monophyletic. This result conflicts with previous mitogenomic phylogenetic studies, in which a sister relationship was found between Clupeiformes and Gonorynchiformes. We discussed the possible causes of this incongruence. Within the Gonorynchiformes, the following original topology was found: (Gonorynchus (Chanos (Phractolaemus (Cromeria (Grasseichthys (Kneria, Parakneria)))))). We confirmed that the paedomorphic species Cromeria nilotica and Grasseichthys gabonensis belong to the family Kneriidae; however, the two species together did not form a monophyletic group. This result challenges the value of reductive or absent characters as synapomorphies in this group.  相似文献   

9.

Background

With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity.

Results

In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses.

Conclusion

A monophyletic assemblage strongly supported in all our phylogenetic analysis is herein defined as the Characidae and includes the characiform species lacking a supraorbital bone and with a derived position of the emergence of the hyoid artery from the anterior ceratohyal. To recognize this and several other monophyletic groups within characiforms we propose changes in the limits of several families to facilitate future studies in the Characiformes and particularly the Characidae. This work presents a new phylogenetic framework for a speciose and morphologically diverse group of freshwater fishes of significant ecological and evolutionary importance across the Neotropics and portions of Africa.  相似文献   

10.
The nasute termite genus Nasutitermes is widely distributed over all tropical regions. The phylogenetic relationships among 17 Nasutitermes species from the Pacific tropics were inferred from sequences of mitochondrial cytochrome oxidase II and 16S ribosomal RNA genes. Several methods of analysis yielded phylogenetic trees showing almost the same topology and in good agreement with reconstructions based on morphological or behavioral characters. Neotropical and Australian species came out as separate, apical clades. Asian species split between an apical branch, appearing as sister group to the neotropical clade, and basal taxa. New Guinean species were spread among several clades, suggesting a derivation from multiple origins. A well-supported clade includes the neotropical, Australian, and New Guinean species, with the southeast Asian N. takasagoensis and N. matangensis. It excludes the Asian species N. regularis, N. parvonasutus, and N. longinasus, which might deserve to be removed from Nasutitermes, as well as the long-legged Asian genera Hospitalitermes and Longipeditermes. A Gondwanan origin is proposed for the former clade, although an Old World origin of Nasutitermes followed by dispersal to Australia and South America cannot be excluded.  相似文献   

11.
Evidence from morphology is used to infer the phylogeny of the superfamily Poecilioidea using other cyprinodontoid fishes as outgroups. The three equally most parsimonious trees resulting from the phylogenetic analysis support the monophyly of the families Anablepidae and Poeciliidae with respect to each other, but the previous taxonomy within the Poeciliinae is not consistent with the resultant phylogenetic trees. The Poeciliidae is recognized with three subfamilies: the Aplocheilichthyinae containing solely Aplocheilichthys spilauchen , the Procatopodinae containing Fluviphylax (Fluviphylacini) and the African lamp-eyed killifishes (Procatopodini), and the Poeciliinae. The inferred hierarchical relationships of included suprageneric taxa are: ((Oxyzygonectinae, Anablepinae) (Aplocheilichthyinae ((Fluviphylacini, Procatopodini) (Alfarini (Priapellini (Gambusini (Heterandrini (Cnesterodontini (Girardini, Poeciliini))))))))). The tribe Alfarini is resurrected and a new tribe, the Priapellini, is described. Tomeurus gracilis is not the most basal poeciliine, and facultative viviparity in Tomeurus is not a plesiomorphic intermediate condition of viviparity retained from the common ancestor of poeciliines. Facultative viviparity in Tomeurus is the result of an evolutionary loss of obligate viviparity. Tomeurus gracilis is recognized as a member of the tribe Cnesterodontini. Lamprichthys tanganicus and Micropanchax pelagicus are not sister taxa, and the pelagic lacustrine habits of these two species are inferred to have evolved independently. Based on the principles of vicariance biogeography, the origin of the Poecilioidea is inferred to have occurred before the separation of Africa and South America.  相似文献   

12.
Members of the teleost superorder Ostariophysi dominate freshwater habitats on all continents except Antarctica and Australia. Obligate benthic and rheophilic taxa from four different orders of the Ostariophysi (Gonorynchiformes, Cypriniformes, Characiformes, and Siluriformes) frequently exhibit thickened pads of skin along the ventral surface of the anteriormost ray or rays of horizontally orientated paired (pectoral and pelvic) fins. Such paired‐fin pads, though convergent, are externally homogenous across ostariophysan groups (particularly nonsiluriform taxa) and have been considered previously to be the result of epidermal modification. Histological examination of the pectoral and/or pelvic fins of 44 species of ostariophysans (including members of the Gonorynchiforms, Cypriniformes, Characiformes, and Siluriformes) revealed a tremendous and previously unrecognized diversity in the cellular arrangement of the skin layers (epidermis and subdermis) contributing to the paired‐fin pads. Three types of paired‐fin pads (Types 1–3) are identified in nonsiluriform ostariophysan fishes, based on differences in the cellular arrangement of the epidermis and subdermis. The paired‐fin pads of siluriforms may or may not exhibit a deep series of ridges and grooves across the surface. Two distinct patterns of unculus producing cells are identified in the epidermis of the paired‐fin pads of siluriforms, one of which is characterized by distinct bands of keratinization throughout the epidermis and is described in Amphilius platychir (Amphiliidae) for the first time. General histological comparisons between the paired fins of benthic and rheophilic ostariophysan and nonostariophysan percomorph fishes are provided, and the possible function(s) of the paired‐fin pads of ostariophysan fish are discussed. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
One family, the Phlaeothripidae, is recognized in the suborder Tubulifera, whereas extant species of Terebrantia are classified into seven families: Uzelothripidae, Merothripidae, Aeolothripidae, Adiheterothripidae, Fauriellidae (stat. n.), Heterothripidae and Thripidae. A phylogenetic analysis of the relationships between these families is given, based on consideration of 35 imaginal characters; however, the relationships of Uzelothripidae and Phlaeothripidae to the rest of the Thysanoptera remain equivocal. The Phlaeothripidae are either derived independently from Protothysanoptera, or else are the sister-group of the Thripidae, the most specialized family of Terebrantia.
Diagnostic characters, diversity, distribution and relationships of each family are discussed. Keys to family and, in Fauriellidae, to genus are provided. Holarthrothrips Bagnall (= Adiheterothrips Ramakrishna, syn. n.) and Oligothrips Moulton are removed from Heterothripidae to Adiheterothripidae and Fauriella Hood, Opisthothrips Hood and Ropotamothrips Pelikan (= Osmanothrips Priesner, syn. n.) from Heteromripidae to Fauriellidae (stat. n.). These transfers leave Aulacothrips Hood, Heterothrips Hood and Scutothrips Stannard as the only genera in Heterothripidae.  相似文献   

14.
Synopsis Chanos chanos belongs to a monotypic gonorynchiform family and is most closely related to the freshwater Ostariophysi. The earliest gonorynchiforms occurred in the Cretaceous of Brazil and west Africa. Chanos occurred in the freshwater Eocene deposits of Europe and North America, and probably invaded the circumtropical Tethys Sea during transgression episodes. At present, milkfish occurs near continental shelves and around oceanic islands throughout the tropical Indo-Pacific. Milkfish populations throughout the range show high genetic variation but low genetic divergence, similar to many other commercially important teleosts. The natural life history of milkfish is one of continual migration. Adults are relatively large (to 1.5 m or 15 kg), long-lived (to 15 years), pelagic and schooling. They spawn offshore near coral reefs or small islands. The eggs, embryos and larvae are pelagic and relatively larger than those of most marine species. Larvae ≥ 10 mm long and 2–3 weeks old move inshore via a combination of passive advection and active migration. Passing shore waters and surf zones, they settle in shallow-water depositional habitats such as mangrove swamps and coral lagoons, where they metamorphose and spend a few months as juveniles. Some juveniles may enter freshwater lakes where they grow into sub-adults but do not mature. Both small juveniles and large sub-adults go back to sea when they reach the size limit supportable by the habitat. Little else is known of the dynamics of wild populations of milkfish. A fishery on inshore larvae supports the centuries-old aquaculture of milkfish in southeast Asia. During the past ten years, milkfish have matured and spawned under various conditions of captivity, and hatcheries have produced larvae to supply the culture ponds. Much remains to be learned concerning the milkfish, particularly its ecology and physiology.  相似文献   

15.
The phylogenetic relationships of all 16 genera (plus Psenes pellucidus) of the suborder Stromateoidei were estimated cladistically based on 43 osteological, myological, and external characters. Thirty equally parsimonious trees were obtained. Based on the strict consensus tree, Centrolophidae was nonmonophyletic, Psenopsis being placed as a sister group of a clade comprising Amarsipus, Ariomma, nomeids, Tetragonurus, and stromateids. Schedophilus formed a sister group relationship with Seriolella. The relationships among the Centrolophus, Hyperoglyphe, Icichthys, Tubbia, Schedophilus+Seriolella clade, and Psenopsis+Amarsipus+Ariomma+nomeids+Tetragonurus+stromateids clade were unresolved. Amarsipus, which is unique within the suborder in lacking a pharyngeal sac, was nested within the stromateoid clade, being a sister group of the clade including Ariomma, nomeids, Tetragonurus, and stromateids. The absence of a pharyngeal sac in Amarsipus was interpreted as a reversal, its presence in the Stromateoidei therefore being considered as a synapomorphy. Ariomma was placed as the sister group of a clade comprising nomeids, Tetragonurus, and stromateids. Monophyly of the Nomeidae and Stromateidae were supported by 2 and 11 synapomorphies, respectively.  相似文献   

16.
Phylogenetic relationships among families of the Scaphopoda (Mollusca)   总被引:1,自引:0,他引:1  
Phylogenetic relationships among families in the molluscan class Scaphopoda were analysed using morphological characters and cladistic parsimony methods. A maximum parsimony analysis of 34 discrete characters, treated as unordered and equally weighted, from nine ingroup terminal taxa produced a single most parsimonious tree; supplementary analyses of tree length frequency distribution and Bremer support indices indicate a strong phylogenetic signal from the data and moderate to minimally supported clades. The traditional major division of the class, the orders Dentaliida and Gadilida, is supported as both taxa are confirmed as monophyletic clades. Within the Dentaliida, two clades are recognized, the first comprised of the families Dentaliidae and Fustiariidae, the second of the Rhabdidae and Calliodentaliidae; together, these groups comprise a third clade, which has the Gadilinidae as sister. Within the Gadilida, a nested series of relationships is found among [Entalinidae, [Pulsellidae, [Wemersoniellidae, Gadilidae]]]. These results lend cladistic support to earlier hypotheses of shared common ancestry for some families, but are at variance with other previous hypotheses of evolution in the Scaphopoda. Furthermore, analysis of constituent Gadilinidae representatives provide evidence for paraphyly of this family. The relationships supported here provide a working hypothesis that the development of new characters and greater breadth of taxonomic sampling can test, with a suggested primary goal of establishing monophyly at the family level.  相似文献   

17.
The Characiformes are distributed throughout large portions of the freshwaters of Africa and America. About 90% of the almost 2000 characiform species inhabit the American rivers, with their greatest diversity occurring in the Neotropical region. As in most other groups of fishes, the current knowledge about characiform myology is extremely poor. This study presents the results of a survey of the mandibular, hyopalatine, and opercular musculature of 65 species representing all the 18 traditionally recognized characiform families, including the 14 subfamilies and several genera incertae sedis of the Characidae, the most speciose family of the order. The morphological variation of these muscles across the order is documented in detail and the homologies of the characiform adductor mandibulae divisions are clarified. Accordingly, the mistaken nomenclature previously applied to these divisions in some characiform taxa is herein corrected. Contradicting some previous studies, we found that none of the examined characiforms lacks an A3 section of the adductor mandibulae, but instead some taxa have an A3 continuous with A2. Derived myological features are identified as new putative synapomorphies for: the Characoidei; the clade composed of the Alestidae, Characidae, Gasteropelecidae, Cynodontoidea, and Erythrinoidea; the clade Cynodontoidea plus Erythrinoidea; the clade formed by Ctenoluciidae and Erythrinidae; the Serrasalminae; and the Triportheinae. Additionally, new myological data seems to indicate that the Agoniatinae might be more closely related to cynodontoids and erythrinoids than to other characids.  相似文献   

18.
Phylogenetic interrelationships of the Neotropical electric fish genus Gymnotus are documented from comparative study of phenotypic data. A data matrix was compiled of 113 phenotypic characters for 40 taxa, including 31 recognized Gymnotus species, six allopatric populations of G. carapo, two allopatric populations of G. coropinae, and three gymno‐tiform outgroups. MP analysis yielded 15 trees of equal length, the strict consensus of which is presented as a working hypothesis of Gymnotus interrelationships. Diagnoses are presented for 26 clades, including three species groups; the G. cylindricus group with two species restricted to Middle America, the G. pantherinus group with 12 species in South America, and the G. carapo group with 16 species in South America. The basal division of Gymnotus is between clades endemic to Middle and South America. Both the G. pantherinus and G. carapo groups include trans‐Andean sister‐taxon pairs, suggesting a minimum date for the origins of these groups in the late Middle Miocene (c. 12 Ma.). The geographically widespread species G. carapo is paraphyletic. Analysis of character state evolution shows characters of external morphology are more phylogenetically plastic and provide more phylogenetic information in recent branches than do characters of internal morphology, which themselves provide the more information in deeper branches. Nine regional species assemblages of Gymnotus are recognized, none of which is monophyletic. There are at least two independent origins of Gymnotus species in sediment rich, high conductivity, perennially hypoxic whitewater floodplains (varzea´) derived from an ancestral condition of being restricted to low conductivity non‐floodplain (terra firme) black and clearwater rivers and streams. These phylogenetic, biogeographic and ecological patterns suggest a lengthy and complex history involving numerous instances of speciation, extinction, migration and coexistence in sympatry. Evolution in Gymnotus has been a continent‐wide phenomenon; i.e. Amazonian species richness is not a consequence of strictly Amazonian processes. These patterns are similar to those of other highly diverse groups of Neotropical fishes and do not resemble those of monophyletic, rapidly generated species flocks.  相似文献   

19.
Phylogenies were generated using mitochondrial cytochrome b and nuclear ß‐actin gene DNA sequences to infer the phylogenetic relationships of the newly described Chondrostoma olisiponensis. Results indicate that the species is monophyletic with species of the lemmingii‐group in mtDNA phylogenies, while it is monophyletic with species of the arcasii‐group in the nuclear ß‐actin trees. This is in agreement with the morphological resemblance of C. olisiponensis to both species groups. Results from nuclear but not mitochondrial DNA indicate that one population could be currently hybridizing with sympatric Chondrostoma lusitanicum. Based on a relaxed clock calibration of cytochrome b, it is estimated that C. olisiponensis split 12·5–7·9 million years ago (middle–upper Miocene) from its most recent ancestor, which coincides with a period of endorrheism in the Iberian Peninsula.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号