首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visfatin (also known as pre-B cell colony-enhancing factor, or PBEF) is a pro-inflammatory adipokine expressed predominantly in visceral fat. We investigated whether polymorphisms at the visfatin/PBEF locus influence the risk of type 2 diabetes (T2D). Linkage disequilibrium analysis of 52 single nucleotide polymorphisms spanning the entire gene (34.7 kb) plus 20.5 kb of the upstream region and 25.5 kb of the downstream region revealed a single haplotype block that could be tagged by seven single nucleotide polymorphisms. These seven tags were typed in a group of T2D patients (n = 814) and a group of non-diabetic controls (n = 320) of white origin. A significant association was observed at -948C>A, with minor allele frequencies of 0.157 in T2D cases and 0.119 in non-diabetic controls (p = 0.021). In a non-diabetic population (n = 630), the same -948 allele that conferred increased risk of T2D was significantly associated with higher plasma levels of fibrinogen and C-reactive protein (p = 0.0022 and 0.0038, respectively). However, no significant associations were observed with BMI, waist circumference, serum glucose levels, or fasting insulin levels. Our findings suggest that the visfatin/PBEF gene may play a role in determining T2D susceptibility, possibly by modulating chronic, low-grade inflammatory responses.  相似文献   

2.

Aim

Altered adipokine serum concentrations early reflect impaired adipose tissue function in obese patients with type 2 diabetes (T2D). It is not entirely clear whether these adipokine alterations are already present in prediabetic states and so far there is no comprehensive adipokine panel available. Therefore, the aim of this study was to assess distinct adipokine profiles in patients with normal glucose tolerance (NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT) or T2D.

Methods

Based on 75 g oral glucose tolerance tests, 124 individuals were divided into groups of IFG (n = 35), IGT (n = 45), or NGT (n = 43). Furthermore, 56 subjects with T2D were included. Serum concentrations of adiponectin, chemerin, fetuin-A, leptin, interleukin (IL)-6, retinol-binding protein 4 (RBP4), monocyte chemoattractant protein (MCP)-1, vaspin, progranulin, and soluble leptin receptor (sOBR) were measured by ELISAs.

Results

Chemerin, progranulin, fetuin-A, and RBP4, IL-6, adiponectin and leptin serum concentrations were differentially regulated among the four investigated groups but only circulating chemerin was significantly different in patients with IGT compared to those with IFG. Compared to T2D the IFG subjects had higher serum chemerin, progranulin, fetuin-A and RBP4 levels which was not detectable in the comparison of the T2D and IGT group.

Conclusion

Alterations in adipokine serum concentrations are already detectable in prediabetic states, mainly for chemerin, and may reflect adipose tissue dysfunction as an early pathogenetic event in T2D development. In addition, distinct adipokine serum patterns in individuals with IFG and IGT suggest a specific role of adipose tissue in the pathogenesis of these prediabetic states.  相似文献   

3.
Reports in the literature have shown that acute or chronic zinc administration may cause hyperglycemia, with a fall in serum or insular insulin occurring in experimental animals. On the other hand, under conditions of both acute and chronic hyperglycemia, an increase, a decrease, or a normal level of blood zinc has been observed in studies conducted on humans. Thus, the objective of the investigation described here was to determine the relationship existing among zinc, glucose, and insulin under acute conditions. Thirty-six subjects of both sexes (mean age, 23 yr) were tested at 7:00A.M. after a 12-h fast. Two antecubital veins of both forearms were punctured and maintained with physiological saline. Three experiments were performed in which zinc was administered orally, and hypertonic glucose and tolbutamid were administered intravenously. Blood samples were then collected over a period ranging from 93 to 240 min after the basal times of −30 and 0 min. Hyperzincemia did not cause changes in plasma glucose or insulin either in the absence of or during perfusion of glucose. Hyperglycemia, hypoglycemia, and hyperinsulinemia did not modify serum zinc levels. These results demonstrate that acute zinc administration did not change carbohydrate metabolism and that sudden variations in glucose and insulin levels did not modify the serum profile of zinc.  相似文献   

4.
We report a progressive disruption of 24-h rhythms in fasting blood glucose (FBG), body temperature (BT) and heart rate (HR) associated with metabolic dysfunction and the development of prediabetes (PD) and type 2 diabetes mellitus (T2DM) in overweight middle-aged (40–69 years old) humans. Increasing BT and HR mean values and declining 24-h BT and HR amplitudes accompany adverse changes in metabolic state. Increased nocturnal BT and a phase delay of the 24-h BT rhythm, deviant 24-h HR profile and a phase advance of the 24-h HR and FBG rhythms are early signs of the PD metabolic state. In T2DM, the 24-h FBG rhythm is no longer detectable, and the 24-h amplitudes of BT and HR are greatly diminished. In addition, lepton and creatinine values were lowered in T2DM. Moreover, positive correlations between FBG and body mass index, BMI, and negative correlations between the 24-h amplitude of FBG and BMI indicate that overweight is an additional factor causing disruption of the circadian rhythms. Further studies on circadian disruption as a consequence of metabolic dysfunction are necessary. The quantitative analysis of changing circadian BT and HR rhythms may provide prognostic markers of T2DM and therapeutic targets for its prevention and correction.  相似文献   

5.

Background

Prediabetes (PreDM) in asymptomatic adults is associated with abnormal circadian blood pressure variability (abnormal CBPV).

Hypothesis

Systemic inflammation and glycemia influence circadian blood pressure variability.

Methods

Dahl salt-sensitive (S) rats (n = 19) after weaning were fed either an American (AD) or a standard (SD) diet. The AD (high-glycemic-index, high-fat) simulated customary human diet, provided daily overabundant calories which over time lead to body weight gain. The SD (low-glycemic-index, low-fat) mirrored desirable balanced human diet for maintaining body weight. Body weight and serum concentrations for fasting glucose (FG), adipokines (leptin and adiponectin), and proinflammatory cytokines [monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α)] were measured. Rats were surgically implanted with C40 transmitters and blood pressure (BP-both systolic; SBP and diastolic; DBP) and heart rate (HR) were recorded by telemetry every 5 minutes during both sleep (day) and active (night) periods. Pulse pressure (PP) was calculated (PP = SBP-DBP).

Results

[mean(SEM)]: The AD fed group displayed significant increase in body weight (after 90 days; p < 0.01). Fasting glucose, adipokine (leptin and adiponectin) concentrations significantly increased (at 90 and 172 days; all p < 0.05), along with a trend for increased concentrations of systemic pro-inflammatory cytokines (MCP-1 and TNF-α) on day 90. The AD fed group, with significantly higher FG, also exhibited significantly elevated circadian (24-hour) overall mean SBP, DBP, PP and HR (all p < 0.05).

Conclusion

These data validate our stated hypothesis that systemic inflammation and glycemia influence circadian blood pressure variability. This study, for the first time, demonstrates a cause and effect relationship between caloric excess, enhanced systemic inflammation, dysglycemia, loss of blood pressure control and abnormal CBPV. Our results provide the fundamental basis for examining the relationship between dysglycemia and perturbation of the underlying mechanisms (adipose tissue dysfunction induced local and systemic inflammation, insulin resistance and alteration of adipose tissue precursors for the renin-aldosterone-angiotensin system) which generate abnormal CBPV.  相似文献   

6.

Introduction

Fasting metabolite profiles have been shown to distinguish type 2 diabetes (T2D) patients from normal glucose tolerance (NGT) individuals.

Objectives

We investigated whether, besides fasting metabolite profiles, postprandial metabolite profiles associated with T2D can stratify individuals with impaired fasting glucose (IFG) by their similarities to T2D.

Methods

Three groups of individuals (age 45–65 years) without any history of IFG or T2D were selected from the Netherlands Epidemiology of Obesity study and stratified by baseline fasting glucose concentrations (NGT (n?=?176), IFG (n?=?186), T2D (n?=?171)). 163 metabolites were measured under fasting and postprandial states (150 min after a meal challenge). Metabolite profiles specific for a high risk of T2D were identified by LASSO regression for fasting and postprandial states. The selected profiles were utilised to stratify IFG group into high (T2D probability?≥?0.7) and low (T2D probability?≤?0.5) risk subgroups. The stratification performances were compared with clinically relevant metabolic traits.

Results

Two metabolite profiles specific for T2D (nfasting = 12 metabolites, npostprandial = 4 metabolites) were identified, with all four postprandial metabolites also being identified in the fasting state. Stratified by the postprandial profile, the high-risk subgroup of IFG individuals (n?=?72) showed similar glucose concentrations to the low-risk subgroup (n?=?57), yet a higher BMI (difference: 3.3 kg/m2 (95% CI 1.7–5.0)) and postprandial insulin concentrations (21.5 mU/L (95% CI 1.8–41.2)).

Conclusion

Postprandial metabolites identified T2D patients as good as fasting metabolites and exhibited enhanced signals for IFG stratification, which offers a proof of concept that metabolomics research should not focus on the fasting state alone.
  相似文献   

7.
Summary Chromium functions in maintaining normal glucose tolerance primarily by regulating insulin action. In the presence of optimal amounts of biologically active chromium, much lower amounts of insulin are required. Glucose intolerance, related to insufficient dietary chromium, appears to be widespread. Improved chromium nutrition leads to improved sugar metabolism in hypoglycemics, hyperglycemics, and diabetics.  相似文献   

8.
Our aim was to study the potential mechanisms responsible for the improvement in glucose control in Type 2 diabetes (T2D) within days after Roux-en-Y gastric bypass (RYGB). Thirteen obese subjects with T2D and twelve matched subjects with normal glucose tolerance (NGT) were examined during a liquid meal before (Pre), 1 wk, 3 mo, and 1 yr after RYGB. Glucose, insulin, C-peptide, glucagon-like peptide-1 (GLP-1), glucose-dependent-insulinotropic polypeptide (GIP), and glucagon concentrations were measured. Insulin resistance (HOMA-IR), β-cell glucose sensitivity (β-GS), and disposition index (D(β-GS): β-GS × 1/HOMA-IR) were calculated. Within the first week after RYGB, fasting glucose [T2D Pre: 8.8 ± 2.3, 1 wk: 7.0 ± 1.2 (P < 0.001)], and insulin concentrations decreased significantly in both groups. At 129 min, glucose concentrations decreased in T2D [Pre: 11.4 ± 3, 1 wk: 8.2 ± 2 (P = 0.003)] but not in NGT. HOMA-IR decreased by 50% in both groups. β-GS increased in T2D [Pre: 1.03 ± 0.49, 1 wk: 1.70 ± 1.2, (P = 0.012)] but did not change in NGT. The increase in DI(β-GS) was 3-fold in T2D and 1.5-fold in NGT. After RYGB, glucagon secretion was increased in response to the meal. GIP secretion was unchanged, while GLP-1 secretion increased more than 10-fold in both groups. The changes induced by RYGB were sustained or further enhanced 3 mo and 1 yr after surgery. Improvement in glycemic control in T2D after RYGB occurs within days after surgery and is associated with increased insulin sensitivity and improved β-cell function, the latter of which may be explained by dramatic increases in GLP-1 secretion.  相似文献   

9.
10.
11.
12.
Although exercise can prevent progression to T2D among people with prediabetes, little is known about fatigue during exercise in people with prediabetes compared to T2D. The purpose of the study was to compare the magnitude and mechanisms of fatigability of the ankle dorsiflexor muscles between people with prediabetes and T2D. Ten people with prediabetes (6 females, 51.7 ± 6.9 years) and fourteen with T2D (6 females, 52.6 ± 6.2 years) who were matched for age, body mass index and physical activity performed an intermittent (6 s contraction: 4 s relaxation) fatiguing task at 75% maximal voluntary contraction (MVC) with the dorsiflexors. Electrical stimulation was used to assess contractile properties of the dorsiflexor muscles before and after the fatiguing task. People with prediabetes had a longer time-to-task failure, i.e. greater fatigue resistance (7.9 ± 5.1 vs. 4.9 ± 2.5 min, P = 0.04), and slower rate of decline of the (potentiated) twitch amplitude (6.5 ± 3.1 vs. 16.5 ± 11.7%·min−1, P = 0.03) than people with T2D. Shorter time-to-task failure (i.e. greater fatigability) was associated with greater baseline MVC torque (r2 = 0.21, P = 0.02) and faster rate of decline of twitch amplitude (r2 = 0.39, P = 0.04). The ankle dorsiflexor muscles of males and females with prediabetes were more fatigue resistant than people with T2D, and fatigability was associated with contractile mechanisms.  相似文献   

13.
14.
Adiponectin, a protein exclusively secreted by adipose tissue and present at low levels in obese individuals, is now widely recognized as a key determinant of insulin sensitivity and protection against obesity-associated metabolic syndrome. In Jordan, prevalence of diabetes (17.1%) is twice that of the United States (7.8%). In this study, we examined the contribution of the promoter variant rs266729 (− 11377C>G) of the ADIPOQ gene as a risk factor for diabetic patients in Jordan. DNA was extracted from blood samples for patients and controls .Polymerase chain reaction and restriction fragment length polymorphism were used to genotype this variant. A total of 420 type 2 diabetic patients and 230 controls were successfully genotyped. The results showed a significant genotypic (p = 0.00001) and allelic (p = 0.01) association with variant in the diabetic patients as compared to controls. This suggests that the ADIPOQ gene plays a major role in increasing the risk of diabetes, at least in the Jordanian Arab population.  相似文献   

15.
16.
Yaturu S  Daberry RP  Rains J  Jain S 《Cytokine》2006,34(3-4):219-223
BACKGROUND: Resistin and adiponectin are implicated in insulin resistance and atherosclerosis. The objective of this study was to evaluate the association between plasma resistin levels and the presence of coronary artery disease (CAD) or diabetes compared to the controls. In a cross-sectional study, we measured glucose, fasting lipid panel, resistin, adiponectin, insulin, C-reactive protein (CRP) and TNF-alpha in 57 subjects with CAD, 58 subjects with diabetes compared to 45 normal control subjects. Results: Subjects with CAD compared to the control subjects had increased insulin resistance index (39+/-32 vs. 13.45+/-12.73 with p<0.0001), CRP levels (3.8+/-4.03 vs. 2.0+/-2.0 with p<0.05) and decreased levels of adiponectin (12.5+/-4.8 vs. 17.26+/-10.4 with p<0.0003). Subjects with diabetes compared to the controls had had increased insulin resistance index (69+/-19 vs. 13.45+/-12.73 with p<0.001), CRP levels (4.1+/-4.8 vs. 2.0+/-2.0 with p<0.01) and decreased levels of adiponectin (11.58+/-4.8 vs. 17.26+/-10.4 with p<0.001). Compared to the controls, there was no significant difference in the levels of resistin in subjects with CAD (4.92+/-3.2 vs. 4.1+/-2.4) as well as diabetes (4.92+/-3.2 vs. 4.6+/-2.6). Both CRP and resistin levels correlate with TNF-alpha (r=0.557, p<0.000001; r=0.84, p<0.000001). Conclusions: The present study shows decreased plasma adiponectin levels in subjects with diabetes as well as in subjects with CAD is similar to the literature. Plasma levels of resistin in subjects with CAD or diabetes are similar to the controls. However, there was a strong correlation of resistin levels with inflammatory markers. This suggests resistin as an inflammatory marker associated with CAD.  相似文献   

17.
ABSTRACT: BACKGROUND: Hypertension is common among persons with type 2 diabetes. The aim of this study was to analyze the association between ethnicity and hypertension prevalence after adjusting for age, sex, Hba1c, total cholesterol, elevated triglycerides and hypertriglyceridemic waist. The study population consisted of 354 primary health care patients diagnosed with type 2 diabetes (173 Assyrians/Syrians and 181 Swedes) residing in Sodertalje, Sweden. Unconditional logistic regression was used to analyze the data. RESULTS: Hypertension prevalence was higher among Swedes than Assyrians/Syrians, (77% versus 58%; p = 0.001). In the unadjusted logistic regression model, the odds ratio for hypertension in Swedes was twice as high than that in Assyrians/Syrians (OR = 2.44; 95% CI =1.54 - 3.86). In the age- and sex-adjusted model, odds ratio of hypertension was 2.25 (95% CI 1.41-3.60). After adjustments for total cholesterol was made, the odds ratio of hypertension decreased slightly to 1.73. When elevated triglycerides and hypertriglyceridemic waist were separately introduced, the odds ratio of hypertension was no longer significant between the ethnic groups (1.60 and 1.43 for triglycerides and hypertriglyceridemic waist respectively). In addition, advanced age - 60-69 years old (OR = 1.80, CI 95% 1.00-3.20) and [greater than or equal to] 70 years old (OR = 2.88, CI 95% 1.40-5.93), elevated total cholesterol (OR = 1.48, CI 95% 1.12-1.95) and presents of hypertriglyceridemic waist (those with high WC and high TG) were significant confounding factors for the increased risk of hypertension independent of ethnicity. CONCLUSIONS: The crude differences in prevalence of hypertension between the Swedes and Assyrians/Syrians in our study population with type 2 diabetes were no longer significant when adjusting for high triglycerides levels or the presence of hypertriglyceridemic waist.  相似文献   

18.
Cytokine-inducers prevent insulin-dependent diabetes mellitus (IDDM) in animal models. We extended this therapy to non-insulin-dependent diabetes mellitus (NIDDM), because it was reported that diabetes of KK-Ay mice, a model for NIDDM, was recovered by allogenic bone-marrow transplantation that also prevented IDDM in animal models. An i.p. or i.v. injection of streptococcal preparation (OK 432) lowered fasting blood glucose (FBG) levels and markedly improved glucose tolerance test (GTT) in KK-Ay mice for more than 32 h regardless of the glucose loading routes (oral, i.v. or i.p.), while an i.v. injection of BCG improved FBG and GTT for more than 4 wks without body weight loss. The improvement of FBG and GTT with OK-432 was brought about in other NIDDM animals, GK rats and Wistar fatty rats. Among various cytokines possibly induced by OK-432 and BCG, IL-1α, TNFα and lymphotoxin significantly improved FBG and GTT in KK-Ay mice, whereas IL-2 and IFNγ did not. There were no differences between the OK-432-treated KK-Ay mice and control in histology of the pancreas, degree of insulin-induced decrease in blood glucose levels, and muscle glycogen synthase activities. As to insulin secretion, there is a tendency that the OK-432-treatment less than 1 week did not affect insulin levels during GTT, whereas the treatment more than 2 weeks increased the insulin levels. Thus, cytokine-inducers improved FBG and glucose tolerance of NIDDM animals probably via cytokines. The results imply a role of the cytokines in glucose tolerance of NIDDM, although precise immune and metabolic mechanisms remain to be elucidated.  相似文献   

19.
20.
Recent studies indicate an important role of the kidney in postprandial glucose homeostasis in normal humans. To determine its role in the abnormal postprandial glucose metabolism in type 2 diabetes mellitus (T2DM), we used a combination of the dual-isotope technique and net balance measurements across kidney and skeletal muscle in 10 subjects with T2DM and 10 age-, weight-, and sex-matched nondiabetic volunteers after ingestion of 75 g of glucose. Over the 4.5-h postprandial period, diabetic subjects had increased mean blood glucose levels (14.1 +/- 1.1 vs. 6.2 +/- 0.2 mM, P < 0.001) and increased systemic glucose appearance (100.0 +/- 6.3 vs. 70.0 +/- 3.3 g, P < 0.001). The latter was mainly due to approximately 23 g greater endogenous glucose release (39.8 +/- 5.9 vs. 17.0 +/- 1.8 g, P < 0.002), since systemic appearance of the ingested glucose was increased by only approximately 7 g (60.2 +/- 1.4 vs. 53.0 +/- 2.2 g, P < 0.02). Approximately 40% of the diabetic subjects' increased endogenous glucose release was due to increased renal glucose release (19.6 +/- 3.1 vs. 10.6 +/- 2.4 g, P < 0.05). Postprandial systemic tissue glucose uptake was also increased in the diabetic subjects (82.3 +/- 4.7 vs. 69.8 +/- 3.5 g, P < 0.05), and its distribution was altered; renal glucose uptake was increased (21.0 +/- 3.5 vs. 9.8 +/- 2.3 g, P < 0.03), whereas muscle glucose uptake was normal (18.5 +/- 1.8 vs. 25.9 +/- 3.3 g, P = 0.16). We conclude that, in T2DM, 1) both liver and kidney contribute to postprandial overproduction of glucose, and 2) postprandial renal glucose uptake is increased, resulting in a shift in the relative importance of muscle and kidney for glucose disposal. The latter may provide an explanation for the renal glycogen accumulation characteristic of diabetes mellitus as well as a mechanism by which hyperglycemia may lead to diabetic nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号