首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two inexpensive substrates, starch and whey were used to produce poly(3-hydroxybutyrate) (PHB) in fed-batch cultures of Azotobacter chroococcum and recombinant Escherichia coli, respectively. Oxygen limitation increased PHB contents in both fermentations. In fed-batch culture of A. chroococcum, cell concentration of 54 g l−1 with 46% PHB was obtained with oxygen limitation, whereas 71 g l−1 of cell with 20% PHB was obtained without oxygen limitation. The timing of PHB biosynthesis in recombinant E. coli was controlled using the agitation speed of a stirred tank fermentor. A PHB content of 80% could be obtained with oxygen limitation by increasing the agitation speed up to only 500 rpm.  相似文献   

2.

Background

Single-use rocking-motion-type bag bioreactors provide advantages compared to standard stirred tank bioreactors by decreased contamination risks, reduction of cleaning and sterilization time, lower investment costs, and simple and cheaper validation. Currently, they are widely used for cell cultures although their use for small and medium scale production of recombinant proteins with microbial hosts might be very attractive. However, the utilization of rocking- or wave-induced motion-type bioreactors for fast growing aerobic microbes is limited because of their lower oxygen mass transfer rate. A conventional approach to reduce the oxygen demand of a culture is the fed-batch technology. New developments, such as the BIOSTAT® CultiBag RM system pave the way for applying advanced fed-batch control strategies also in rocking-motion-type bioreactors. Alternatively, internal substrate delivery systems such as EnBase® Flo provide an opportunity for adopting simple to use fed-batch-type strategies to shaken cultures. Here, we investigate the possibilities which both strategies offer in view of high cell density cultivation of E. coli and recombinant protein production.

Results

Cultivation of E. coli in the BIOSTAT® CultiBag RM system in a conventional batch mode without control yielded an optical density (OD600) of 3 to 4 which is comparable to shake flasks. The culture runs into oxygen limitation. In a glucose limited fed-batch culture with an exponential feed and oxygen pulsing, the culture grew fully aerobically to an OD600 of 60 (20 g L-1 cell dry weight). By the use of an internal controlled glucose delivery system, EnBase® Flo, OD600 of 30 (10 g L-1 cell dry weight) is obtained without the demand of computer controlled external nutrient supply. EnBase® Flo also worked well in the CultiBag RM system with a recombinant E. coli RB791 strain expressing a heterologous alcohol dehydrogenase (ADH) to very high levels, indicating that the enzyme based feed supply strategy functions well for recombinant protein production also in a rocking-motion-type bioreactor.

Conclusions

Rocking-motion-type bioreactors may provide an interesting alternative to standard cultivation in bioreactors for cultivation of bacteria and recombinant protein production. The BIOSTAT® Cultibag RM system with the single-use sensors and advanced control system paves the way for the fed-batch technology also to rocking-motion-type bioreactors. It is possible to reach cell densities which are far above shake flasks and typical for stirred tank reactors with the improved oxygen transfer rate. For more simple applications the EnBase® Flo method offers an easy and robust solution for rocking-motion-systems which do not have such advanced control possibilities.
  相似文献   

3.
Summary We studied high cell density continuous culture (HDCC) of a recombinant (E. coliHB101 (pPAKS2)) and a mutant (E. coli ATCC 11105) strains ofE. coli producing penicillin acylase(PA). Using pure oxygen, high cell density up to 95 g/l was obtained without significant inhibition by a main byproduct, acetic acid. The operation was simple and productivity was several times higher than those of conventional batch and continuous culture. Dissolved oxygen level and CO2 concentration were important variables, and glucose concentration was naturally regulated in HDCC.  相似文献   

4.
The tandem repeats of LFB15(W4,10)-HP(4-16) (LH) gene were cloned into vector pET32a(+) for recombinant expression in Escherichia coli. The E. coli C43(DE3) was successfully used as the expression host to avoid the cell death during induction in E. coli BL21(DE3). Fusion LH dimer was expressed as inclusion body at a portion of 35% of total cell protein and could be well purified by Ni2+-chelating chromatography. The recombinant LH was released by the cleavage of 50% formic acid, and its yield reached 11.3 mg/l with purity of 95%. The MIC50 of 3.6 and 1.9 μM of recombinant LH against E. coli CMCC 44102 and Bacillus subtilis ATCC 6633 were determined, respectively. The results demonstrated that expression of tandem LH gene in E. coli C43(DE3) and formic acid cleavage would provide a potent efficient platform for the production of interested peptides. Zi-gang Tian and Tian-tang Dong contributed equally to this paper.  相似文献   

5.
Aims: To investigate the effects of pretreated‐beet molasses on Escherichia coli fermentation using benzaldehyde lyase (BAL) production by recombinant E. coli BL21(DE3)pLySs process as the model system. Methods and Results: The effect of the initial pretreated (hydrolysed) beet molasses concentration was investigated at 16, 24, 30 and 56 g l?1 at a dissolved oxygen condition of 40% air saturation cascade to airflow, at N = 625 min?1 and pHC = 7·2 controlled‐pH operation conditions. The highest cell concentration and BAL activity were obtained as CX = 5·3 g l?1 and A = 1617 U cm?3, respectively, in the medium containing 30 g l?1 pretreated beet molasses consisting of 7·5 g l?1 glucose and 7·5 g l?1 fructose. Production with and without IPTG (isopropyl‐β‐d ‐thiogalactopyranoside) induction using the medium containing 30 g l?1 of pretreated beet molasses yielded the same amount of BAL production, where the overall cell yield on the substrate was 0·37 g g?1, and the highest oxygen transfer coefficient was KLa = 0·048 s?1. Conclusions: Pretreated beet molasses was used in the fermentation with E. coli for the first time and it yielded higher cell and BAL production compared with the glucose‐based medium. Significance and Impact of the Study: Pretreated beet molasses was found to be a good carbon source for E. coli fermentation. Furthermore, IPTG addition was not required to induce recombinant protein production as galactose, one of the monomers of trisaccharide raffinose present in the beet molasses (1·2%), induced the lac promoter.  相似文献   

6.
Agarase catalyzes the hydrolysis of agar, which is primarily used as a medium for microbiology, various food additives, and new biomass materials. In this study, we described the expression of the synthetic gene encoding β-agarase from Agarivorans albus (Aaβ-agarase) in Escherichia coli. The synthetic β-agarase gene was designed based on the biased codons of E. coli to optimize its expression and extracellular secretion in an active, soluble form. The synthesized agarase gene, including its signal sequence, was cloned into the pET-26 expression vector, and the pET-Aaβ-agarase plasmid was introduced into E. coli BL21-Star (DE3) cells. The E. coli transformants were cultured for high-yield secretion of recombinant Aaβ-agarase in Luria-Bertani broth containing 0.6?mM isopropyl β-D-1-thiogalactopyranoside for 9?h at 37°C. The expressed recombinant Aaβ-agarase was purified by ammonium sulfate precipitation and diethylaminoethyl-sepharose column chromatography, yielding ~10?mg/L Aaβ-agarase. The purified recombinant Aaβ-agarase exhibited optimal activity at pH 7 and 40°C, and its activity was strongly inhibited by Cu2+, Mn2+, Zn2+, and Al3+ ions. Furthermore, the KM and kcat values for purified Aaβ-agarase were ~0.02?mM and ~45/s, respectively. These kinetic values were up to approximately 15–100-fold lower than the KM values reported for other agarases and approximately 7–30-fold higher than the kcat/KM values reported for other agarases, indicating that recombinant Aaβ-agarase exhibited good substrate-binding ability and high catalytic efficiency. These results demonstrated that the E. coli expression system was capable of producing recombinant Aaβ-agarase in an active form, at a high yield, and with attributes useful in the relevant industries.  相似文献   

7.
Coenzyme Q10 (CoQ10) is a quinine consisting of ten units of the isoprenoid side-chain. Because it limits the oxidative attack of free radicals to DNA and lipids, CoQ10 has been used as an antioxidant for foods, cosmetics and pharmaceuticals. Decaprenyl diphosphate synthase (DPS) is the key enzyme for synthesis of the decaprenyl tail in CoQ10 with isopentenyl diphosphate. The ddsA gene coding for DPS from Gluconobacter suboxydans was expressed under the control of an Escherichia coli constitutive promoter. Analysis of the cell extract in recombinant E. coli BL21/pACDdsA by high performance liquid chromatography and mass spectrometry showed that CoQ10 rather than endogenous CoQ8 was biologically synthesized as the major coenzyme Q. Expression of the ddsA gene with low copy number led to the accumulation of CoQ10 to 0.97 mg l–1 in batch fermentation. A high cell density (103 g l–1) in fed-batch fermentation of E. coli BL21/pACDdsA increased the CoQ10 concentration to 25.5 mg l –1 and its productivity to 0.67 mg l–1 h–1, which were 26.0 and 6.9 times higher than the corresponding values for batch fermentation.  相似文献   

8.
Metallothioneins (MTs) are low-molecular-weight proteins with high Cys content and high metal-chelating ability. CdMT and CuMT subfamilies present different characteristics in Tetrahymena. To explore the effect of the cysteine arrangement and sequence length of MTs for binding different metal ions, MTT1, truncated MTT1 (TM1), MTT2, and truncated MTT2 (TM2) were expressed in E. coli. The half-maximal inhibiting concentrations (IC50) of Cd2+ and Cu+ for the recombinant strains were different. Furthermore, E. coli cells expressing MTT1 and TM1 exhibited higher accumulating ability for Cd2+ than cells expressing MTT2 and TM2. However, the opposite is true for Cu+. The binding ability of the different recombinant proteins to Cd2+ and Cu+ were also different. MTT1 and truncated mutant TM1 were the preference for Cd2+, whereas MTT2 and truncated mutant TM2 were the preference for Cu+ coordination. These results showed that metal ion tolerance and accumulation ability not only depended on cysteine arrangement pattern but also on sequence length of MT in Tetrahymena.  相似文献   

9.
To develop an economical industrial medium, untreated cane molasses (UCM) was tested as a carbon source for fermentation culturing of Escherichia coli. To test the industrial application of this medium, we chose a strain co-expressing a carbonyl reductase (PsCR) and a glucose dehydrogenase (BmGDH). Although corn steep liquor (CSL) could be used as an inexpensive nitrogen source to replace peptone, yeast extract could not be replaced in E. coli media. In a volume of 40 ml per 1-l flask, a cell concentration of optical density (OD600) 15.1 and enzyme activities of 6.51 U/ml PsCR and 3.32 U/ml BmGDH were obtained in an optimized medium containing 25.66 g/l yeast extract, 3.88 g/l UCM, and 7.1% (v/v) CSL. When 3.88 g/l UCM was added to the medium at 6 h in a fed-batch process, the E. coli concentration increased to OD600 of 24, and expression of both PsCR and BmGDH were twofold higher than that of a batch process. Recombinant cells from batch or fed-batch cultures were assayed for recombinant enzyme activity by testing the reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate (CHBE). Compared to cells from batch cultures, fed-batch cultured cells showed higher recombinant enzyme expression, producing 560 mM CHBE in the organic phase with a molar yield of 92% and an optical purity of the (S)-isomer of >99% enantiomeric excess.  相似文献   

10.
The introduction of an NADH/NAD+ regeneration system can regulate the distribution between acetoin and 2,3‐butanediol. NADH regeneration can also enhance butanol production in coculture fermentation. In this work, a novel artificial consortium of Paenibacillus polymyxa CJX518 and recombinant Escherichia coli LS02T that produces riboflavin (VB2) was used to regulate the NADH/NAD+ ratio and, consequently, the distribution of acetoin and 2,3‐butanediol by P. polymyxa. Compared with a pure culture of P. polymyxa, the level of acetoin was increased 76.7% in the P. polymyxa and recombinant E. coli coculture. Meanwhile, the maximum production and yield of acetoin in an artificial consortium with fed‐batch fermentation were 57.2 g/L and 0.4 g/g glucose, respectively. Additionally, the VB2 production of recombinant E. coli could maintain a relatively low NADH/NAD+ ratio by changing NADH dehydrogenase activity. It was also found that 2,3‐butanediol dehydrogenase activity was enhanced and improved acetoin production by the addition of exogenous VB2 or by being in the artificial consortium that produces VB2. These results illustrate that the coculture of P. polymyxa and recombinant E. coli has enormous potential to improve acetoin production. It was also a novel strategy to regulate the NADH/NAD+ ratio to improve the acetoin production of P. polymyxa.  相似文献   

11.
[目的]来自Paenibacillus polymyxa WLY78的固氮基因簇(nifBHDKEfNXhesAnifV)可以转化入Escherichia coli中表达并使重组大肠杆菌合成有固氮活性的固氮酶。本文拟通过对重组大肠杆菌E.coli 78-7的转录组分析以提高其固氮能力。[方法]对固氮条件(无氧无NH4+)和非固氮条件(空气和100 mmol/L NH4+)培养的重组大肠杆菌E.coli 78-7进行转录组分析。[结果]nif基因在两种培养条件下显著表达,说明在重组大肠杆菌中可规避原菌中氧气和NH4+nif基因的负调控。对于固氮过程必需的非nif基因,如参与钼、硫、铁元素转运的modcysfeoAB,这些基因在两种培养条件下表达水平有差异。而参与铁硫簇合成的sufisc基因簇在两条件下表达水平差异巨大。此外,参与氮代谢的基因在固氮条件下显著上调。[结论]重组大肠杆菌中与固氮相关的非nif基因在该菌的固氮过程中具有较大影响,本文对在异源宿主中调高固氮酶活性研究具有重要意义。  相似文献   

12.
For expression of Bacillus stearothermophilus NCIB 8924 leucine aminopeptidase II (LAP II) in Escherichia coli regulated by a T5 promoter, the gene was amplified by polymerase chain reaction and cloned into expression vector pQE-32 to generate pQE-LAPII. The His6-tagged enzyme was overexpressed in IPTG-induced E. coli M15 (pQE-LAPII) as a soluble protein and was purified to homogeneity by nickel-chelate chromatography to a specific activity of 425 U/mg protein with a final yield of 76%. The subunit molecular mass of the purified protein was estimated to be 44.5 kDa by SDS-PAGE. The temperature and pH optima for the purified protein were 60°C and 8.0, respectively. Under optimal condition, the purified enzyme showed a marked preference for Leu-p-nitroanilide, followed by Arg- and Lys-derivatives. The His6-tagged enzyme was stimulated by Co2+ ions, but was strongly inhibited by Cu2+ and Hg2+ and by the chelating agents, DTT and EDTA. The EDTA-treated enzyme could be reactivated with Co2+ ions, indicating that it is a cobalt-dependent exopeptidase. Taking the biochemical characteristics together, we found that the recombinant LAP II exhibits no important differences from those properties described for the native enzyme. Received: 16 August 2002 / Accepted: 4 September 2002  相似文献   

13.
Hydroquinone is a benzene-derived metabolite. To clarify whether the reactive oxygen species (ROS) are involved in hydroquinone-induced cytotoxicity, we constructed transformants of Escherichia coli (E. coli) strains that express mammalian catalase gene derived from catalase mutant mice (Csb, Csc) and the wild-type (Csa) using a catalase-deficient E. coli UM255 as a recipient. Specific catalase activities of these tester strains were in order of Csa > Csc > Csb > UM255, and their susceptibility to hydrogen peroxide (H2O2) showed UM255 > Csb > Csc > Csa. We found that hydroquinone exposure reduced the survival of catalase-deficient E. coli mutants in a dose-dependent manner significantly, especially in the strains with lower catalase activities. Hydroquinone toxicity was also confirmed using zone of inhibition test, in which UM255 was the most susceptible, showing the largest zone of growth inhibition, followed by Csb, Csc and Csa. Furthermore, we found that hydroquinone-induced cell damage was inhibited by the pretreatment of catalase, ascorbic acid, dimethyl sulfoxide (DMSO), and ethylenediaminetetraacetic acid (EDTA), and augmented by superoxide dismutase (both CuZnSOD and MnSOD). The present results suggest that H2O2 is probably involved in hydroquinone-induced cytotoxicity in catalase-deficient E. coli mutants and catalase plays an important role in protection of the cells against hydroquinone toxicity.  相似文献   

14.
Photosynthetic activity and growth physiology of Spirulina platensis (Nordstedt) Geitler cultures maintained at ultrahigh cell densities (i.e. above 100 mg chlorophyll-L?1) in a newly designed photobioreactor were investigated. Nitrogen (NaNO3) in standard Zarouk medium was characterized as a major nutrient-limiting factor in such cultures. The effect of ultrahigh cell density on photoinhibition of photosynthesis, as reflected by chlorophyll fluorescence and photosynthetic oxygen evolution, was studied: elevating the population density may arrest photoinhibition induced by high photon flux density, as well as low temperature. The relationship between incident irradiance and oxygen production rate was linear in situ for cultures at the optimal cell density, indicating that light limitation rather than light saturation or photoinhibition is the dominant condition outdoors in cultures of ultrahigh cell densities. In contrast with other reports, the extent of biomass loss at night due mainly to dark respiration was found to be relatively small when cell density was optimal, exerting only a minor effect on overall net productivity. Measurements of oxygen consumption at night revealed low rates of respiration, which may be explained by the low value of the volumetric mass transfer coefficient (KLa) of oxygen. Hence, reduced oxygen tension may play a role in preventing full expression of the respiratory potential in ultrahigh cell density cultures in which photoadaptive strategy may explain cell composition. Ultrahigh cell densities optimized with respect to the intensity of the light source, the length of the light path, and the extent of stirring represent the key for obtaining high output rates of cell mass and some natural products.  相似文献   

15.
A gene encoding phosphoinositide-specific phospholipase C (PLC), designated ML-PLCδ, was cloned from mud loach (Misgurnus mizolepis) liver. A complete cDNA encoding ML-PLCδ was isolated by screening the cDNA library of mud loach liver and using the 5′-rapid amplification of cDNA ends (RACE) method. The full-length ML-PLCδ gene contains an open reading frame of 2325 base pairs encoding a 774 amino acid protein with a molecular mass of 88,072 Da; this corresponds to the size of the protein expressed in Escherichia coli BL21 (DE3) using pET28a vector. It contains all of the characteristic domains found in mammalian PLCδ isozymes (PH domain, EF-hands, X–Y catalytic region, and a C2 domain). A homology search revealed that ML-PLCδ shares relatively high sequence identity with mammalian PLCδ1 (51–52%) and catfish PLCδ (64%). The recombinant ML-PLCδ protein expressed as a histidine-tagged fusion protein in E. coli was purified to apparent homogeneity by Ni2+-NTA affinity chromatography. The recombinant ML-PLCδ showed a concentration-dependent PLC activity to phosphatidylinositol 4,5-bis-phosphate (PIP2) and its activity was Ca2+-dependent, which was similar to mammalian PLCδ isozymes.  相似文献   

16.
The antibacterial peptide hinnavin II, isolated from the cabbage butterfly Artogeia rapae, is synthesized with an amidated lysine 37 residue at C-terminus. Glycine-extended native hinnavin II (hinnavin II-38-Gly, hin II) gene with 114 bp coding region was cloned in the expression vector pET-32a (+) to construct a fusion expression plasmid and transformed into Escherichia coli BL21 (DE3) pLysS. The recombinant fusion protein Trx-hin II was expressed in soluble form, purified successfully by Ni2+-chelating chromatography, and cleaved by enterokinase to release recombinant hin II (rhin II). Purification of the rhin II was achieved by reversed-phase FPLC, and 2.45 mg pure active rhin II was obtained from 800 mL E. coli culture. The molecular mass of the rhin II determined by MALDI-TOF mass spectrometry is consistent with the theoretical molecular mass of 4,195.0 Da. The purified rhin II showed antimicrobial activities against tested E. coli K 12, E. coli BL21 (DE3), Enterobacter cloacae, Bacillus megaterium, and Staphylococcus aureus. The application of this expression/purification approach represents a fast and efficient method to prepare milligram quantities of hinnavin II in its biologically active form.  相似文献   

17.
Summary The influence of the concentration of oxygen on lipase production by the fungus Rhizopus delemar was studied in different fermenters. The effect of oxygen limitation ( 47 mol/l) on lipase production by R. delemar is large as could be demonstrated in pellet and filamentous cultures. A model is proposed to describe the extent of oxygen limitation in pellet cultures. Model estimates indicate that oxygen is the limiting substrate in shake flask cultures and that an optimal inoculum size for oxygen-dependent processes can occur.Low oxygen concentrations greatly negatively affect the metabolism of R. delemar, which could be shown by cultivation in continuous cultures in filamentous growth form (Doptimal=0.086 h-1). Continuous cultivations of R. delemar at constant, low-oxygen concentrations are a useful tool to scale down fermentation processes in cases where a transient or local oxygen limitation occurs.Symbols and Abbreviations CO Oxygen concentration in the gas phase at time = 0 (kg·m-3) - CO 2i Oxygen concentration at the pellet liquid interface (kg·m-3) - CO 2i Oxygen concentration in the bulk (kg·m-3) - D Dilution rate (h-1) - IDO 2 Diffusion coefficient for oxygen (m2·s-1) - dw Dry weight of biomass (kg) - f Conversion factor (rs O 2 to oxygen consumption rate per m3) (-) - k Radial growth rate (m·s-1) - K Constant - kla Volumetric mass transfer coefficient (s-1) - klA Oxygen transfer rate (m-3·s-1) - kl Mass transfer coefficient (m·s-1) - K O 2 Affinity constant for oxygen (mol·m-3) - K w Cotton plug resistance (m-3·s-1) - M Henry coefficient (-) - NV Number of pellets per volume (m-3) - R Radius (m) - RO Radius of oxygen-deficient core (m) - RQ Respiration quotient (mol CO2/mol O2) - rs O 2 Specific oxygen consumption rate per dry weight biomass (kg O2·s-1[kg dw]-1) - rX Biomass production rate (kg·m-3·s-1) - SG Soytone glucose medium (for shake flask experiments) - SG 4 Soytone glucose medium (for tower fermenter and continuous culture experiments) - V Volume of medium (m-3) - X Biomass (dry weight) concentration (kg·m-3) - XR o Biomass concentration within RO for a given X (kg·m-3) - Y O 2 Biomass yield calculated on oxygen (kg dw/kg O2) - Thiele modulus - Efficiency factor =1-(RO/R)3 (-) - Growth rate (m-1·s-1·kg1/3) - Dry weight per volume of pellet (kg·m-3)  相似文献   

18.
Escherichia coli was transformed with a recombinant plasmid (pEGFP) containing the genes for ampicillin resistance and Green Fluorescent Protein (GFP). Escherichia coli expressing GFP (E. coli/GFP+) was then fed to workers of the termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). The transformed bacteria in the termite guts were detected by growing the gut flora under selective conditions and then checking the cultures for fluorescence. Recombinant plasmids in the termite gut were detected by plasmid extraction with subsequent restriction enzyme digest. The presence of the GFP gene in the gut of termites fed with E. coli/GFP+ was verified by PCR amplification. Transformed E. coli were ingested rapidly when workers fed on filter paper inoculated with E. coli/GFP+. After 1 day, 42% of termite guts harbored E. coli/GFP+. Transfer of E. coli/GFP+ from donor termites (fed with E. coli/GFP+) to recipients (fed with moist filter paper) occurred within 1 day. However, without continuous inoculation, termites lost the transformed bacteria within 1 week.  相似文献   

19.
A cultivation strategy combining the advantages of temperature-limited fed-batch and probing feeding control is presented. The technique was evaluated in fed-batch cultivations with E. coli BL21(DE3) producing xylanase in a 3 liter bioreactor. A 20% increase in cell mass was achieved and the usual decrease in specific enzyme activity normally observed during the late production phase was diminished with the new technique. The method was further tested by growing E. coli W3110 in a larger bioreactor (50 l). It is a suitable cultivation technique when the O2 transfer capacity of the reactor is reached and it is desired to continue to produce the recombinant protein.Revisions requested 13 April 2005; Revisions received 6 May 2005  相似文献   

20.
The biological effect of Se and Cu2+ on Escherichia coli (E. coli) growth was studied by using a 3114/3236 TAM Air Isothermal Calorimeter, ampoule method, at 37°C. From the thermogenesis curves, the thermokinetic equations were established under different conditions. The kinetics showed that a low concentration of Se (1–10 μg/mL) promoted the growth of E. coli, and a high concentration of Se (>10 μg/mL) inhibited the growth, but the Cu2+ was always inhibiting the growth of E. coli. Moreover, there was an antagonistic or positive synergistic effect of Se and Cu2+ on E. coli in the different culture medium when Se was 1–10 μg/ml and Cu2+ was 1–20 μg/ml. There was a negative synergistic effect of Se and Cu2+ on E. coli when Se was higher than 10 μg/ml and Cu2+ was higher than 20 μg/ml. The antagonistic or synergistic effect between Se and Cu2+ on E. coli was related to the formation of Cu–Se complexes under the different experimental conditions chosen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号